RT Journal Article T1 Using machine learning techniques for architectural design tracking: an experimental study of the design of a shelter. A1 Millán-Valldeperas, Eva A1 Belmonte-Martínez, María Victoria A1 Boned-Purkiss, Francisco Javier A1 Gavilanes-Velaz-de-Medrano, Juan A1 Pérez-de-la-Cruz-Molina, José Luis A1 Díaz-López, Carmen K1 Aprendizaje automático (Inteligencia artificial) K1 Diseño arquitectónico AB In this paper, we present a study aimed at tracking and analysing the design process. More concretely, we intend to explore whether some elements of the conceptual design stage in architecture might have an influence on the quality of the final project and to find and assess common solution pathways in problem-solving behaviour. In this sense, we propose a new methodology for design tracking, based on the application of data analysis and machine learning techniques to data obtained in snapshots of selected design instants. This methodology has been applied in an experimental study, in which fifty-two novice designers were required to design a shelter with the help of a specifically developed computer tool that allowed collecting snapshotsof the project at six selected design instants. The snapshots were described according to nine variables. Data analysis and machine learning techniques were then used to extract the knowledge contained in the data. More concretely, supervised learning techniques (decision trees) were used to find strategies employed in higher-quality designs, while unsupervised learning techniques (clustering) were used to find common solution pathways. Results provide evidence that supervised learning techniques allow elucidating the class of the best projects by considering the order of some of the decisions taken. Also, unsupervised learning techniques can find several common problem-solving pathways by grouping projects into clusters that use similar strategies. In this way, our work suggests a novel approach to design tracking, using quantitative analysis methods that can complement and enrich the traditional qualitative approach. PB Elsevier YR 2022 FD 2022-02-17 LK https://hdl.handle.net/10630/23912 UL https://hdl.handle.net/10630/23912 LA eng NO Eva Millán, María-Victoria Belmonte, Francisco-Javier Boned, Juan Gavilanes, José-Luis Pérez-de-la-Cruz, Carmen Díaz-López, Using machine learning techniques for architectural design tracking: An experimental study of the design of a shelter, Journal of Building Engineering, 2022, 104223 NO This work has been partially funded by the Spanish Government, Agencia Estatal de Investigaci ́on (AEI), and the European Union, Fondo Europeo de Desarrollo Regional (FEDER), grant TIN2016-80774-R (AEI/FEDER, UE). Funding for open access charge: Universidad de Málaga/CBUA. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026