RT Journal Article T1 Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. A1 Bernardis-Medici, Ana Lucía A1 Hartzstein, Silvia A1 Pradolini, Gladis K1 Análisis matemático AB Let 0 <γ< 1, b be a BMO function and Im γ,b the commutator of order m for the fractional integral.We prove two type of weighted Lp inequalities for Im γ,b in the context of the spaces of homogeneous type.The first one establishes that, for A∞ weights, the operator Im γ,b is bounded in the weighted Lp norm by the maximal operator Mγ (Mm), where Mγ is the fractional maximal operator and Mm is the Hardy– Littlewood maximal operator iterated m times. The second inequality is a consequence of the first one and shows that the operator Im γ,b is bounded from Lp[Mγp(M[(m+1)p]w)(x)dμ(x)] to Lp[w(x)dμ(x)], where [(m + 1)p] is the integer part of (m + 1)p and no condition on the weight w is required. Fromthe first inequality we also obtain weighted Lp–Lq estimates for Im γ,b generalizing the classical results of Muckenhoupt and Wheeden for the fractional integral operator. PB Elsevier YR 2006 FD 2006 LK https://hdl.handle.net/10630/29908 UL https://hdl.handle.net/10630/29908 LA eng NO Ana Bernardis, Silvia Hartzstein, Gladis Pradolini, Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type, Journal of Mathematical Analysis and Applications, Volume 322, Issue 2, 2006, Pages 825-846, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2005.09.051. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026