RT Journal Article T1 Groups as automorphisms of dessins d’enfants A1 Cañas Muñoz, Alejandro A1 Hidalgo, Rubén A. A1 Turiel-Sandín, Francisco Javier A1 Viruel-Arbaizar, Antonio Ángel K1 Automorfismos AB It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin d’enfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realisable. PB Springer YR 2022 FD 2022-08-01 LK https://hdl.handle.net/10630/24870 UL https://hdl.handle.net/10630/24870 LA eng NO Cañas, A., Hidalgo, R.A., Turiel, F.J. et al. Groups as automorphisms of dessins d’enfants. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 160 (2022). https://doi.org/10.1007/s13398-022-01285-7 NO Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026