RT Journal Article T1 Exact solutions of some singular integro-differential equations related to adhesive contact problems of elasticity theory. A1 Shavlakadze, Nugzar A1 Odishelidze, Nana A1 Criado-Aldeanueva, Francisco K1 Problemas de contorno K1 Cálculo operacional K1 Elasticidad AB The problem of constructing an exact solution of singular integro-differential equations related to problems of adhesive interaction between elastic thin semi-infinite homogeneous patch and elastic plate is investigated. For the patch loaded with horizontal forces the usual model of the uniaxial stress state is valid. Using the methods of the theory of analytic functions and integral transformation, the singular integro-differential equation is reduced to the Riemann boundary value problem of the theory of analytic functions. The exact solution of this problem and asymptotic estimates of tangential contact stresses are obtained. PB Springer Nature YR 2020 FD 2020-06-30 LK https://hdl.handle.net/10630/31209 UL https://hdl.handle.net/10630/31209 LA eng NO Shavlakadze, N., Odishelidze, N. & Criado-Aldeanueva, F. Exact solutions of some singular integro-differential equations related to adhesive contact problems of elasticity theory. Z. Angew. Math. Phys. 71, 115 (2020). https://doi.org/10.1007/s00033-020-01350-4 NO Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/14498 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026