RT Journal Article T1 Extending PROXIMAL to predict degradation pathways of phenolic compounds in the human gut microbiota. A1 Balzerani, Francesco A1 Blasco, Telmo A1 Pérez-Burillo, Sergio A1 Valcárcel, Luis V A1 Hassoun, Soha A1 Planes, Francisco Javier K1 Biología computacional K1 Bioinformática K1 Fenoles K1 Enzimas K1 Degradación biológica AB Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition. PB Springer Nature YR 2024 FD 2024-05-27 LK https://hdl.handle.net/10630/38630 UL https://hdl.handle.net/10630/38630 LA eng NO Balzerani F, Blasco T, Pérez-Burillo S, Valcarcel L V., Hassoun S, Planes FJ. Extending PROXIMAL to predict degradation pathways of phenolic compounds in the human gut microbiota. npj Systems Biology and Applications 2024 10:1. 2024;10:1–11. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026