RT Conference Proceedings T1 A bottom-up robot architecture based on learnt behaviors driven design A1 Herrero-Reder, Ignacio A1 Urdiales-García, Amalia Cristina A1 Peula-Palacios, José Manuel A1 Sandoval-Hernández, Francisco K1 Robótica AB In reactive layers of robotic architectures, behaviors should learn their operation from experience, following the trends of modern intelligence theories. A Case Based Reasoning (CBR) reactive layer could allow to achieve this goal but, as complexity of behaviors increases, thecurse of dimensionality arises: a too high amount of cases in the behaviors casebases deteriorate response times so robot's reactiveness is finally too slow for a good performance. In this work we analyze this problemand propose some improvements in the traditional CBR structure and retrieval phase, at reactive level, to reduce the impact of scalability problems when facing complex behaviors design. YR 2015 FD 2015-06-17 LK http://hdl.handle.net/10630/9929 UL http://hdl.handle.net/10630/9929 LA eng NO Draft previo a la revisión. El artículo definitivo tiene derechos de autor. NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026