RT Conference Proceedings T1 Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. A1 García Aguilar, Iván A1 Galeano-Brajones, Jesús A1 Luna-Valero, Francisco A1 Carmona Murillo, Javier A1 Fernández-Rodríguez, Jose David A1 Luque-Baena, Rafael Marcos K1 Redes neuronales (Informática) K1 Sistemas telefónicos móviles AB Deploying 5G networks in urban areas is crucial for meetingthe increasing demand for high-speed, low-latency wireless communications. However, the complex topography and diverse building structures in urban environments have challenges in identifying suitable locations for base stations. This research explores leveraging deep learningneural networks to analyze satellite imagery, creating a predictive toolfor identifying potential rooftop locations. Integrating these predictionsinto a user-friendly desktop application simplifies the site selection process, reducing the need for costly and labor-intensive site visits in 5Gnetwork deployment. This approach democratizes the deployment process, making it accessible to a broader audience. The combination ofadvanced technology and satellite imagery offers a promising solution toefficiently deploy 5G base stations in urban landscapes, contributing tothe widespread adoption of this technology in densely populated areasand advancing 5G connectivity globally. PB Springer YR 2024 FD 2024 LK https://hdl.handle.net/10630/32259 UL https://hdl.handle.net/10630/32259 LA eng NO García-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4 NO García-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4 NO Política de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policies NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026