RT Journal Article T1 Some quantitative one-sided weighted estimates A1 Lorente-Domínguez, María A1 Martín-Reyes, Francisco Javier A1 Rivera Ríos, Israel P. K1 Analisis Matematico AB We show a link between affine differential geometry and null submanifolds in a semi-Riemannian manifold via statistical structures. Once a rigging for a null submanifold is fixed, we can construct a semi-Riemannian metric on it. This metric and the induced connection constitute a statistical structure on the null submanifold in some cases. We study the statistical structures arising in this way. We also construct statistical structures on a null hypersurface in the Lorentz–Minkowski space using the null second fundamental form. This extends the classical construction to the null case. PB Elsevier YR 2022 FD 2022-12-20 LK https://hdl.handle.net/10630/26494 UL https://hdl.handle.net/10630/26494 LA eng NO Meli, C. B., Ngakeu, F., & Olea, B. (2023). Statistical structures arising in null submanifolds. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 117(1), 48. NO Funding for open access publishing: Universidad Málaga/CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026