RT Journal Article T1 Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals A1 Stoean, Catalin A1 Stoean, Ruxandra A1 Atencia-Ruiz, Miguel Alejandro A1 Abdar, Moulud A1 Velázquez-Pérez, Luis A1 Khosravi, Abbas A1 Nahavandi, Saeid A1 Acharya, U. Rajendra A1 Joya-Caparrós, Gonzalo K1 Electrofisiología K1 Aprendizaje automático (Inteligencia artificial) K1 Montecarlo, Método de K1 Informática médica AB Application of deep learning (DL) to the field of healthcare is aiding clinicians to make an accurate diagnosis. DL provides reliable results for image processing and sensor interpretation problems most of the time. However, model uncertainty should also be thoroughly quantified. This paper therefore addresses the employment of Monte Carlo dropout within the DL structure to automatically discriminate presymptomatic signs of spinocerebellar ataxia type 2 in saccadic samples obtained from electrooculograms. The current work goes beyond the common incorporation of this special type of dropout into deep neural networks and uses the uncertainty derived from the validation samples to construct a decision tree at the register level of the patients. The decision tree built from the uncertainty estimates obtained a classification accuracy of 81.18% in automatically discriminating control, presymptomatic and sick classes. This paper proposes a novel method to address both uncertainty quantification and explainability to develop reliable healthcare support systems. PB MDPI YR 2020 FD 2020-05-27 LK https://hdl.handle.net/10630/41429 UL https://hdl.handle.net/10630/41429 LA eng NO Stoean, C., Stoean, R., Atencia, M., Abdar, M., Velázquez-Pérez, L., Khosravi, A., Nahavandi, S., Acharya, U. R., & Joya, G. (2020). Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals. Sensors, 20(11), 3032 NO Ministerio de Ciencia e Innovación. Plan Estatal de Investigación Científica y Técnica y de Innovación DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 25 ene 2026