RT Journal Article T1 A generalized Hilbert operator acting on conformally invariant spaces A1 Girela-Álvarez, Daniel A1 Merchán-Álvarez, Noel K1 Hilbert, Operadores en espacio de AB If μ is a positive Borel measure on the interval [0,1), we let H_μ be the Hankel matrix with entries μ_{n,k}=μ_{n+k}, where μ_n denotes the moment of order n of the measure μ.This matrix formally induces an operator on the space of all analytic functions in the unit disk D. This is a natural generalization of the classical Hilbert operator. The action of the operators H_μ on Hardy spaces has been recently studied. This article is devoted to a study of the operators H_μ acting on certain conformally invariant spaces of analytic functions on the disk such as the Bloch space, the space BMOA, the analytic Besov spaces, and the Q_s-spaces. PB Springer Basel AG YR 2018 FD 2018 LK https://hdl.handle.net/10630/29105 UL https://hdl.handle.net/10630/29105 LA eng NO Daniel Girela, Noel Merchán "A generalized Hilbert operator acting on conformally invariant spaces," Banach Journal of Mathematical Analysis, Banach J. Math. Anal. 12(2), 374-398, (April 2018) NO - Proyecto del Ministerio de Economía y Competitividad MTM2014-52865-P.- Proyecto de la Junta de Andalucía FQM-210.- Ayuda FPU del Ministerio de Educación, Cultura y Deporte. FPU2013/01478. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026