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ABSTRACT 

The classification of volatiles substances with an e-nose is 
still a challenging problem, particularly when working under 
real-time, out-of-the-lab environmental conditions where the 
chaotic and highly dynamic characteristics of the gas 
transportation induce an almost permanent transient state in the 
e-nose readings. In this work, a sequential Bayesian filtering 
approach is proposed to efficiently integrate information from 
previous e-nose observations while updating the belief about the 
gas class on a real-time basis. We validate our proposal with two 
real olfaction datasets composed of dynamic time-series 
experiments (gas transitions are considered, but no mixture of 
gases), showing an improvement in the classification rate when 
compared to a stand-alone probabilistic classifier. 

Index terms– Odor Classification, E-Nose, Sequential 
Bayesian Filtering. 

1. INTRODUCTION 

The detection of toxic or dangerous chemicals in human 
environments, the localization of multiple gas sources, or the 
generation of gas distribution maps in the presence of multiple 
chemical compounds, are just examples of applications that 
demand a reliable and fast classification of volatile substances. 
In all these cases, the classification system must be able to work 
under out-of-the-lab environmental conditions, which entails the 
absence of steady state signals in the gas sensor readings, as well 
as in real-time. It would be also highly desirable to provide some 
uncertainty measure about the class prediction (probabilistic 
classifier), since, for example, it may help in the decision-
making process of a robot performing the odor classification. 

Given the dynamic and chaotic nature of gas dispersal in real 
environments and the fact that e-nose data only contain 
information about the chemical substances at the time of the 
measurement, it is vital to integrate information from previous 
observations in order to obtain a reliable classification. Fig. 1 
illustrates this fact with a real experiment of a naïve Bayes 
classifier which was trained to cope with four classes but was 
exposed to only one chemical substance. As can be appreciated, 
the posterior class probabilities fluctuate considerably along the 
experiment due to the dynamic nature of the e-nose signals, 
causing the maximum-a-posteriori (MAP) decision rule to 
incorrectly switch between different gas classes. 

Up to date, different works have been proposed to solve this 
problem with relatively successful results [1] [2] [3]. In most 
cases, a reduced sequence of the complete olfactory time-series 
is used to extract a set of features that will be used later by the 
classification algorithm. Thus, these alternatives have to cope 
with the additional problems of data selection and feature 
extraction, which strongly influence the earliness and success 
rate of the classification method. 
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In this work, we pursue a solution to the online classification 
of the dynamic and fluctuating data provided by an e-nose 
working in a real environment. The basis of our proposal is to 
smooth the outcome of a probabilistic classifier (exploiting the 
temporal correlation of the data) while keeping its earliness in 
delivering the optimal decision for each new measurement 
available. Concretely, we suggest applying sequential Bayesian 
filtering (SBF) to the posterior of any probabilistic classifier 
working with the instantaneous response of an e-nose. This 
approach enables an efficiently integration of information from 
previous e-nose observations without relying on data sequences, 
which in turns allows updating our belief about the chemical 
category in a real-time basis. As demonstrated in the 
experimental section, SBF also improves the classification rate 
respect the stand-alone probabilistic classifier working under 
similar circumstances. 

2. SEQUENTIAL BAYESIAN FILTERING 

The odor classification problem can be expressed as a hidden 
Markov model (HMM) where latent variables represent the class 
labels	ܥ, with	ܥ ∈ ൫ܥሺଵሻ. . .  ܼ	ሺெሻ൯, and the observed variablesܥ
are the readings of the e-nose at each time step. Fig. 2 depicts the 
Bayesian network representing the conditional independence 
relations of such HMM. Naturally, this implies assuming the 
Markov properties, i.e. P(Ct|C1:t-1)=P(Ct|Ct-1) and P(Zt|Ct,Z1:t-1)= 
P(Zt|Ct). 

Then, our objective is to estimate the belief Bel(Ct) = 
P(Ct|Z1:t) given we have two sources of information namely the 
posterior distribution P(Ct|Zt) of the selected classifier (which, as 
previously stated, can be any probabilistic classifier working on 
the instantaneous response of the e-nose), and the transition 
probability P(Ct|Ct-1) which specifies how the category states 
evolve over time. The latter can be defined as: 

ܲሺܥ௧|ܥ௧ିଵሻ ൌ ൝
௦݌ ௧ܥ	݂݅				 ൌ ௧ିଵܥ
1 െ ௦݌
ܯ

,݁ݏ݅ݓݎ݄݁ݐ݋					
 (1) 

 
Figure 1. Instability of the classification due to the dynamic 
nature of the odor signal. Results obtained from a naïve 
Bayes classifier fed with the instantaneous response of an 
e-nose (after baseline manipulation) composed of four gas 
sensors. 
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where M is the total number of class labels, and ps the 
probability that two consecutive observations come from the 
same odor source, that is, that they are samples from the same 
class. In practice, this probability is very difficult to estimate, 
thus, it has to be set from the prior knowledge of the application. 
Consequently, we evaluate its influence on the classification 
performance in the experimental section. 

We can therefore express our belief or overall posterior 
probability recursively over time, taking the form of a sequential 
Bayesian filter: 

௧ሻܥሺ݈݁ܤ ∝ ܲሺܼ௧|ܥ௧ሻ෍ܲ ቀܥ௧|ܥ௧ିଵ
ሺ௜ሻ ቁ ௧ିଵܥሺ݈݁ܤ

ሺ௜ሻ ሻ

ெ

௜ୀଵ

.			  (2) 

Note, however, that to sequentially estimate the Bel(Ct), we 
require the conditional density P(Zt|Ct) whereas we have the 
posterior probability P(Ct|Zt). These two conditional distributions 
are related through Bayes’ theorem (see [4]), which applied to 
(2) and omitting factors which are independent of the {Cn} gives: 

௧ሻܥሺ݈݁ܤ ∝ 	
ܲሺܥ௧|ܼ௧ሻ

ܲሺܥ௧ሻ
෍ܲ ቀܥ௧|ܥ௧ିଵ

ሺ௜ሻ ቁ ௧ିଵܥሺ݈݁ܤ
ሺ௜ሻ ሻ

ெ

௜ୀଵ

,			  (3) 

where we consider that the marginal class probability P(Ct) is 
time-independent, and thus, is learned from the training data. 
Consequently, the Bel(Ct) at a given time step depends only on 
the posterior provided by the selected classifier, the class 
transition probability, and the belief at the previous time step. 

3. EXPERIMENTS AND RESULTS 

This section evaluates the performance of using SBF for the 
real-time classification of chemical volatiles in uncontrolled, real 
environments. As stated in Section 1, SBF can be applied to the 
output of any classifier which provides a posterior probability for 
each class. Nonetheless, for evaluation purposes, we restrict our 
selection to a naïve Bayes (NB) classifier because of its easy 
implementation and good performance as a stand-alone 
classifier. Two distinct datasets have been selected on the basis 
of real olfaction experiments with highly dynamic time-series: 
DS-UMA [3], and DS-UCI [5]. The former is based on an array 
of 6 MOX sensors for the detection of 4 different volatile 
substances, while for the latter, only a subset of time-series 
corresponding to the parameters L4, Vh=5, fan=100, down-
sampled to 1Hz, and restricted to only 4 gas-classes is used. 

Fig. 3(a) shows the classification performance obtained by 
10-fold cross-validation for different values of the class 
transition probability parameter ps. As can be appreciated, SBF 
improves the classification rate with respect to the stand-alone 
classifier (which corresponds to ps=0.25 for a four-gas-class 
problem). A maximum improvement of 3.27% and 1.4% for DS-
UMA and DS-UCI, respectively, is achieved for ps=0.99, 
reflecting the fact that consecutive odor observations have a high 
likelihood to share the same chemical category.  

An important limitation of both dataset when evaluating the 
performance of SBF is the absence of experiments where 
different volatiles are consecutively presented to the e-nose 

(class transitions). This is due to the real complexity of obtaining 
a ground truth of such gas transitions when the gases are released 
in a dynamic real environment. Thus, we artificially simulate gas 
transitions by concatenating randomly selected sequences of 
time-series corresponding to different odor classes. Fig. 4 shows 
an example of the classifications results for such scenario, while 
Fig. 3(b) analyzes the SBF performance with respect to 
parameter ps for this new configuration. Even when class 
transitions are considered, the benefits of SBF are noticeable, 
improving the classification robustness when considering  
dynamic and fluctuating e-nose data streams. 
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Figure 2.Bayesian network of the HMM for the real-time 
odor classification problem. 

C1 C2 Ct‐1 Ct

Z1 Z2 Zt‐1 Zt

Figure 3. Classification rate obtained by a SBF working 
on the posterior of a naïve Bayes classifier for different 
values of the class transition probability. (a) Standard 
datasets, (b) datasets with class transitions. 

 

 
Figure 4.Example of classification with SBF of a time-
series with class transitions. 
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