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hara
terized as asum of a spe
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alled elementary lands
ape. The de-
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tion of a problem into its elementary
omponents provides additional knowledge on the problem that 
an beexploited to 
reate new sear
h methods for the problem. We analyzethe Test Suite Minimization problem in Regression Testing from thepoint of view of lands
ape theory. We �nd the elementary lands
ape de-
omposition of the problem and propose a pra
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ation of su
hde
omposition for the sear
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apes1 Introdu
tionThe theory of lands
apes fo
uses on the analysis of the stru
ture of the sear
hspa
e that is indu
ed by the 
ombined in
uen
es of the obje
tive fun
tion of theoptimization problem and the 
hoi
e neighborhood operator [8℄. In the �eld of
ombinatorial optimization, this theory has been used to 
hara
terize optimiza-tion problems and to obtain global statisti
s of the problems [11℄. However, inre
ent years, resear
hers have been interested in the appli
ations of lands
apetheory to improve the sear
h algorithms [5℄.A lands
ape for a 
ombinatorial optimization problem is a triple (X;N; f),where f : X 7! R de�nes the obje
tive fun
tion and the neighborhood operatorfun
tion N(x) generates the set of points rea
hable from x 2 X in a singleappli
ation of the neighborhood operator. If y 2 N(x) then y is a neighbor of x.There exists a spe
ial kind of lands
apes, 
alled elementary lands
apes, whi
hare of parti
ular interest due to their properties [12℄. We de�ne and analyze theelementary lands
apes in Se
tion 2, but we 
an advan
e that they are 
hara
-terized by the Grover's wave equation:avgff(y)gy2N(x) = f(x) + �d � �f � f(x)�where d is the size of the neighborhood, jN(x)j, whi
h we assume is the samefor all the solutions in the sear
h spa
e, �f is the average solution evaluation over



the entire sear
h spa
e, � is a 
hara
teristi
 
onstant and avgff(y)gy2N(x) is theaverage of the obje
tive fun
tion f 
omputed in its neighborhood:avgff(y)gy2N(x) = 1jN(x)j Xy2N(x) f(y) (1)For a given problem instan
e whose obje
tive fun
tion is elementary, thevalues �f and � 
an be easily 
omputed in an eÆ
ient way, usually from theproblem data. Thus, the wave equation makes it possible to 
ompute the averagevalue of the �tness fun
tion f evaluated over all of the neighbors of x usingonly the value f(x), without evaluating any of the neighbors. This means thatin elementary lands
apes we get additional information from a single solutionevaluation. We get an idea of what is the quality of the solutions around the
urrent one. This information 
an be used to design more 
lever sear
h strategiesand operators whi
h e�e
tively use the information.Lu et al. [5℄ provide a ni
e example of the appli
ation of the lands
ape anal-ysis to improve the performan
e of a sear
h method. In their work, the perfor-man
e of the Sampling Hill Climbing is improved by avoiding the evaluation ofnon-promising solutions. The average �tness value in the neighborhood of thesolutions 
omputed with (1) is at the 
ore of their proposal.When the lands
ape is not elementary it is always possible to write the ob-je
tive fun
tion as a sum of elementary 
omponents, 
alled elementary lands
apede
omposition of a problem [1℄. Then, Grover's wave equation 
an be applied toea
h elementary 
omponent and all the results are summed to give the average�tness in the neighborhood of a solution. Furthermore, for some problems the av-erage 
annot be limited to the neighborhood of a solution, but it 
an be extendedto the se
ond-order neighrbors (neighbors of neighbors), third-order neighbors,and, in general, to any arbitrary region around a given solution, in
luding thewhole sear
h spa
e. Sutton et al. [10℄ show how to 
ompute the averages overspheres and balls of arbitrary radius around a given solution in polynomial timeusing the elementary lands
ape de
omposition of real-valued fun
tions over bi-nary strings. In [9℄ they propose a method that uses these averages over theballs around a solution to es
ape from plateaus in the MAX-k-SAT problem.The empiri
al results noti
ed an improvement when the method was applied.Langdon [4℄ also analyzed the spheres of arbitrary radius from the point of viewof lands
ape theory, highlighting that the Walsh fun
tions are eigenve
tors ofthe spheres and the mutation matrix in GAs.If we extend the lands
ape analysis of the obje
tive fun
tion f to their powers(f2, f3, et
.), Grover's wave equation allows one to 
ompute higher-order mo-ments of the �tness distribution around a solution and, with them, the varian
e,the skewness and the kurtosis of this distribution. Sutton et al. [10℄ provide analgorithm for this 
omputation.We analyze here the Test Suite Minimization problem in regression testingfrom the point of view of lands
ape theory. This software engineering problem
onsists in sele
ting a set of test 
ases from a large test suite that satis�es a given
ondition, like maximizing the 
overage and minimizing the ora
le 
ost [13℄.



The remainder of the paper is organized as follows. In Se
tion 2 we presentthe mathemati
al tools required to understand the rest of the paper and Se
-tion 3 formally de�nes the Test Suite Minimization problem. Se
tion 4 presentsthe two main 
ontributions: the elementary lands
ape de
omposition of the ob-je
tive fun
tion of the problem and its square. We provide 
losed-form formulasfor both f and f2. In the mathemati
al development we in
lude a novel appli
a-tion of the Krawt
houk matri
es to the lands
ape analysis. Se
tion 5 proposesan appli
ation of the de
ompositions of f and f2 and presents a short exper-imental study showing the bene�ts (and drawba
ks) of the proposal. Finally,with Se
tion 6 we 
on
lude the paper.2 Ba
kgroundIn this se
tion we present some fundamental results of lands
ape theory. We willonly fo
us on the relevant information required to understand the rest of thepaper. The interested reader 
an deepen on this topi
 in [7℄.Let (X;N; f) be a lands
ape, where X is a �nite set of solutions, f : X ! Ris a real-valued fun
tion de�ned on X and N : X ! P(X) is the neighborhoodoperator. The adja
en
y and degree matri
es of the neighborhood N are de�nedas: Axy = �1 if y 2 N(x)0 otherwise ; Dxy = � jN(x)j if x = y0 otherwise (2)We restri
t our attention to regular neighborhoods, where jN(x)j = d > 0for a 
onstant d, for all x 2 X . Then, the degree matrix is D = dI , where I isthe identity matrix. The Lapla
ian matrix � asso
iated to the neighborhood isde�ned by � = A �D. In the 
ase of regular neighborhoods it is � = A � dI .Any dis
rete fun
tion, f , de�ned over the set of 
andidate solutions 
an be
hara
terized as a ve
tor in RjXj . Any jX j � jX j matrix 
an be interpreted as alinear map that a
ts on ve
tors in RjXj . For example, the adja
en
y matrix Aa
ts on fun
tion f as followsA f = 0BBB�Py2N(x1) f(y)Py2N(x2) f(y)...Py2N(xjXj) f(y)1CCCA ; (A f)(x) = Xy2N(x) f(y) (3)Thus, the 
omponent x of (A f) is the sum of the fun
tion value of allthe neighbors of x. Stadler de�nes the 
lass of elementary lands
apes where thefun
tion f is an eigenve
tor (or eigenfun
tion) of the Lapla
ian up to an additive
onstant [8℄. Formally, we have the followingDe�nition 1. Let (X;N; f) be a lands
ape and � the Lapla
ian matrix of the
on�guration spa
e. The fun
tion f is said to be elementary if there exists a
onstant b, whi
h we 
all o�set, and an eigenvalue � of �� su
h that (��)(f �b) = �(f � b). The lands
ape itself is elementary if f is elementary.



We use �� instead of � in the de�nition to avoid negative eigenvalues. In
onne
ted neighborhoods (the ones we 
onsider here) the o�set b is the averagevalue of the fun
tion over the whole sear
h spa
e: b = �f . Taking into a

ountbasi
 results of linear algebra, it 
an be proved that if f is elementary witheigenvalue �, af+ b is also elementary with the same eigenvalue �. Furthermore,in regular neighborhoods, if g is an eigenfun
tion of �� with eigenvalue � theng is also an eigenvalue of A, the adja
en
y matrix, with eigenvalue d � �. Theaverage value of the �tness fun
tion in the neighborhood of a solution 
an be
omputed using the expression avgff(y)gy2N(x) = 1d(A f)(x). If f is an elemen-tary fun
tion with eigenvalue �, then the average is 
omputed as:avgff(y)gy2N(x) = avgy2N(x)ff(y)� �fg+ �f = 1d (A (f � �f))(x) + �f= d� �d (f(x) � �f) + �f = f(x) + �d ( �f � f(x))and we get Grover's wave equation. In the previous expression we used the fa
tthat f � �f is an eigenfun
tion of A with eigenvalue d� �.The previous de�nitions are general 
on
epts of lands
ape theory. Let usfo
us now on the binary strings with the one-
hange neighborhood, whi
h isthe representation and the neighborhood we use in the test suite minimizationproblem. In this 
ase the solution set X is the set of all binary strings of size n.Two solutions x and y are neighboring if one 
an be obtained from the other by
ipping a bit, that is, if the Hamming distan
e between the solutions, denotedwith H(x; y), is 1. We de�ne the sphere of radius k around a solution x as theset of all solutions lying at Hamming distan
e k from x [10℄. A ball of radius kis the set of all the solutions lying at Hamming distan
e lower or equal to k. Inanalogy to the adja
en
y matrix we de�ne the sphere and ball matri
es of radiusk as: S(k)xy = �1 if H(x; y) = k0 otherwise ; B(k)xy = kX�=0S(�)xy = �1 if H(x; y) � k0 otherwise (4)Sin
e the ball matri
es are based on the sphere matri
es we 
an fo
us on thelatter. The sphere matrix of radius one is the adja
en
y matrix of the one-
hangeneighborhood, A, and the sphere matrix of radius zero is the identity matrix, I .Following [10℄, the matri
es S(k) 
an be de�ned using the re
urren
e:S(0) = I ; S(1) = A; S(k+1) = 1k + 1 �A � S(k) � (n� k + 1)S(k�1)� (5)With the help of the re
urren
e we 
an write all the matri
es S(k) as poly-nomials in A, the adja
en
y matrix. For example, S(2) = 12 �A2 � nI�. As wepreviously noted, the eigenve
tors of the Lapla
ian matrix � are eigenve
tors ofthe adja
en
y matrix A. On the other hand, if f is eigenve
tor of A, then it isalso an eigenve
tor of any polynomial in A. As a 
onsequen
e, all the fun
tionsthat are elementary are eigenve
tors (up to an additive 
onstant) of S(k) and



their eigenvalues 
an be 
omputed using the same polynomial in A that givesthe expression for S(k). The same is true for the ball matri
es B(k), sin
e theyare a sum of sphere matri
es. Let us de�ne the following series of polynomials:S(0)(x) = 1 (6)S(1)(x) = x (7)S(k+1)(x) = 1k + 1 �x � S(k)(x)� (n� k + 1)S(k�1)(x)� (8)We use the same name for the polynomials and the matri
es related to thespheres. The reader should noti
e, however, that the polynomials will be alwayspresented with their argument and the matri
es have no argument. That is, S(k)is the matrix and S(k)(x) is the polynomial. Using the previous polynomials, thematrix S(k) 
an be written as S(k)(A) (the polynomial S(k)(x) evaluated in thematrix A) and any eigenve
tor g of A with eigenvalue � is also an eigenve
tor ofS(k)(A) with eigenvalue S(k)(�).One relevant set of eigenve
tors of the Lapla
ian in the binary representationis that of Walsh fun
tions [11℄. Furthermore, the Walsh fun
tions form an or-thogonal basis of eigenve
tors in the 
on�guration spa
e. Thus, they have beenused to �nd the elementary lands
ape de
omposition of problems with a bi-nary representation like the SAT [6℄. We will use these fun
tions to provide thelands
ape de
omposition of the obje
tive fun
tion of the test suite minimizationproblem. Given the spa
e of binary strings of length n, Bn , a (non-normalized)Walsh fun
tion with parameter w 2 Bn is de�ned as: w(x) = nYi=1(�1)wixi = (�1)Pni=1 wixi (9)Two useful properties of Walsh fun
tions are  w �  v =  w+v where w + vis the bitwise sum in Z2 of w and v; and  2w =  w �  w =  2w =  0 = 1. Wede�ne the order of a Walsh fun
tion  w as the value hwjwi = Pni=1 wi, thatis, the number of ones in w. A Walsh fun
tion with order p is elementary witheigenvalue � = 2p [8℄. The average value of a Walsh fun
tion of order p > 0 iszero, that is,  w = 0 if w has at least one 1. The only Walsh fun
tion of orderp = 0 is  0 = 1, whi
h is a 
onstant.In the mathemati
al development of Se
tion 4 we will use, among others,Walsh fun
tions of order 1 and 2. Thus, we present here a spe
ial 
ompa
tnotation for those binary strings having only one or two bits set to 1. We willdenote with i the binary string with position i set to 1 and the rest set to 0.We also denote with i; j (i 6= j) the binary string with positions i and j set to 1and the rest to 0. We omit the length of the string n, but it will be 
lear fromthe 
ontext. For example, if we are 
onsidering binary strings in B 4 we have1 = 1000 and 2; 3 = 0110. Using this notation we 
an write i(x) = (�1)xi = 1� 2xi (10)Given a set of binary strings W and a binary string u we denote with W ^ uthe set of binary strings that 
an be 
omputed as the bitwise AND of a string



in W and u, that is, W ^ u = fw ^ ujw 2 Wg. For example, B 4 ^ 0101 =f0000; 0001; 0100; 0101g.Sin
e the Walsh fun
tions form an orthogonal basis of R2n , any arbitrarypseudoboolean fun
tion 
an be written as a weighted sum of Walsh fun
tions inthe following way: f = Xw2Bn aw w (11)where the values aw are 
alled Walsh 
oeÆ
ients. We 
an group together theWalsh fun
tions having the same order to �nd the elementary lands
ape de
om-position of the fun
tion. That is:f (p) = Xw 2 Bnhwjwi = p aw w (12)where ea
h f (p) is an elementary fun
tion with eigenvalue 2p. The fun
tion f 
anbe written as a sum of the n+1 elementary 
omponents, that is: f =Pnp=0 f (p).Thus, any fun
tion 
an be de
omposed in a sum of at most n elementary land-s
apes, sin
e we 
an add the 
onstant value f (0) to any of the other elementary
omponents.On
e we know that the possible eigenvalues of the elementary 
omponents ofany fun
tion f are 2p with 0 � p � n, we 
an 
ompute the possible eigenvaluesof the sphere matri
es. Sin
e the size of the neighborhood is d = n, we 
on
ludethat the only possible eigenvalues for the spheres are S(k)(n � 2p) with p 2f0; 1; : : : ; ng. With the help of Eqs. (6) to (8) we 
an write a re
urren
e formulafor the eigenvalues of the sphere matri
es whose solution is S(k)(n� 2p) = K(n)k;p ,where K(n)k;p is the (k; p) element of the n-th Krawt
houk matrix [10℄, whi
h is an(n + 1) � (n + 1) integer matrix. We will use Krawt
houk matri
es to simplifythe expressions and redu
e the 
omputation of the elementary 
omponents ofthe test suite minimization. The interested reader 
an deepen on Krawt
houkmatri
es in [3℄. One important property of the Krawt
houk matri
es that willbe useful in Se
tion 4 is:(1 + x)n�p(1� x)p = nXk=0 xkK(n)k;p (13)Ea
h 
omponent f (p) of the elementary lands
ape de
omposition of f is aneigenfun
tion of the sphere matrix of radius r with eigenvalue S(r)(n � 2p) =K(n)r;p . Thus, we 
an 
ompute the average �tness value in a sphere of radius raround a solution x as:avgff(y)gyjH(y;x)=r = �nr ��1 nXp=0K(n)r;p f (p)(x) (14)



We 
an also 
ompute the 
-th moment of the fun
tion f in a sphere of radiusr if we know the elementary lands
ape de
omposition of f
:�
 = avgff
(y)gyjH(y;x)=r = �nr ��1 nXp=0K(n)r;p (f
)(p) (x) (15)3 Test Suite Minimization ProblemWhen a pie
e of software is modi�ed, the new software is tested using someprevious test 
ases in order to 
he
k if new errors were introdu
ed. This 
he
kis known as regression testing. In [14℄ Yoo and Harman provide a very 
ompletesurvey on sear
h-based te
hniques for regression testing. They distinguish threedi�erent related problems: test suite minimization, test 
ase sele
tion and test
ase prioritization. The problem we fa
e here is the test suite minimization [13℄.We de�ne the problem as follows. Let T = ft1; t2; : : : ; tng be a set of tests fora program and let M = fm1;m2; : : : ;mkg be a set of elements of the programthat we want to 
over with the tests. After running all the tests T we �nd thatea
h test 
an 
over several program elements. This information is stored in amatrix T that is de�ned as:Tij = �1 if node mi is 
overed by test tj0 otherwise (16)We de�ne the 
overage of a subset of tests X � T as:
overage(X) = jfij9j 2 X;Tij = 1gj (17)The problem 
onsists in �nding a subset X � T su
h that the 
overage ismaximized while the number of tests 
ases in the set jX j is minimized. We 
ande�ne the obje
tive fun
tion of the problem as the weighted sum of the 
overageand the number of tests. Thus, the obje
tive fun
tion 
an be written as:f(X) = 
overage(X)� 
 � jX j (18)where 
 is a 
onstant that set the relative importan
e of the 
ost and 
overage. It
an be interpreted as the 
ost of a test measured in the same units as the bene�tof a new 
overed element in the software. We assume here that all the elementsin M to be 
overed have the same value for the user and the 
ost of testing onetest in T is the same for all of them. We defer to future work the analysis ofthe obje
tive fun
tion when this assumption is not true. Although the fun
tionproposed is a weighted sum, whi
h simpli�es the lands
ape analysis, non-linearfun
tions 
an be also used and analyzed.In the following we will use binary strings to represent the solutions of theproblem. Thus, we introdu
e the de
ision variables xj 2 B for 1 � j � n.The variable xj is 1 if test tj is in
luded in the solution and 0 otherwise. With



this binary representation the 
overage, the number of ones of a string and theobje
tive fun
tion f 
an be written as:
overage(x) = kXi=1 nmaxj=1 fTijxjg; ones(x) = nXj=1 xj (19)f(x) = kXi=1 nmaxj=1 fTijxjg � 
 � ones(x) (20)4 Elementary Lands
ape De
ompositionIn this se
tion we present two of the main 
ontributions of this work: the elemen-tary lands
ape de
omposition of f and f2. In order to simplify the equations letus introdu
e some notation. Let us de�ne the sets Vi = fjjTij = 1g. Vi 
ontainsthe indi
es of the tests whi
h 
over the element mi. We also use in the followingthe term Ti to refer to the binary string 
omposed of the elements of the i-throw of matrix T . Ti is a binary mask with 1s in the positions that appear in Vi.4.1 De
omposition of fThe goal of this se
tion is to �nd the Walsh de
omposition of f . We �rst de-
ompose the fun
tions 
overage(x) and ones(x) into elementary lands
apes andthen we 
ombine the results. Let us start by analyzing the 
overage fun
tionand, in parti
ular, let us write the maximum in its de�nition as a weighted sumof Walsh fun
tions with the help of (10).nmaxj=1 fTijxjg = 1� nYj=1(1� Tijxj) = 1� Yj2Vi(1� xj)= 1� Yj2Vi 1 +  j(x)2 = 1� 2�jVij Yj2Vi(1 +  j(x)) (21)We 
an expand the produ
t of Walsh fun
tions in (21) using  u v =  u+vto get the Walsh de
omposition of maxnj=1.nmaxj=1 fTijxjg = 1� 2�jVij Yj2Vi(1 +  j(x)) = 1� 2�jVij XW2P(Vi) Yj2W  j(x) (22)= 1� 2�jVij Xw2Bn^Ti  w(x)Using the Walsh de
omposition we 
an obtain that elementary lands
apede
omposition. The elementary 
omponents are the sums of weighted Walshfun
tions having the same order (number of ones in the string w). We 
andistinguish two 
ases: the 
onstant elementary 
omponent (with order 0) and



the non-
onstant 
omponents. Then, the elementary lands
ape de
ompositionof maxnj=1 is: nmaxj=1 fTijxjg(0) = 1� 12jVij (23)nmaxj=1 fTijxjg(p) = � 12jVij Xw 2 Bn ^ Tihw;wi = p  w(x) where p > 0 (24)Eqs. (23) and (24) are the elementary lands
ape de
omposition of the 
over-age of one single software element. We just have to add all the 
omponents of allthe k elements to get the elementary lands
ape de
omposition of 
overage(x).However, we should highlight that the previous expression is not very eÆ
ientto 
ompute the 
omponents of the maximum. We 
an observe that it requiresto 
ompute a sum of � jVijp � Walsh fun
tions. Before 
ombining all the pie
esto get the elementary lands
ape de
omposition of the obje
tive fun
tion of theproblem, we need �rst to �nd a simpler and more eÆ
ient expression for theelementary 
omponents of the 
overage of one single element.Up to the best of our knowledge, this is the �rst time that the followingmathemati
al development is performed in the literature. The essen
e of thedevelopment, however, is useful by itself and 
an be applied to other problemswith binary representation in whi
h the Walsh analysis 
an be applied (like theMax-SAT problem). We will fo
us on the summation of (24). Let us rewrite thisexpression again as: Xw 2 Bn ^ Tihw;wi = p  w(x) = XW 2 P(Vi)jW j = p Yj2W  j(x) (25)Now we 
an identify the se
ond member of the previous expression with the
oeÆ
ient of a polynomial. Let us 
onsider the polynomial Q(i)x (z) de�ned as:Q(i)x (z) = Yj2Vi(z +  j(x)) = jVijXl=0 zl0BBB� XW 2 P(Vi)jW j = jVij � l Yj2W  j(x)1CCCA = jVijXl=0 qlzl (26)From (26) we 
on
lude that the summation in (25) is the 
oeÆ
ient of zjVij�pin the polynomial Q(i)x (z), that is, qjVij�p. A

ording to (10) and (26) we 
anwrite Q(i)x (z) = (z+1)n(i)0 (z� 1)n(i)1 where n(i)0 and n(i)1 are the number of zerosand ones, respe
tively, in the positions xj of the solution with j 2 Vi. It shouldbe 
lear that n(i)0 + n(i)1 = jVij. Now we 
an pro�t from the fa
t that, a

ordingto (13), the polynomials Q(i)x (z) are related to the Krawt
houk matri
es byQ(i)x (z) = (�1)n(i)1 PjVijl=0KjVijl;n(i)1 zl and we 
an write ql = (�1)n(i)1 KjVijl;n(i)1 . Finally



we obtain:Xw 2 Bn ^ Tihw;wi = p  w(x) = XW 2 P(Vi)jW j = p Yj2W  j(x) = qjVij�p = (�1)n(i)1 KjVijjVij�p;n(i)1 (27)The �rst N Krawt
houk matri
es 
an be 
omputed in O(N3). Furthermore,they 
an be 
omputed on
e and stored in a �le for future use. Thus, we trans-form the summation over a large number of Walsh fun
tions into a 
ount of thenumber of ones in a bit string and a read of a value stored in memory, whi
h has
omplexity O(n). Eq. (27) is an important result that allows us to provide analgorithm for evaluating the elementary lands
ape de
omposition of our obje
-tive fun
tion. This algorithm is more eÆ
ient than the one proposed by Suttonet al. in [10℄. We 
an now extend the elementary lands
ape de
omposition to the
omplete 
overage of all the elements. That is:
overage(0)(x) = kXi=1 nmaxj=1 fTijxjg(0) = kXi=1 �1� 12jVij� (28)
overage(p)(x) = kXi=1 nmaxj=1 fTijxjg(p) = � kXi=1 12jVij (�1)n(i)1 KjVijjVij�p;n(i)1 (29)where p > 0. The previous expressions 
an be 
omputed in O(nk).We now need the de
omposition of the fun
tion ones(x):ones(x) = nXj=1 xj = nXj=1 1�  j(x)2 = n2 � 12 nXj=1  j(x) (30)Then, we 
an write:ones(0)(x) = n2 ; ones(1)(x) = �12 nXj=1  j(x) = ones(x)� n2 (31)whi
h is the elementary lands
ape de
omposition of ones(x). Finally, we 
ombinethis result with the de
omposition of 
overage(x) to obtain the de
ompositionof f : f (0)(x) = kXi=1 �1� 12jVij�� 
 � n2 (32)f (1)(x) = � kXi=1 12jVij (�1)n(i)1 KjVijjVij�1;n(i)1 � 
 � �ones(x)� n2� (33)f (p)(x) = � kXi=1 12jVij (�1)n(i)1 KjVijjVij�p;n(i)1 where 1 < p � n (34)



All of the previous expressions 
an be 
omputed in O(nk). Sin
e the maxi-mum number of elementary 
omponents is equal to n, we 
an obtain the eval-uation of all the elementary 
omponents of an arbitrary solution x in O(n2k).We found an algorithm with 
omplexity O(nk) to 
ompute all the elementary
omponents of f . This 
omplexity is lower than the O(nn) 
omplexity of thealgorithm proposed in [10℄.4.2 De
omposition of f2In the previous se
tion we found the elementary lands
ape de
omposition of f . Inthis se
tion we are interested in the elementary lands
ape de
omposition of f2,sin
e it allows to 
ompute the varian
e in any region (sphere or ball) around anyarbitrary solution x. The derivation of the elementary lands
ape de
ompositionof f2 is based again in the Walsh analysis of the fun
tion. Combining the Walshde
omposition in (22) with the one of (30) and the de�nition of f in (20), thefun
tion f2 
an be written as:f2(x) = 24�k � 
n2 �� kXi=10� 12jVij Xw 2 Bn ^ Ti  w(x)1A+ 
2 nXj=1  j(x)352We need to expand the expression in order to �nd the elementary lands
apede
omposition. Due to spa
e 
onstraints we omit the intermediate steps andpresent the �nal expressions of the elementary 
omponents of f2:�f2�(0) (x) = �2 + 
24 n� kXi=1 
jVij+ 2�2jVij + kXi;i0=1 12jVi[Vi0 j (35)�f2�(1) (x) = 
�(n� 2ones(x))� kXi=1  (
jVij+ 2�)(�1)n(i)12jVij KjVijjVij�1;n(i)1 !+ kXi;i0=1 (�1)n(i_i0)12jVi[Vi0 j KjVi[Vi0 jjVi[Vi0 j�1;n(i_i0)1 !� 
 kXi=1 n� 2ones(x)� jVij+ 2n(i)12jVij (36)�f2�(2) (x) = 
22 (�1)ones(x)Knn�2;ones(x) � kXi=1  (
jVij+ 2�)(�1)n(i)12jVij KjVijjVij�2;n(i)1 !+ kXi;i0=1 (�1)n(i_i0)12jVi[Vi0 j KjVi[Vi0 jjVi[Vi0 j�2;n(i_i0)1 !� 
 kXi=1 (�1)n(i)12jVij KjVijjVij�1;n(i)1 �n� 2ones(x)� jVij+ 2n(i)1 � (37)



�f2�(p) (x) = � kXi=1  (
jVij+ 2�)(�1)n(i)12jVij KjVijjVij�p;n(i)1 !+ kXi;i0=1 (�1)n(i_i0)12jVi[Vi0 j KjVi[Vi0 jjVi[Vi0 j�p;n(i_i0)1 !� 
 kXi=1 (�1)n(i)12jVij KjVijjVij�p+1;n(i)1 �n� 2ones(x)� jVij+ 2n(i)1 � (38)where � = k � 
n=2, n(i_i0)1 are the number of ones in the positions xj of thesolution with j 2 Vi [ Vi0 and p > 2. The elementary 
omponents (36), (37) and(38) 
an be 
omputed in O(nk2). Furthermore, we found an algorithm whi
h
omputes all (not only one) the 
omponents in O(nk2).5 Appli
ation of the De
ompositionIn Se
tion 4 we have derived 
losed-form formulas for ea
h elementary 
omponentof f and f2. Using this de
ompositions we 
an 
ompute the average �1 andthe standard deviation � of the �tness distribution in the spheres and balls ofarbitrary radius around a given solution x. On
e we have the evaluation of theelementary 
omponents, the �rst and se
ond order moments of f , �1 and �2, 
anbe 
omputed from Eqs. (32)-(34) and (35)-(38) in O(n) for any ball or spherearound the solution using (15). The standard deviation 
an be 
omputed fromthe two �rst moments using the equation � =p�2 � �21.How 
an we use this information? We propose here the following operator.Given a solution x 
ompute the �1 and � of the �tness distribution around thesolution in all the spheres and balls up to a maximum radius r. We 
an do this inO(nk2), assuming that r is �xed. Using the averages and the standard deviations
omputed, we 
he
k if there is a high probability of �nding a solution in a regionaround x that is better than the best so far solution. This 
he
k is based on theexpression �1+d���best, where d is parameter and best is the �tness value of thebest so far solution. The higher the value of the previous expression, the higherthe probability of �nding a solution in the 
orresponding region that is betterthan the best solution. The previous expression is based on the idea that mostof the samples of a distribution 
an be found around the average at a distan
ethat is a few times the standard deviation. For example, at least 75% of thesamples 
an be found in the interval [�1�2�; �1+2�℄. In the 
ase of the normaldistribution, the per
entage is 95%. In our operator, if �1 + d � � > best, then itis likely that a solution better than the best found 
an be inside the 
onsideredregion. If that happens, then a lo
al sear
h is performed in the region. This lo
alsear
h evaluates all the solutions in that region and repla
es the 
urrent one bythe best solution found. The pseudo
ode of the operator is in Algorithm 1.We 
all this operator Guarded Lo
al Sear
h (GLS) be
ause it applies thelo
al sear
h only in the 
ase that there exists some eviden
e for the su

ess. Inaddition, the lo
al sear
h is performed in the region in whi
h most probably a



Algorithm 1 Pseudo
ode of the GLS operator1: best = best so far solution;2: bestRegion = none;3: quality = �1;4: for r 2 all the 
onsidered regions do5: (�1,�) = 
omputeAvgStdDev(x,r);6: if �1 + d � � � best > quality then7: quality = �1 + d � � � best;8: bestRegion = r;9: end if10: end for11: y=x;12: if quality > 0 then13: y = applyLo
alSear
hInRegion (x,bestRegion)14: end if15: return ybetter solution would be found, thus minimizing the 
omputation 
ost of a lo
alsear
h in a larger region. We expe
t our proposed operator to have an importantintensi�
ation 
omponent. Thus, a population-based metaheuristi
 would be agood 
omplement to in
rease the diversi�
ation of the 
ombined algorithm. Theoperator 
an improve the quality of solutions of the algorithm it is in
luded in,but it also will in
rease the runtime. However, this runtime should be quite lowerthan the one obtained if the lo
al sear
h would be applied at every step of thealgorithm.5.1 Experimental StudyAs a proof of 
on
ept, we analyze the performan
e of the proposed operator inthis se
tion. For this experimental study we use a steady-state Geneti
 Algo-rithm (GA) with 10 individuals in the population, binary tournament sele
tion,bit-
ip mutation with probability p = 0:01 of 
ipping a bit, one-point 
rossoverand elitist repla
ement. The stopping 
ondition is to 
reate 100 individuals (110�tness evaluations). We 
ompare three variants of the GA that di�er in how thelo
al sear
h is applied. The �rst variant does not in
lude any lo
al sear
h opera-tor. In the se
ond variant, denoted with GLSr, the GLS operator of Algorithm 1is applied to the o�spring after the mutation. The regions 
onsidered are all thespheres and balls up to radius r. The third variant, LSr, always applies the lo
alsear
h after the mutation in a ball of radius r.For the experiments we sele
ted six programs from the Siemens suite. Theprograms are printtokens, printtokens2, s
hedule, s
hedule2, totinfo andrepla
e. They are available from the Software-artifa
t Infrastru
ture Reposi-tory [2℄. Ea
h program has a large number of available test suites, from whi
hwe sele
t the �rst 100 tests 
overing di�erent nodes. Thus, in our experimentsn = 100. The 
onstant tuning the ora
le 
ost was set to 
 = 1. We used threevalues for the radius r: from 2 to 4. In the GLS the parameter d was set to d = 2.



Sin
e we are dealing with sto
hasti
 algorithms we performed 30 independentexe
utions and we show in Table 1 the average values obtained for the �tness ofthe best solution found and the exe
ution time of the algorithms, respe
tively.Table 1. Fitness of the best solution found and 
omputation time (in se
onds) of thealgorithms (averages over 30 independent runs)Alg. printtokens printtokens2 s
hedule s
hedule2 totinfo repla
eFit. Se
s. Fit. Se
s. Fit. Se
s. Fit. Se
s. Fit. Se
s. Fit. Se
s.GA 89.20 0.03 103.13 0.10 84.57 0.07 78.70 0.10 86.87 0.03 71.90 0.03GLS2 105.17 37.93 119.63 69.73 101.60 21.10 93.60 52.63 102.30 39.07 88.13 37.30LS2 113.27 10.67 129.00 20.73 111.07 3.80 103.10 3.17 110.00 3.03 97.67 5.53GLS3 106.33 136.97 120.87 84.10 103.40 31.80 95.30 29.90 103.03 33.40 90.73 60.73LS3 113.63 159.30 129.80 141.33 111.80 298.07 103.97 90.67 110.00 88.13 98.00 141.37GLS4 105.27 390.03 121.47 363.53 103.40 237.17 96.37 212.70 104.33 206.50 91.13 368.97LS4 114.00 3107.47 129.97 2943.03 112.00 2098.00 104.00 1875.67 110.00 1823.80 98.00 3602.47We 
an observe in Table 1 that the ordering of the algorithms a

ording tothe solutions quality is LSr > GLSr > GA. This is the expe
ted result, sin
eLSr always applies a depth lo
al sear
h while GLSr applies the lo
al sear
h onlyin some favorable 
ir
umstan
es. An analysis of the evolution of the best �tnessvalue reveals that this ordering is kept during the sear
h pro
ess.If we fo
us on the 
omputation time required by the algorithms, we observethat GA is always the fastest algorithm. When r � 3, GLSr is faster than LSr.However, if r = 2 then LSr is faster than GLSr. This means that the 
ompleteexploration of a ball of radius r = 2 is faster than determining if a lo
al sear
hshould be applied in the GLS operator. Although we show here the 
omputa-tion times, it should be noted that this depends on the implementation detailsand the ma
hines used. For this reason the stopping 
ondition is the number ofevaluations. The great amount of time required to 
ompute the elementary 
om-ponents is the main drawba
k of the GLS operator. However, this 
omputation
an be parallelized, as well as the appli
ation of the lo
al sear
h. In parti
u-lar, Graphi
 Pro
essing Units (GPUs) 
an be used to 
ompute the elementary
omponents in parallel.6 Con
lusionWe have applied lands
ape theory to �nd the elementary lands
ape de
omposi-tion of the Test Suite Minimization problem in regression testing. We have alsode
omposed the squared obje
tive fun
tion. Using the 
losed-form formulas ofthe de
omposition we 
an 
ompute the average and the standard deviation ofthe �tness values around a given solution x in an eÆ
ient way. With these toolswe proposed an operator to improve the quality of the solutions. This operatorapplies a lo
al sear
h around the solution only if the probability of �nding a bestsolution is high. The results of an experimental study 
on�rms that the operatorimproves the solutions requiring a moderate amount of 
omputation. A blind lo-
al sear
h outperforms the results of our proposed operator but requires a largeamount of 
omputation as the size of the explored region in
reases.The future work should fo
us on new appli
ations of the theory but also onnew theoreti
al impli
ations of the elementary lands
ape de
omposition, su
has determining the diÆ
ulty of a problem instan
e by observing its elementary




omponents or predi
ting the behaviour of a sear
h algorithm when applied toa problem.A
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