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Abstract. Landscape theory provides a formal framework in which com-
binatorial optimization problems can be theoretically characterized as a
sum of a special kind of landscape called elementary landscape. The de-
composition of the objective function of a problem into its elementary
components provides additional knowledge on the problem that can be
exploited to create new search methods for the problem. We analyze
the Test Suite Minimization problem in Regression Testing from the
point of view of landscape theory. We find the elementary landscape de-
composition of the problem and propose a practical application of such
decomposition for the search.
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1 Introduction

The theory of landscapes focuses on the analysis of the structure of the search
space that is induced by the combined influences of the objective function of the
optimization problem and the choice neighborhood operator [8]. In the field of
combinatorial optimization, this theory has been used to characterize optimiza-
tion problems and to obtain global statistics of the problems [11]. However, in
recent years, researchers have been interested in the applications of landscape
theory to improve the search algorithms [5].

A landscape for a combinatorial optimization problem is a triple (X, N, f),
where f : X — R defines the objective function and the neighborhood operator
function N(xz) generates the set of points reachable from z € X in a single
application of the neighborhood operator. If y € N(z) then y is a neighbor of z.

There exists a special kind of landscapes, called elementary landscapes, which
are of particular interest due to their properties [12]. We define and analyze the
elementary landscapes in Section 2, but we can advance that they are charac-
terized by the Grover’s wave equation:
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where d is the size of the neighborhood, |N(z)|, which we assume is the same
for all the solutions in the search space, f is the average solution evaluation over



the entire search space, A is a characteristic constant and avg{f(y)},¢ N(x) 1S the
average of the objective function f computed in its neighborhood:

1
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For a given problem instance whose objective function is elementary, the
values f and A can be easily computed in an efficient way, usually from the
problem data. Thus, the wave equation makes it possible to compute the average
value of the fitness function f evaluated over all of the neighbors of x using
only the value f(z), without evaluating any of the neighbors. This means that
in elementary landscapes we get additional information from a single solution
evaluation. We get an idea of what is the quality of the solutions around the
current one. This information can be used to design more clever search strategies
and operators which effectively use the information.

Lu et al. [5] provide a nice example of the application of the landscape anal-
ysis to improve the performance of a search method. In their work, the perfor-
mance of the Sampling Hill Climbing is improved by avoiding the evaluation of
non-promising solutions. The average fitness value in the neighborhood of the
solutions computed with (1) is at the core of their proposal.

When the landscape is not elementary it is always possible to write the ob-
jective function as a sum of elementary components, called elementary landscape
decomposition of a problem [1]. Then, Grover’s wave equation can be applied to
each elementary component and all the results are summed to give the average
fitness in the neighborhood of a solution. Furthermore, for some problems the av-
erage cannot be limited to the neighborhood of a solution, but it can be extended
to the second-order neighrbors (neighbors of neighbors), third-order neighbors,
and, in general, to any arbitrary region around a given solution, including the
whole search space. Sutton et al. [10] show how to compute the averages over
spheres and balls of arbitrary radius around a given solution in polynomial time
using the elementary landscape decomposition of real-valued functions over bi-
nary strings. In [9] they propose a method that uses these averages over the
balls around a solution to escape from plateaus in the MAX-k-SAT problem.
The empirical results noticed an improvement when the method was applied.
Langdon [4] also analyzed the spheres of arbitrary radius from the point of view
of landscape theory, highlighting that the Walsh functions are eigenvectors of
the spheres and the mutation matrix in GAs.

If we extend the landscape analysis of the objective function f to their powers
(f2, f3, etc.), Grover’s wave equation allows one to compute higher-order mo-
ments of the fitness distribution around a solution and, with them, the variance,
the skewness and the kurtosis of this distribution. Sutton et al. [10] provide an
algorithm for this computation.

We analyze here the Test Suite Minimization problem in regression testing
from the point of view of landscape theory. This software engineering problem
consists in selecting a set of test cases from a large test suite that satisfies a given
condition, like maximizing the coverage and minimizing the oracle cost [13].



The remainder of the paper is organized as follows. In Section 2 we present
the mathematical tools required to understand the rest of the paper and Sec-
tion 3 formally defines the Test Suite Minimization problem. Section 4 presents
the two main contributions: the elementary landscape decomposition of the ob-
jective function of the problem and its square. We provide closed-form formulas
for both f and f2. In the mathematical development we include a novel applica-
tion of the Krawtchouk matrices to the landscape analysis. Section 5 proposes
an application of the decompositions of f and f? and presents a short exper-
imental study showing the benefits (and drawbacks) of the proposal. Finally,
with Section 6 we conclude the paper.

2 Background

In this section we present some fundamental results of landscape theory. We will
only focus on the relevant information required to understand the rest of the
paper. The interested reader can deepen on this topic in [7].

Let (X, N, f) be a landscape, where X is a finite set of solutions, f: X — R
is a real-valued function defined on X and N : X — P(X) is the neighborhood
operator. The adjacency and degree matrices of the neighborhood N are defined

as:
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Aay = {0 otherwise ’ Day = 0 otherwise (2)

We restrict our attention to regular neighborhoods, where |N(z)] = d > 0
for a constant d, for all z € X. Then, the degree matrix is D = dI, where [ is
the identity matrix. The Laplacian matrix A associated to the neighborhood is
defined by A = A — D. In the case of regular neighborhoods it is A = A — dlI.
Any discrete function, f, defined over the set of candidate solutions can be
characterized as a vector in R¥!. Any |X| x | X| matrix can be interpreted as a
linear map that acts on vectors in RIX|. For example, the adjacency matrix A
acts on function f as follows

ZyeN(zl) f(y)
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Thus, the component z of (A f) is the sum of the function value of all
the neighbors of x. Stadler defines the class of elementary landscapes where the
function f is an eigenvector (or eigenfunction) of the Laplacian up to an additive
constant [8]. Formally, we have the following

Definition 1. Let (X, N, f) be a landscape and A the Laplacian matriz of the
configuration space. The function f is said to be elementary if there exists a
constant b, which we call offset, and an eigenvalue A of —A such that (—A)(f —
b) = A(f — b). The landscape itself is elementary if f is elementary.



We use —A instead of A in the definition to avoid negative eigenvalues. In
connected neighborhoods (the ones we consider here) the offset b is the average
value of the function over the whole search space: b = f. Taking into account
basic results of linear algebra, it can be proved that if f is elementary with
eigenvalue A, af + b is also elementary with the same eigenvalue A. Furthermore,
in regular neighborhoods, if g is an eigenfunction of —A with eigenvalue A then
g is also an eigenvalue of A, the adjacency matrix, with eigenvalue d — A. The
average value of the fitness function in the neighborhood of a solution can be
computed using the expression avg{f(y)},cn () = L(A f)(x). If f is an elemen-
tary function with eigenvalue A, then the average is computed as:

avelf()) = avg {f()~F}+F= 54 (F = @)+ ]
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and we get Grover’s wave equation. In the previous expression we used the fact
that f — f is an eigenfunction of A with eigenvalue d — \.

The previous definitions are general concepts of landscape theory. Let us
focus now on the binary strings with the one-change neighborhood, which is
the representation and the neighborhood we use in the test suite minimization
problem. In this case the solution set X is the set of all binary strings of size n.
Two solutions z and y are neighboring if one can be obtained from the other by
flipping a bit, that is, if the Hamming distance between the solutions, denoted
with H(z,y), is 1. We define the sphere of radius &k around a solution z as the
set of all solutions lying at Hamming distance k from « [10]. A ball of radius k
is the set of all the solutions lying at Hamming distance lower or equal to k. In
analogy to the adjacency matrix we define the sphere and ball matrices of radius
k as:

. k .
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Since the ball matrices are based on the sphere matrices we can focus on the
latter. The sphere matrix of radius one is the adjacency matrix of the one-change
neighborhood, A, and the sphere matrix of radius zero is the identity matrix, I.
Following [10], the matrices S(*) can be defined using the recurrence:

SO gm_ g gurn oL

= (A 88— (n—k+ 1)s<k—1>) (5)

With the help of the recurrence we can write all the matrices S(*) as poly-
nomials in A, the adjacency matrix. For example, S = 1 (4% —nl). As we
previously noted, the eigenvectors of the Laplacian matrix A are eigenvectors of
the adjacency matrix A. On the other hand, if f is eigenvector of A, then it is
also an eigenvector of any polynomial in A. As a consequence, all the functions
that are elementary are eigenvectors (up to an additive constant) of S*) and



their eigenvalues can be computed using the same polynomial in A that gives
the expression for S(*). The same is true for the ball matrices B*), since they
are a sum of sphere matrices. Let us define the following series of polynomials:

SO(g) =1 (6)
S (z) = (7)
S(k+1)(x) — ﬁ (x . (k) () — (n —k + I)S(’“‘l)(ﬂﬁ)) (8)

We use the same name for the polynomials and the matrices related to the
spheres. The reader should notice, however, that the polynomials will be always
presented with their argument and the matrices have no argument. That is, S(*)
is the matrix and S(®) (z) is the polynomial. Using the previous polynomials, the
matrix S®) can be written as S*)(A4) (the polynomial S*¥)(z) evaluated in the
matrix A) and any eigenvector g of A with eigenvalue X is also an eigenvector of
S (A) with eigenvalue S®*)()).

One relevant set of eigenvectors of the Laplacian in the binary representation
is that of Walsh functions [11]. Furthermore, the Walsh functions form an or-
thogonal basis of eigenvectors in the configuration space. Thus, they have been
used to find the elementary landscape decomposition of problems with a bi-
nary representation like the SAT [6]. We will use these functions to provide the
landscape decomposition of the objective function of the test suite minimization
problem. Given the space of binary strings of length n, B”, a (non-normalized)
Walsh function with parameter w € B" is defined as:

n
Yule) = [[(~1)" = (~pEims e ©
i=1

Two useful properties of Walsh functions are ¢y, - ¥y, = ¥+, Where w + v
is the bitwise sum in Zy of w and v; and ¥2 = )y - ¥y = oy = Yo = 1. We
define the order of a Walsh function 1, as the value (wjw) = Y7, w;, that
is, the number of ones in w. A Walsh function with order p is elementary with
eigenvalue A = 2p [8]. The average value of a Walsh function of order p > 0 is
zero, that is, 1, = 0 if w has at least one 1. The only Walsh function of order
p=01is ¢y =1, which is a constant.

In the mathematical development of Section 4 we will use, among others,
Walsh functions of order 1 and 2. Thus, we present here a special compact
notation for those binary strings having only one or two bits set to 1. We will
denote with ¢ the binary string with position ¢ set to 1 and the rest set to O.
We also denote with i, (i # j) the binary string with positions ¢ and j set to 1
and the rest to 0. We omit the length of the string n, but it will be clear from
the context. For example, if we are considering binary strings in B* we have
1 =1000 and 2,3 = 0110. Using this notation we can write

Yi(e) = (1) =1-2z; (10)

Given a set of binary strings W and a binary string v we denote with W Au
the set of binary strings that can be computed as the bitwise AND of a string



in W and wu, that is, W Au = {w A ulw € W}. For example, B* A 0101 =
{0000, 0001,0100,0101}.

Since the Walsh functions form an orthogonal basis of R2", any arbitrary
pseudoboolean function can be written as a weighted sum of Walsh functions in
the following way:

f= Z Ay (11)
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where the values a,, are called Walsh coefficients. We can group together the
Walsh functions having the same order to find the elementary landscape decom-
position of the function. That is:

f(p) = Z aw"pw (12)

w € B”
(wlw) =p

where each f() is an elementary function with eigenvalue 2p. The function f can
be written as a sum of the n+ 1 elementary components, that is: f = ZZ:O f®),
Thus, any function can be decomposed in a sum of at most n elementary land-
scapes, since we can add the constant value f(©) to any of the other elementary
components.

Once we know that the possible eigenvalues of the elementary components of
any function f are 2p with 0 < p < n, we can compute the possible eigenvalues
of the sphere matrices. Since the size of the neighborhood is d = n, we conclude
that the only possible eigenvalues for the spheres are S¥)(n — 2p) with p €
{0,1,...,n}. With the help of Eqgs. (6) to (8) we can write a recurrence formula

for the eigenvalues of the sphere matrices whose solution is S*) (n —2p) = IC,(cn;,

where ICS;}; is the (k,p) element of the n-th Krawtchouk matrix [10], which is an
(n +1) x (n+ 1) integer matrix. We will use Krawtchouk matrices to simplify
the expressions and reduce the computation of the elementary components of
the test suite minimization. The interested reader can deepen on Krawtchouk
matrices in [3]. One important property of the Krawtchouk matrices that will
be useful in Section 4 is:

(L+2)" P(1-a) = a*K) (13)
k=0

Each component f(®) of the elementary landscape decomposition of f is an
eigenfunction of the sphere matrix of radius r with eigenvalue S (n — 2p) =
IC&Z,). Thus, we can compute the average fitness value in a sphere of radius r
around a solution x as:

welf) = (1) LRGSO (14)
r p=0

y|H(y,z)=



We can also compute the c-th moment of the function f in a sphere of radius
r if we know the elementary landscape decomposition of f€:

e = ave{F(y)} = (”) STEE (79 (@) (15)

y|H(y,x)=r r

3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. In [14] Yoo and Harman provide a very complete
survey on search-based techniques for regression testing. They distinguish three
different related problems: test suite minimization, test case selection and test
case prioritization. The problem we face here is the test suite minimization [13].
We define the problem as follows. Let 7 = {t1,t2,...,t,} be a set of tests for
a program and let M = {my, ma,...,my} be a set of elements of the program
that we want to cover with the tests. After running all the tests 7 we find that
each test can cover several program elements. This information is stored in a
matrix 7" that is defined as:

~_ J 1lif node m; is covered by test t;
Tij = {0 otherwise (16)
We define the coverage of a subset of tests X C T as:

coverage(X) = |{i|3j € X, T;; = 1}| (17)

The problem consists in finding a subset X C 7 such that the coverage is
maximized while the number of tests cases in the set |X| is minimized. We can
define the objective function of the problem as the weighted sum of the coverage
and the number of tests. Thus, the objective function can be written as:

f(X) = coverage(X) —c-|X]| (18)

where c is a constant that set the relative importance of the cost and coverage. It
can be interpreted as the cost of a test measured in the same units as the benefit
of a new covered element in the software. We assume here that all the elements
in M to be covered have the same value for the user and the cost of testing one
test in T is the same for all of them. We defer to future work the analysis of
the objective function when this assumption is not true. Although the function
proposed is a weighted sum, which simplifies the landscape analysis, non-linear
functions can be also used and analyzed.

In the following we will use binary strings to represent the solutions of the
problem. Thus, we introduce the decision variables z; € B for 1 < j < n.
The variable x; is 1 if test ¢; is included in the solution and 0 otherwise. With



this binary representation the coverage, the number of ones of a string and the
objective function f can be written as:

k n
coverage(x) = Z I?%f({TijIj}; ones(x) = Z T (19)
i=1 " j=1
k
o) = Dl (Tizg) = - onest) (20)

4 Elementary Landscape Decomposition

In this section we present two of the main contributions of this work: the elemen-
tary landscape decomposition of f and f2. In order to simplify the equations let
us introduce some notation. Let us define the sets V; = {j|T;; = 1}. V; contains
the indices of the tests which cover the element m;. We also use in the following
the term T; to refer to the binary string composed of the elements of the i-th
row of matrix 7'. T; is a binary mask with 1s in the positions that appear in V;.

4.1 Decomposition of f

The goal of this section is to find the Walsh decomposition of f. We first de-
compose the functions coverage(z) and ones(z) into elementary landscapes and
then we combine the results. Let us start by analyzing the coverage function
and, in particular, let us write the maximum in its definition as a weighted sum
of Walsh functions with the help of (10).

n

i) =1~ T =1 T 012

j=1 JjeV:
1+
—1_ H %@):1—2—“’” H(1+¢l(x)) (21)
JEV: JEV:

We can expand the product of Walsh functions in (21) using ¥,y = Yyuts

to get the Walsh decomposition of maxj_;.

max {Tyaj} =1-2" M [Tyl =1-27"0 37 [T ) (22)

jevi WEP(V;) jeW

=1-27V1 3" gy (a)
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Using the Walsh decomposition we can obtain that elementary landscape
decomposition. The elementary components are the sums of weighted Walsh
functions having the same order (number of ones in the string w). We can
distinguish two cases: the constant elementary component (with order 0) and



the non-constant components. Then, the elementary landscape decomposition

of maxj_; is:
max {T--x-}(o) = 1 (23)
j=1 21Vi
1
I?E‘lx{TijiL"j}(P) = 5w > tu(x) wherep>0 (24)
w € B ANT;
(w,w) =p

Eqgs. (23) and (24) are the elementary landscape decomposition of the cover-
age of one single software element. We just have to add all the components of all
the k elements to get the elementary landscape decomposition of coverage(x).
However, we should highlight that the previous expression is not very efficient
to compute the components of the maximum. We can observe that it requires

to compute a sum of (“Ifl) Walsh functions. Before combining all the pieces

to get the elementary landscape decomposition of the objective function of the
problem, we need first to find a simpler and more efficient expression for the
elementary components of the coverage of one single element.

Up to the best of our knowledge, this is the first time that the following
mathematical development is performed in the literature. The essence of the
development, however, is useful by itself and can be applied to other problems
with binary representation in which the Walsh analysis can be applied (like the
Max-SAT problem). We will focus on the summation of (24). Let us rewrite this
expression again as:

Y ow@= Y ] (25)

weB* AT; W e P(V;) JeW
(w,w) =p IW|=p

Now we can identify the second member of the previous expression with the
coefficient of a polynomial. Let us consider the polynomial Q(zz) (z) defined as:

Vil Vil
QY () =[] z+ ¢ Zz oo I = quz
JjeV; \V;VIEFV‘\/Z—)ZJGW

From (26) we conclude that the summation in (25) is the coefficient of z!V:I=?
in the polynomial ng) (2), that is, q|y;|—p- According to (10) and (26) we can
write ng') (2) = (2 + 1)”gi) (z— 1)”§i) where néi) and ngi) are the number of zeros
and ones, respectively, in the positions z; of the solution with j € V;. It should
be clear that néi) + ngi) = |V;|. Now we can profit from the fact that, according
to (13), the polynomials Q(i)( ) are related to the Krawtchouk matrices by

Q;i)(z) = (-1)™ ni? Z‘VllClV(,)z and we can write ¢ = (—1)™ (Z)Klv(lz) Finally



we obtain:

> ow@= Y e =aqu,=C0kl @

w € B AT; W e P(V;) JEW
(w,w) =p [W|=rp

The first N Krawtchouk matrices can be computed in O(N?). Furthermore,
they can be computed once and stored in a file for future use. Thus, we trans-
form the summation over a large number of Walsh functions into a count of the
number of ones in a bit string and a read of a value stored in memory, which has
complexity O(n). Eq. (27) is an important result that allows us to provide an
algorithm for evaluating the elementary landscape decomposition of our objec-
tive function. This algorithm is more efficient than the one proposed by Sutton
et al. in [10]. We can now extend the elementary landscape decomposition to the
complete coverage of all the elements. That is:

1
coverage® (z) Zmax {T3w;} " Z <1 B 2|V'> (28)
i=1
L (o)
Y -lVi
coverageP Zmax {Tiya; )" = Z oIVl (D™ ’CI‘Vi\l—p,nﬁi) (29)
i—1

where p > 0. The previous expressions can be computed in O(nk).
We now need the decomposition of the function ones(z):

" L1-gi(@) n 18
ones(x) :ij :Z# = 5—521&(1‘) (30)
j=1 j=1 j=1
Then, we can write:
n -1 n
onesV (z) = 5 ones™ (z =5 Z j(x) = ones(z) — B} (31)

which is the elementary landscape decomposition of ones(z). Finally, we combine
this result with the decomposition of coverage(z) to obtain the decomposition

of f:

V() = - Z 2&/1_‘ (—1)”5i)IC‘|“f|‘ Ll € (ones(x) — g) (33)

k
1 (@) .
() _ 1\ Vil
P (z) = E (-1)™ ’C|Vi\—p,n§” where 1 <p<n (34)



All of the previous expressions can be computed in O(nk). Since the maxi-
mum number of elementary components is equal to n, we can obtain the eval-
uation of all the elementary components of an arbitrary solution z in O(n?k).
We found an algorithm with complexity O(nk) to compute all the elementary
components of f. This complexity is lower than the O(n™) complexity of the
algorithm proposed in [10].

4.2 Decomposition of f2

In the previous section we found the elementary landscape decomposition of f. In
this section we are interested in the elementary landscape decomposition of f2,
since it allows to compute the variance in any region (sphere or ball) around any
arbitrary solution x. The derivation of the elementary landscape decomposition
of f2 is based again in the Walsh analysis of the function. Combining the Walsh
decomposition in (22) with the one of (30) and the definition of f in (20), the
function f? can be written as:

i n 2
f2(w)={(k—%)—z Y @) +§;¢j<w>}

=1 we B AT;

We need to expand the expression in order to find the elementary landscape
decomposition. Due to space constraints we omit the intermediate steps and
present the final expressions of the elementary components of f2:

2 VA u 1
(M@= G- T Y @

i=1 i =1

k e
()" (@) = cBn — 20mes(z)) - 3 <(C|Vi| +22|€i)‘(—1) Gl )

[Vi|—1,n{"
=1

(z\/z)
|V;'UV-7‘
+ E o KL v
2\VUVr ViUV |—1,n{ V)

1,0 =1

k ()
§ e 2 — Vi +2
S ones(z) — |Vi| + 2n;

. 21Vil
=1

. k (4)
2\ (2) _ CZ ones(a: n (C|V;| + 2B)(_1)n1 V3|
(f ) (I) - ?( ) ICn 2,ones(x) — Z ( oIVi] IC\V\ N n(z)

i=1
k (Vi)
A=\ 2OVl T viov 2

k n1
Vi .
czl 2|V‘ I‘V-\‘—l,nﬁ") (n — 2o0nes(z) — |Vi| + 2n§”) (37)
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k gz)

iclvil ( (4)

CZ n — 2ones(x) — |V;| + 2n 38

12% K (@) = Vil +2")  (39)
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where 8 = k —¢cn/2, ngiw’) are the number of ones in the positions x; of the
solution with j € V; UV and p > 2. The elementary components (36), (37) and
(38) can be computed in O(nk?). Furthermore, we found an algorithm which
computes all (not only one) the components in O(nk?).

5 Application of the Decomposition

In Section 4 we have derived closed-form formulas for each elementary component
of f and f2. Using this decompositions we can compute the average p; and
the standard deviation ¢ of the fitness distribution in the spheres and balls of
arbitrary radius around a given solution . Once we have the evaluation of the
elementary components, the first and second order moments of f, p; and ps, can
be computed from Eqgs. (32)-(34) and (35)-(38) in O(n) for any ball or sphere
around the solution using (15). The standard deviation can be computed from
the two first moments using the equation o = \/u2 — ui.

How can we use this information? We propose here the following operator.
Given a solution  compute the p; and o of the fitness distribution around the
solution in all the spheres and balls up to a maximum radius r. We can do this in
O(nk?), assuming that r is fixed. Using the averages and the standard deviations
computed, we check if there is a high probability of finding a solution in a region
around z that is better than the best so far solution. This check is based on the
expression u; +d-o—best, where d is parameter and best is the fitness value of the
best so far solution. The higher the value of the previous expression, the higher
the probability of finding a solution in the corresponding region that is better
than the best solution. The previous expression is based on the idea that most
of the samples of a distribution can be found around the average at a distance
that is a few times the standard deviation. For example, at least 75% of the
samples can be found in the interval [p; — 20,y +20]. In the case of the normal
distribution, the percentage is 95%. In our operator, if u; + d - o > best, then it
is likely that a solution better than the best found can be inside the considered
region. If that happens, then a local search is performed in the region. This local
search evaluates all the solutions in that region and replaces the current one by
the best solution found. The pseudocode of the operator is in Algorithm 1.

We call this operator Guarded Local Search (GLS) because it applies the
local search only in the case that there exists some evidence for the success. In
addition, the local search is performed in the region in which most probably a



Algorithm 1 Pseudocode of the GLS operator

: best = best so far solution;
bestRegion = none;
quality = —o0;
for r € all the considered regions do
(p1,0) = computeAvgStdDev(x,r);
if p1 +d- o —best > quality then
quality = p1 + d - o — best,;
bestRegion = r;
9: endif
10: end for
11: y=x;
12: if quality > 0 then
13:  y = applyLocalSearchInRegion (x,bestRegion)
14: end if
15: return y

better solution would be found, thus minimizing the computation cost of a local
search in a larger region. We expect our proposed operator to have an important
intensification component. Thus, a population-based metaheuristic would be a
good complement to increase the diversification of the combined algorithm. The
operator can improve the quality of solutions of the algorithm it is included in,
but it also will increase the runtime. However, this runtime should be quite lower
than the one obtained if the local search would be applied at every step of the
algorithm.

5.1 Experimental Study

As a proof of concept, we analyze the performance of the proposed operator in
this section. For this experimental study we use a steady-state Genetic Algo-
rithm (GA) with 10 individuals in the population, binary tournament selection,
bit-flip mutation with probability p = 0.01 of flipping a bit, one-point crossover
and elitist replacement. The stopping condition is to create 100 individuals (110
fitness evaluations). We compare three variants of the GA that differ in how the
local search is applied. The first variant does not include any local search opera-
tor. In the second variant, denoted with GLSr, the GLS operator of Algorithm 1
is applied to the offspring after the mutation. The regions considered are all the
spheres and balls up to radius r. The third variant, LSr, always applies the local
search after the mutation in a ball of radius 7.

For the experiments we selected six programs from the Siemens suite. The
programs are printtokens, printtokens2, schedule, schedule2, totinfo and
replace. They are available from the Software-artifact Infrastructure Reposi-
tory [2]. Each program has a large number of available test suites, from which
we select the first 100 tests covering different nodes. Thus, in our experiments
n = 100. The constant tuning the oracle cost was set to ¢ = 1. We used three
values for the radius r: from 2 to 4. In the GLS the parameter d was set to d = 2.



Since we are dealing with stochastic algorithms we performed 30 independent
executions and we show in Table 1 the average values obtained for the fitness of
the best solution found and the execution time of the algorithms, respectively.

Table 1. Fitness of the best solution found and computation time (in seconds) of the
algorithms (averages over 30 independent runs)

Alg printtokens printtokens2 schedule schedule2 totinfo replace

) Fit. Secs. Fit. Secs. Fit. Secs. Fit. Secs. Fit. Secs. | Fit. | Secs.
GA 89.20 0.03]|103.13 0.10| 84.57 0.07| 78.70 0.10| 86.87 0.03|71.90 0.03
GLS2[105.17| 37.93{119.63| 69.73[101.60{ 21.10| 93.60| 52.63|102.30 39.07|88.13| 37.30
LS2 |113.27| 10.67|129.00| 20.73|111.07 3.80|103.10 3.17|110.00 3.03|97.67 5.53
GLS3[106.33| 136.97({120.87| 84.10(103.40{ 31.80| 95.30 29.90{103.03| 33.40(90.73| 60.73
LS3 |[113.63| 159.30|129.80| 141.33|111.80| 298.07|103.97| 90.67|110.00| 88.13|98.00| 141.37
GLS4|105.27| 390.03|{121.47| 363.53(103.40| 237.17| 96.37| 212.70(104.33| 206.50({91.13| 368.97
LS4 |114.00(3107.47|129.97|2943.03|112.00|2098.00|104.00|1875.67|110.00(1823.80|98.00(3602.47

We can observe in Table 1 that the ordering of the algorithms according to
the solutions quality is LSr > GLSr > GA. This is the expected result, since
LSr always applies a depth local search while GLSr applies the local search only
in some favorable circumstances. An analysis of the evolution of the best fitness
value reveals that this ordering is kept during the search process.

If we focus on the computation time required by the algorithms, we observe
that GA is always the fastest algorithm. When r > 3, GLSr is faster than LSr.
However, if 7 = 2 then LSr is faster than GLSr. This means that the complete
exploration of a ball of radius r = 2 is faster than determining if a local search
should be applied in the GLS operator. Although we show here the computa-
tion times, it should be noted that this depends on the implementation details
and the machines used. For this reason the stopping condition is the number of
evaluations. The great amount of time required to compute the elementary com-
ponents is the main drawback of the GLS operator. However, this computation
can be parallelized, as well as the application of the local search. In particu-
lar, Graphic Processing Units (GPUs) can be used to compute the elementary
components in parallel.

6 Conclusion

We have applied landscape theory to find the elementary landscape decomposi-
tion of the Test Suite Minimization problem in regression testing. We have also
decomposed the squared objective function. Using the closed-form formulas of
the decomposition we can compute the average and the standard deviation of
the fitness values around a given solution « in an efficient way. With these tools
we proposed an operator to improve the quality of the solutions. This operator
applies a local search around the solution only if the probability of finding a best
solution is high. The results of an experimental study confirms that the operator
improves the solutions requiring a moderate amount of computation. A blind lo-
cal search outperforms the results of our proposed operator but requires a large
amount of computation as the size of the explored region increases.

The future work should focus on new applications of the theory but also on
new theoretical implications of the elementary landscape decomposition, such
as determining the difficulty of a problem instance by observing its elementary



components or predicting the behaviour of a search algorithm when applied to
a problem.

Acknowledgements

We thank the anonymous reviewers for their interesting and fruitful comments.
This research has been partially funded by the Spanish Ministry of Science and
Innovation and FEDER under contract TIN2008-06491-C04-01 (the M* project)
and the Andalusian Government under contract P07-TIC-03044 (DIRICOM
project).

References

1.

10.

11.

12.

13.

14.

Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary land-
scape decomposition of combinatorial optimization problems. Evolutionary Com-
putation In press (doi: 10.1162/EVCO_a_00039)

Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experi-
mentation with testing techniques: An infrastructure and its poten-
tial impact. Empirical Softw. Engg. 10, 405435 (October 2005),
http://portal.acm.org/citation.cfm?id=1089922.1089928

Feinsilver, P., Kocik, J.: Krawtchouk polynomials and krawtchouk matrices. In:
Baeza-Yates, R., Glaz, J., Gzyl, H., Hiisler, J., Palacios, J. (eds.) Recent Advances
in Applied Probability, pp. 115-141. Springer US (2005)

Langdon, W.B.: Elementary bit string mutation landscapes. In: Beyer, H.G., Lang-
don, W. (eds.) Foundations of Genetic Algorithms. pp. 25-41. ACM, Schwarzen-
berg, Austria (5-9 Jan 2011)

Lu, G., Bahsoon, R., Yao, X.: Applying elementary landscape analysis to search-
based software engineering. In: Proceedings of the 2nd International Symposium
on Search Based Software Engineering (2010)

Rana, S., Heckendorn, R.B., Whitley, D.: A tractable walsh analysis of SAT and its
implications for genetic algorithms. In: Proceedings of AAAIL pp. 392-397. Menlo
Park, CA, USA (1998)

Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. STAM Review 44(1), 3-54
(2002)

Stadler, P.F.: Toward a theory of landscapes. In: Lépez-Pena, R., Capovilla, R.,
Garcia-Pelayo, R., H.-Waelbroeck, Zertruche, F. (eds.) Complex Systems and Bi-
nary Networks. pp. 77-163. Springer-Verlag (1995)

Sutton, A.M., Howe, A.E., Whitley, L.D.: Directed plateau search for MAX-k-SAT.
In: Proceedings of SoCS. Atlanta, GA, USA (July 2010)

Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded
pseudo-boolean functions over Hamming spheres of arbitrary radius in polynomial
time. Theoretical Computer Science In press (doi: 10.1016/j.tcs.2011.02.006)
Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of
the exact correlation structure of k-satisfiability landscapes. In: Proceedings of
GECCO. pp. 365-372. ACM, New York, NY, USA (2009)

Whitley, D., Sutton, A.M., Howe, A.E.: Understanding elementary landscapes. In:
Proceedings of GECCO. pp. 585-592. ACM, New York, NY, USA (2008)

Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis
(ISSTA ’07). pp. 140-150. ACM, London, England (9-12 July 2007)

Yoo, S., Harman, M.: Regression testing minimisation, selection and prioritisation:
A survey. Journal of Software Testing, Verification and Reliability (2010)



