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Abstract. FuzAtAnalyzer was conceived as a Java framework which
goes beyond of classical tools in formal concept analysis. Specifically,
it successfully incorporated the management of uncertainty by means
of methods and tools from the area of fuzzy formal concept analysis.
One limitation of formal concept analysis is that they only consider the
presence of properties in the objects (positive attributes) as much in
fuzzy as in crisp case. In this paper, a first step in the incorporation
of negations is presented. Our aim is the treatment of the absence of
properties (negative attributes). Specifically, we extend the framework
by including specific tools for mining knowledge combining crisp positive
and negative attributes.

1 Introduction

We create a tool called FuzAtAnalyzer since we have the need to explore fuzzy
functional dependencies mining in datasets because there not exists other tools
that covers the theory that we develope. Our first implementation was Simpli-
fication Logic with fuzzy functional dependencies [4] followed by the algorithms
related with Fuzzy Attribute Tables [5, ?].

Simplification Logic was adapted for working with crisp implications (without
degrees)[8], that was the previous step before we study implications in Formal
Concept Analysis.

In this section, the basic notions related with Formal Concept Analysis (FCA)
[14] and attribute implications are briefly presented. See [10] for a more detailed
explanation. A formal context is a triple K = 〈G,M, I〉 where G and M are
finite non-empty sets and I ⊆ G ×M is a binary relation. The elements in G
are named objects, the elements in M attributes and 〈g,m〉 ∈ I means that the
object g has the attribute m. From this triple, two mappings ↑: 2G → 2M and
↓: 2M → 2G, named concept-forming operators, are defined as follows: for any
X ⊆ G and Y ⊆M ,

X↑ = {m ∈M | for each g ∈ X : 〈g,m〉 ∈ I} (1)

Y ↓ = {g ∈ G | for each m ∈ Y : 〈g,m〉 ∈ I} (2)



X↑ is the subset of all attributes shared by all the objects in X and Y ↓ is the
subset of all objects that have the attributes in Y . The pair (↑, ↓) constitutes
a Galois connection between 2G and 2M and, therefore, both compositions are
closure operators.

A pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆M such X↑ = Y and Y ↓ = X
is named a formal concept. X is named the extent and Y the intent of
the concept. These extents and intents coincide with closed sets wrt the closure
operators because X↑↓ = X and Y ↓↑ = Y . Thus, the set of all the formal
concepts is a lattice, named concept lattice, with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 if and only if X1 ⊆ X2 (or equivalently, Y2 ⊆ Y1) (3)

Focusing the attention in relationships among sets of attributes is a second
way in which the information can be summarized. Agrawal et al.[1] introduced
association rules for discovering regularities between attributes. For this pur-
pose, the concepts support and confidence were introduced. Support is defined
for any subset Y ⊆ M , supp(Y ) = |Y ↓|/|G| and confidence for association rule
Y1 → Y2 is defined as conf(Y1 → Y2) = supp(Y1 ∪ Y2)/supp(Y1). We have to
remark that a fuzzy functional dependency and an association rule are different
elements with different degrees. In first case, the degree indicates the relation
between set of attributes, whereas association rules have a statistical degree.

These relationships among attribute sets where confidence = 1 are described
in terms of attribute implications.

The concept lattice can be also characterized in terms of attribute implica-
tions. An attribute implication is an expression A→ B where A,B ⊆M and
it holds in a formal context if A↓ ⊆ B↓. That is, any object that has all the
attributes in A has also all the attributes in B. It is well known that the sets of
attribute implications that are satisfied by a context satisfies the Armstrong’s
Axioms:

[Ref] Reflexivity: If B ⊆ A then ` A→ B.
[Augm] Augmentation: A→ B ` A ∪ C → B ∪ C.
[Trans] Transitivity: A→ B,B → C ` A→ C.

A set of implications B is an implicational basis for K if: (1) any implica-
tion from B holds in K and (2) any implication that K satisfies follows (can be
inferred by using Armstrong’s Axioms from B.

One of the most cited kind of basis is the so-called Duquenne-Guigues (or
stem) base [11]. The premises of the implications in the Duquenne-Guigues basis
are pseudo-intents: P ⊆M is a pseudo-intent if P is not an intent (P ↓↑ 6= P )
and Q↓↑ ⊆ P holds for every pseudo-intent Q  P . The Duquenne-Guigues base
for K is

{P → (P ↓↑ r P ) | P is a pseudo-intent for K} (4)

and satisfies that its cardinality is minimum among all the bases. It is well-known
the NextClosure Algorithm [10] that computes all the pseudo-intents and in-
tents, and therefore the Duquenne-Guigues base for a context. This algorithm is



based in the lectic order among sets of attributes that coincides with the usual
order for binary numbers when set of attributes are represented by bit-maps.

Classical FCA only discover knowledge limited to positive attributes in the
context, but it does not consider information relative to the absence of properties
(attributes). Thus, the Duquenne-Guigues basis obtained from Table 1 is {e →
bc, d→ c, bc→ e, a→ b}. Moreover, the implications b→ c either b→ d do not
hold in Table 1 and therefore they can not be derived from the basis by using
the inference system. Nevertheless, both implications correspond with different
situations. In the first case, some objects have attributes b and c (e.g. objects o1
and o3) whereas another objects (e.g. o2) have the attribute b and do not have
c. By the other side, in the second case, any object that has the attribute b does
not have the attribute d.

I a b c d e

o1 × × ×
o2 × ×
o3 × × ×
o4 × ×

Table 1. A formal context

A more general framework is necessary to deal with this kind of information.
In [12], we have tackled this issue focusing on the problem of mining implication
with positive and negative attributes from formal contexts. As a conclusion of
that work we emphasized the necessity of a full development of an algebraic
framework.

First, we begin with the introduction of an extended notation that allows
us to consider the negation of attributes. From now on, the set of attributes is
denoted by M , and its elements by the letter m, possibly with subindexes. That
is, the lowercase character m is reserved for positive attributes. We use m to
denote the negation of the attribute m and M to denote the set {m | m ∈ M}
whose elements will be named negative attributes.

Arbitrary elements in M ∪M are going to be denoted by the first letters in
the alphabet: a, b, c, etc. and a denotes the opposite of a. That is, the symbol a
could represent a positive or a negative attribute and, if a = m ∈M then a = m
and if a = m ∈M then a = m.

Capital letters A, B, C . . . denote subsets of M ∪M . If A ⊆M ∪M , then A
denotes the set of the opposite of attributes {a | a ∈ A} and the following sets
are defined:

– Pos(A) = {m ∈M | m ∈ A}
– Neg(A) = {m ∈M | m ∈ A}
– Tot(A) = Pos(A) ∪Neg(A)

Note that Pos(A),Neg(A),Tot(A) ⊆M .



Once we have introduced the notation, we are going to summarize some
results concerning the mining of knowledge from contexts in terms of implications
with negative and positive attributes. In [12], we have developed a method to
mine mixed implications whose main goal has been to avoid the management of
the large (K|K) contexts, so that the performance of the corresponding method
has a controlled cost.

First, we extend the definitions of derivation operators, formal concept, as-
sociation rule and attribute implication.

Definition 1. Let K = 〈G,M, I〉 be a formal context. We define the operators

⇑: 2G → 2M∪M and ⇓: 2M∪M → 2G as follows: for X ⊆ G and Y ⊆M ∪M ,

X⇑ = {m ∈M | 〈g,m〉 ∈ I for all g ∈ X}
∪ {m ∈M | 〈g,m〉 6∈ I for all g ∈ X} (5)

Y ⇓ = {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y }
∩ {g ∈ G | 〈g,m〉 6∈ I for all m ∈ Y } (6)

Definition 2. Let K = 〈G,M, I〉 be a formal context. A mixed formal concept
in K is a pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆M ∪M such X⇑ = Y and
Y ⇓ = X.

To extending association rules to mixed attributes, we have to change the
definition of support and, consequently, the confidence. For any subset Y ⊆
M ∪M , supp(Y ) = |Y ⇓|/|G|.
Definition 3. Let K = 〈G,M, I〉 be a formal context and let A,B ⊆ M ∪M ,
the context K satisfies a mixed attribute implication A → B, denoted by K |=
A→ B, if A⇓ ⊆ B⇓.

For example, in Table 1, as we previously mentioned, two different situations
were presented. Thus, in this new framework we have that K 6|= b → d and
K |= b→ d whereas K 6|= b→ c either K 6|= b→ c.

In [12], we tackled this issue focusing on the problem of mining implication
with positive and negative attributes from formal contexts. As a conclusion of
that work we emphasized the necessity of a full development of the algebraic
framework. A first step in this line was introduced in [13].

Although FuzAtAnalyzer deals with both, classical and fuzzy implications,
in this paper we concentrate on classical implications as the target element to
include negative attributes. Thus, in this first step our intention is to develop
a tool which carries out the knowledge discovering of the full information in
the system limited to the crisp case. Having said that, in this work we also
allows the treatment of association rules. The main reason is to consider as much
information as possible relaxing the implication semantics. Thus, association
rules provides us more information without a significant change in the theoretical
background model as fuzzy implications demands.

In this paper, we present how we incorporate these results to our tool, ex-
tending our previous work about fuzzy attributes implications and fuzzy data
tables. This is a previous step in the extension of these results to fuzzy case.



2 FuzAtAnalyzer

Related to our research project, we develope a JAVA program called FuzAtAn-
alyzer that was initially used with fuzzy functional dependencies [?] and Fuzzy
Attribute Tables [5]. Datasets are imported from Microsoft Excel archives (us-
ing Java Excel API[16]) where there is a degree between 0 and 1 that represents
the relation of an object with an attribute. It is writed 1 if and object has an
attribute and 0 if it has not in the case of Formal Concept Analysis with crisp
data.

In the original version we focus our attention to obtaining implicational sys-
tems and the knowledge related to them implementing algorithms that appear
in [5, ?,?,?,?,?]

Fig. 1. Screen capture of FuzAtAnalyzer

We adapt this tool for working with datasets used in Formal Concept Analy-
sis, implementing different algorithms like the former NextClosure [10]. In a first
step, we use only positive attributes but, applying the theory that appears in
[12], we extend the study to mixed attributes.

To the previous options that generates (fuzzy) formal concepts and implica-
tions with positive attributes, we add an option that generates mixed attributes
implications and mixed concepts implementing the algorithm 3 in [12], adapting
it to extract mixed concepts too.

This can be do with other programs like Concept Explorer [15] using the
apposition {K|K} but this implementation allow us to generate the results in an
easy and efficient way from an imported dataset.



Also, we add options that generate the mixed lattice and the implicational
system in latex that allows to export the results to different documents. The
lattice is generated using the package XYPic[17] of latex, distributing the con-
cepts by levels based in the number of attributes, positives and negatives, in the
intents of the concepts.

In a specific section for detecting errors, we adapt the methods for obtaining
association rules that works with negative attributes too. This adaption allows us
to compare these association rules with implications obtaining knowledge about
the confidence and support for the subsets of mixed attributes. We can classify
by relevance the mixed implications in order of the support of the subsets of
mixed attributes that compose these implications.

3 Example

We are going to use an example with 9 objects and 5 attributes that corresponds
to the dataset represented in the context in Table 2.

I a b c d e

o1 1 1 1 1 1
o2 0 1 0 1 1
o3 0 1 1 1 0
o4 0 1 1 0 1
o5 0 1 0 1 0
o6 1 0 1 0 0
o7 0 1 0 0 0
o8 1 0 1 0 1
o9 0 0 0 0 0

Table 2. A formal context

From this dataset, in a simple step, we can calculate the implicational system
and the mixed concepts and we can export this data automatically to a latex
archive with the representation of the lattice.

The mixed implicational system is {d → b, de → c, c → a, cde → ab,
be → a, bd → a, bcd → a, bcde → a, ae → b, ac → b} that extends the
original implicational system with positive attributes {d→ b, bcde→ a, a→ c,
abc → de}. The 2 first implications are included in the mixed implicational
system and the others can be deduced from it.

The 48 concepts of the mixed concepts lattice associated with the context
of Table 2 are represented in Figure 2. The file over the bottom concept is
conformed with atoms, whereas the concepts represented with a square are the
meet-irreducible elements. All the elements of the mixed concepts lattice can
be represented as infimum of meeet-irreducible elements and supremum of join-
irreducible elements (atoms).
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Fig. 2. Mixed concept lattice.

In a second phase, we examine association rules with a minimun value 0.4 of
confidence. This means that, at least, one attribute or his negative appears in
the subsets of single attributes.

In the case of considering only positives attributes, {X ⊆ M |supp(X) >
0.4} = {b, c, d, e, bd}. The association rules that we can obtain are d → b
and b → d which confidences are 1 and 0.67 respectively. Adding the nega-
tive and mixed attributes, we have that {X ⊆ M ∪ M |supp(X) > 0.4} =
{a, b, c, c, d, d, e, e, ab, ae, bd, ac} and the new mixed association rules are b →
a, a→ b with confidences 0.83, e→ a with confidence 0.8, a→ e with confidence
0.67, c→ a with confidence 1 and a→ c with confidence 0.67.

With this study of minimun supports of antecedents and consequents of each
association rule with confidence 1, we can define the relevance of the implication
asociated to it and how a mixed rule could be more representative that a positive
one.

Acknowledgements

References
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