
1

New Formats for Computing with
Real-Numbers under Round-to-Nearest

Javier Hormigo, and Julio Villalba, Member, IEEE,

Abstract—In this paper, a new family of formats to deal with real number for applications requiring round to nearest is proposed.
They are based on shifting the set of exactly represented numbers which are used in conventional radix-β number systems.
This technique allows performing radix complement and round to nearest without carry propagation with negligible time and
hardware cost. Furthermore, the proposed formats have the same storage cost and precision as standard ones. Since conversion
to conventional formats simply require appending one extra-digit to the operands, standard circuits may be used to perform
arithmetic operations with operands under the new format. We also extend the features of the RN-representation system and
carry out a thorough comparison between both representation systems. We conclude that the proposed representation system
is generally more adequate to implement systems for computation with real number under round-to-nearest.

Index Terms—Real-number representation, round-to-nearest, radix complement, arithmetic operations

F

1 INTRODUCTION

TWO basic operations that are required in many
arithmetic data-paths are rounding circuits and

radix complement circuits [1]. The rounding circuits
are used when it is necessary to reduce the number
of significant digits. Among the different rounding
modes, the round-to-nearest is the default mode in
most processors, compilers and standards (including
the IEEE754-2008 [2]). The circuit that performs a
radix complement function is used to change the sign
of the number, which is required for subtraction or
absolute value computation. Any improvement in the
efficiency of these two circuits directly affects the
efficiency of the majority of the functional units that
include them, especially since they are usually in the
critical path of these units.

Recently, a family of signed-digit formats, RN-
Representation, the RN standing for round-to-
nearest”, has been presented, which allows perform-
ing unbiased round-to-nearest by truncation [3] [4]
[1]. Later, a particular encoding, canonical radix-2
encoding, which basically attaches a rounding bit to
a conventional two’s complement representation was
introduced in [5]. Besides rounding by truncation,
this encoding allows sign inversion and conversion
from conventional radix complement representation
in a constant time. According to the authors, small
modifications on conventional circuits are required to
perform arithmetic operations with the new encoding
and both fixed-point and floating-point computation
may be improved by using this encoding, taking
into account the simplification of rounding and nega-

• J. Hormigo, and J. Villalba are based at the Department of Computer
Architecture, Universidad de Malaga, Malaga, Spain, E-29071.
E-mail: fjhormigo@uma.es

tion [5]. However, the extra-bit required by the new
encoding, implies either larger memory storage (and
wider bandwidth) or less precision.

On the other hand, in [6], we have presented the
utilization of a new format for binary two’s com-
plement fixed-point representation to optimize the
hardware implementation of digital filters. Similarly
to the one in [5], this new representation system dras-
tically simplifies the computation of round-to-nearest
rounding and the two’s complement operation. Here,
we formalize the new proposed format [6] and gen-
eralize it for different radices and sign representation.
These new formats are based on shifting the numbers
that can be exactly represented under conventional
formats by adding a bias which equals half unit-in-
the-last-place (ULP). That is the reason to call them
’Half-Unit Biased’ (HUB) formats. This shifting could
be also interpreted as appending a hidden least sig-
nificant digit set to one to the conventional number
stream (similarly to the leading one in IEEE754 stan-
dard).

Moreover, in this paper HUB formats are also ex-
tended to floating point representation and the ba-
sic arithmetic operations, including unbiased round-
ing, negation, conversion, addition and multiplication
are studied in detail. Besides that, we also provide
some extensions to the canonical RN-representation
and a thorough comparison between both represen-
tation systems. This comparison demonstrates that,
considering the same precision, the hardware imple-
mentation of a system using HUB format is gen-
erally more efficient than using RN-representation.
This study also shows that HUB formats may be
well suited for general floating-point applications
and application-specific fixed-point data-paths under
round-to-nearest. Some suitable applications may be
DSP, industrial control or physics simulation, but

Javier
Texto escrito a máquina
 Copyright (c) 2015 IEEE. Personal use of this material is permitted.However, permission to use this material for any other purposes must beobtained from the IEEE by sending an email to pubs-permissions@ieee.org

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina
An edited version of this work was accepted in IEEE Trans. on Computers, DOI 10.1109/TC.2015.2479623

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

2

they are not appropriated for cryptography or other
applications in which exact computation is required.

This paper is organized as follow: Section 2 gives an
overview of the binary canonical RN-representation
presented in [5] [7]. Our contribution begins in Sec-
tion 3 where we propose some extensions to RN-
representation system. In Section 4 the fundamentals
of the HUB formats are presented, along with the
rounding, conversion and radix complement oper-
ations. Basic arithmetic operations under the pro-
posed format are analyzed in Section 5. Then, an
analysis and comparison between HUB formats and
RN-representation are provided in Section 6. Finally,
Section 7 gives the conclusions of this work.

2 BINARY CANONICAL ROUND-TO-
NEAREST REPRESENTATION

In [5], basic arithmetic operations for binary canonical
RN-representation are thoroughly studied along with
conversions between this representation and conven-
tional twos complement representation. This encoding
has some characteristics similar to the ones of the for-
mats presented here. For this reason, we summarize
the main ideas of canonical radix-2 RN-representation
here, to study the differences and similarities with
our proposal later. At this point, we should note
that all ideas presented in this section are directly
extracted from [5], whereas our own analysis and
some extensions will be provided later.

According to the authors, a canonical radix-2 RN-
representation of a value is defined as a pair of a two’s
complement number (a) and a round-bit (ra), such as
this value is

ν(a, ra) = a+ rau (1)

where u is the weight of the least significant posi-
tion of a and ν(x, rx) denotes the value of an RN-
represented number. Let us call “Exactly Represented
Numbers” (ERNs) to those values which are repre-
sented without error in a given representation system.
According to previous definition, all ERNs may be
represented as two different RN-representations:

∀a, ν(a, 1) = ν(a+ u, 0) (2)

However, this representation could also be seen as a
kind of ”carry-save” in the sense that it contains a
bit not yet added in (after a rounding, as we will see
later). Taking this into account, these two representa-
tions of the same ERN describe different intervals of
non-exact values, such as the pair (a, 1) represents the
interval [a+u/2; a+u] and the pair (a+u, 0) represents
the interval [a+u; a+3u/2]. In the following, we shall
use I(x, rx) to denote said intervals, such as

I(x, rx) =
[
x+ rx

u

2
;x+ (1 + rx)

u

2

]
(3)

Therefore, although as values ν(a, 1) = ν(a + u, 0),
when they are interpreted as intervals, these intervals

0.10 0.110.01

I(001,0) I(001,1) I(010,0) I(010,1) I(011,0)I(000,1)

ν

ν (010,0)

(001,1)ν

ν

ν

ν

(000,1)

(001,0)

(010,1)

(011,0)

Fig. 1. Binary canonical RN-representations as both
ERNs and intervals

are disjoint except for sharing the same ERN. In
Figure 1, these ideas are shown through a graphical
example. This figure shows the relation among inter-
vals, ERN and rounding: ERNs are represented using
a cross, circles represent the half point between two
ERNs, dotted lines represent the bounds of the RN-
represented number interpreted as interval whereas
solid lines shows the range of values represented by
the same ERN (values rounded to that ERN).

The canonical radix-2 RN-representation has very
interesting properties. First, as RN-representation, it
allows performing round-to-nearest rounding by a
simple truncation. Considering an input value

(x, rx) = (bmbm−1bm−2 · · · bl, rx) (4)

the rounding to nearest of this value is performed by
truncating it, such as for k > l:

rnk(x, rx) = (bmbm−1bm−2 · · · bk, bk−1). (5)

Note that the new round-bit is equal to the MSB of
the discarded bits.

Another interesting property is that negation of a
radix-2 canonical RN-represented number is a con-
stant time operation, since it is fulfilled

∀x, ν(x̄, r̄x) = −ν(x, rx), (6)

where x̄ is the one’s complement of x.
Conversion from two’s complement representation

is a trivial operation, which only requires to append
a rounding-bit, set to zero, to the original two’s com-
plement number. However, conversion from canonical
radix-2 RN-representation to two’s complement rep-
resentation requires at least logarithmic time, since it
may need a non-zero round-bit to be added in (see
equation(1)).

Regarding arithmetic operations, the authors
recommend considering canonical RN-represented
operands as twos complement values with a carry-in
not yet absorbed to define them, and using interval
interpretation to select the resulting round-bit. Using
this methodology, addition and multiplication of
canonical radix-2 RN-represented values are deeply
studied. As a result, addition of two aligned numbers
is defined as follows:

(a, ra) + (b, rb) = (a+ b+ (ra ∧ rb)u, ra ∨ rb) (7)

Subtraction may be easily performed by negating the
adequate operand, i.e., inverting all its bits.

3

Similarly, multiplication is defined only for non-
negative operands and considering u ≤ 1 as follows:

(a, ra)× (b, rb) = (ab+ (bra + arb)u, rarb) (8)

For general operands, a previous sign inversion of the
negative operands is required and, accordingly, it may
be required for the result.

Besides this detailed study of the fixed-point case,
a floating-point format and some ideas about the
implementation of a FP unit are also provided in [5]
and extended in [7] [8]. This format comprises a sig-
nificand encoded using a canonical two’s complement
representation with its round-bit and an exponent.
The significand is normalized such as its value is
between [−1/2, 1/2] in [5], whereas its absolute value
is between [1, 2] with a hidden leading bit in [7] [8].

3 SOME EXTENSIONS TO BINARY CANONI-
CAL RN-REPRESENTATION

In this section, we propose some extensions of the
canonical RN-representation.

3.1 New formats
First, RN-representation is by definition a signed-
digit format which, using canonical encoding, may
be expressed by a two’s complement number and a
round-bit. However, using the interpretation of the
round bit as a carry-bit not yet added in, new formats
based on sign-and-magnitude or unsigned formats
could be defined with similar characteristics to RN-
representation.

Similarly to the definition of canonical binary
RN-representation, we defined unsigned binary RN-
representation as a pair of an unsigned number (a)
and a round-bit (ra), such as said value is

ν(a, ra) = a+ rau (9)

where u is the weight of the least significant position
of a and ν(x, rx) denotes the value represented by the
RN-represented number.

In the same way, we defined sign-and-magnitude
binary RN-representation as a triplet of a sign bit (sa),
an unsigned number (a) representing the magnitude
and a round-bit (ra), such as said value is

ν(sa, a, ra) = (−1)sa(a+ rau) (10)

where u is the weight of the least significant position
of a and ν(sx, x, rx) denotes the value represented by
the RN-represented number.

Based on these definitions, the extension of the
conversion and arithmetic operations defined in [5]
for canonical binary RN-representation to the new
defined formats is straightforward. Let us highlight
that round-to-nearest is performed by truncation; con-
version from the corresponding conventional repre-
sentation is trivial whereas from the new formats

to conventional takes at least logarithmic time; and
addition and multiplication requires a reasonable cost
increment compared to conventional numbers.

The presented fixed-point formats could be the
base of new floating point-formats. For example us-
ing the definition of sign-and-magnitude binary RN-
representation, it could be defined as an IEEE754 like
format by using the RN-represented number for the
significand.

3.2 Unbiased rounding
The rounding operation defined in [5] for RN-
represented numbers is biased, since the tie case is
always rounding up. When all discarded bits are zero,
but the MSB, the value to be rounded is exactly
halfway between two ERNs. These ERNs correspond
to taking the MSBs of the value to be rounded and
setting the round bit to either zero or one. However,
according to Eq. (5), this bit is always set to one (the
value of the MSB of the discarded bits). Nonetheless, it
could be possible to define an unbiased rounding for
RN-representation by selecting the value of the round
bit in a more random way, i.e. based on a different bit
or a logic equation.

First, the tie case should be detected. Similarly to
conventional representations, the computation of a
sticky bit could be utilized, along with the checking of
the MSB of the discarded bits. Then, the value of the
round bit could be selected according to the LSB of the
remaining bits. For example, a tie-to-even rounding
could be defined modifying Eq. (5), such as

rn′k(x, rx) = (bmbm−1bm−2 · · · bk, (T ∨bk)∧bk−1). (11)

where T is the sticky bit (T = bk−2 ∨ bk−3 ∨ · · · ∨ bl).

4 HALF-UNIT BIASED FORMATS

In this section, we formalize and extend the ideas used
in [6] to optimize digital signal processing data-paths.
A new representation system is defined, which al-
lows simplifying the computation of round-to-nearest
rounding and radix complement.

First, let us remember that, under radix-β fixed-
point conventional number systems, real numbers are
represented by ordered n-tuples of digits, called digit-
vectors, where each digit (which is lower than the
radix β) is weighted by a power of β according to
its position in the n-tuple [9]. Positive powers of the
radix represent the integer part, whereas negative
ones represent the fractional part. For instance, the n-
tuple (Xn−1, Xn−2, . . . , X1, X0, X−1, . . . X−f), where
0 ≤ Xi < β, may exactly represent the positive real
number X such as

X =

n−1∑
i=−f

Xi · βi (12)

However, most of the actual values have to be ap-
proximated assuming an error by using one of the

4

ERNs, i.e. those numbers which fulfill Eq.(12). Said in
a different way, they have to be rounded to one of
these ERNs.

For simplicity, and without loss of generality, let us
consider a fixed-point number X with n integer digits
and f fractional digits, which has to be rounded to
another number Y with g fractional digits, assuming
f > g. If the new number is selected by truncation,
which is simply discarding the (f−g) Least Significant
Digits (LSDs) of X , the rounding error ET = X − Y
fulfills

0 ≤ ET < β−g (13)

The upper-bound of the error equals the weight of the
LSD of Y . This weight is also referred as one Unit-in-
the-Last-Place (ULP).

On the other side, if the ERN closest to X is selected,
which is round-to-nearest, the rounding error ER

fulfills
−1

2
· β−g ≤ ER <

1

2
· β−g (14)

Thus, the bounds of this rounding error halve the ones
due to truncation.

To define a new format which, by truncation,
produces the same rounding error bound as the
rounding-to-nearest, let us start from the following
equation derived from eq.(13), corresponding to the
rounding error due to truncation:

0 ≤ X − Y < β−g (15)

If half ULP is subtracted from all terms of the inequal-
ity:

−1

2
· β−g ≤ X − Y − 1

2
· β−g < β−g − 1

2
· β−g (16)

If a new value Y ′ is defined as

Y ′ = Y +
1

2
· β−g (17)

the new Eq.(16) corresponding to the rounding error
will be

−1

2
· β−g ≤ X − Y ′ < 1

2
· β−g (18)

It is clearly observed that eq(18), which corresponds
to the rounding error due to truncation, is identi-
cal to eq(14) corresponding to round-to-nearest, but
using Y ′ as target value instead of Y . Hence, to
achieve our goal of simplifying rounding, we pro-
pose a new family of formats for even radices, such
as the value represented by a digit-vector X ′ =
(Xn−1, Xn−2, . . . , X1, X0, X−1, . . . X−g) is

X ′ =

 n−1∑
i=−g

Xi · βi

+
β

2
· β−g−1 (19)

Eq.(19) provides a similar definition as Radix-β con-
ventional number systems (see Eq.12) but, in this case,
the ERNs are half-ULP right shifted respect the ERNs
of the conventional ones. For that reason, we call the

4.715 4.724.71 4.724.725 4.73 4.735

ERN HUB

ERN conventional

Fig. 2. HUB format vs. conventional one

new proposed formats as Half-Unit Biased (HUB) for-
mats. For example, under the proposed representation
system, a four-fractional-digit Radix-10 vector such as
(4,3,8,2) represents the value X ′ = 0.43825 instead of
the value X = 0.4382 corresponding to a conventional
radix-10 representation. Similarly, if we want to round
to the nearest the value 0.4963 using a two-fractional-
digit Radix-10 number, (5, 0) is the digit-vector under
conventional representation, but (4, 9) under the HUB
one. In both cases the rounding error is below 0.005
(-0.0037 and 0.0013, for conventional and HUB repre-
sentation, respectively).

Comparing conventional and HUB formats with the
same number of digits, the number of ERNs under
both formats is the same. However, the values exactly
represented in each format are different. For example,
under radix-2 fixed-point format with only two frac-
tional digits, four values are represented exactly (0,
0.25, 0.5, 0.75), and in the corresponding HUB for-
mat, the same number of values are also represented
exactly, but different ones (0.125, 0.375, 0.625, 0.875).
Another example, under radix-10 fixed-point format
with only one fractional digit, ten values are rep-
resented exactly(0.0, 0.1, 0.2, . . . , 0.8, 0.9), and in the
corresponding HUB format, again the same number
of values are also represented exactly, but different
ones (0.05, 0.15, 0.25, . . . , 0.85, 0.95). More specifically,
the ERNs under the HUB format appear exactly at the
halfway points between the ERNs under the conven-
tional format. This means that the accuracy will be
equivalent in both formats, but conversions between
them are not exact.

Figure 2 shows graphically the relation between
a HUB format and its equivalent conventional one.
It also shows how truncation produces a round-to-
nearest under the HUB format. In that example, the
selection of the three MSDs (truncation) produces
that all numbers within the intervals [4.72, 4.73) are
rounded to 4.725 under the HUB format, whereas they
will be rounded to 4.72 when targeting a conventional
format. In the first case, a round-to-nearest is per-
formed and the rounding error is bounded by ±0.005.
In the conventional case, a rounding down is always
performed and the rounding error is bounded by 0.01.

Table 1 shows the codification of several selected
real values using a 4-fractional-bit format for HUB

5

TABLE 1
Examples of HUB and conventional binary

representation for real numbers

Real value HUB error(10−3) conventional error(10−3)

0.1 0.0001 6.25 0.0010 -25
0.2 0.0011 -18.75 0.0011 12.5
0.3 0.0100 18.25 0.0101 -12.5
0.4 0.0110 -6.25 0.0101 25
0.5 0.1000 -31.25 0.1000 0

1.00 1.0000 -31.25 1.0000 0
1.38 1.0110 -26.25 1.0110 5
1.72 1.1011 1.25 1.1100 -30
1.454 1.0111 -15.75 1.0111 15.50

1.65625 1.1010 0 1.1010 31.25

and conventional binary representation along with
the associated rounding error. The bit vector may be
either the same or different but the rounding error
is always different (at least the sign). However the
rounding error is always bounded by 0.5 ULP in all
cases (31.25e− 3 for 4 fractional bits).

In Table 1, it is also observed that HUB formats
cannot exactly represent integer values. They are ex-
actly represented in conventional fixed-point formats
by setting all fractional bits to zero. However, under
HUB formats, the ERNs that represents those values
are shifted by half-ULP. As a consequence, integer
values are always represented with an error, which
decreases with the number of fractional digits used.
This fact does not represent a problem in computa-
tion with real numbers, since in this context integer
values do not have more importance than others. For
example, in digital signal processing application, if a
filter coefficient or a signal sample is an integer value,
it is incidental.

4.1 Unbiased round-to-nearest

Returning to the rounding problem, when a real value
is rounded to a HUB number simply by truncation,
that rounding is performed to the nearest number,
but using a biased version, i.e., if the value is exactly
halfway between two ERNs, the greatest one is always
selected (rounding up). For instance, if the radix-10
real value 0.3700 is rounded to two-fractional-digit
HUB number, the value 0.375 is obtained (rounding
up), but the value 0.365 is exactly the same distance.
This may produce a bias in the rounding error which
may be a problem for certain applications.

To overcome this bias problem, a solution which
does not require carry propagation is proposed. First,
the tie case is detected by testing when all discarded
digits (including the MSD of the discarded ones) are
zero. Then, the LSD of the ones that remains are
checked, such as
• if it were even, nothing is done (rounding up).

• if it were odd, the value one is subtracted from
that digit (rounding down).

In the last case, since the digit is odd, this subtraction
is also carry-free. Thus, the main goal of getting a
round-to-nearest without carry propagation remains.
According to that, the value of the previous example,
0.3700, is rounded to 0.365 (rounding down), whereas
0.3800 is rounded to 0.385(rounding up).

In a practical implementation, where digits are
implemented by conventional bit-vectors, both the
checking and the subtraction of the LSD are simply
implemented by zeroing the least significant bit (LSB)
of the LSD:

• if the digit was even, the LSB was actually zero
and nothing has been done.

• if the digit was odd, the LSB was one and sub-
traction has been done by setting it to zero.

We should note that, although this unbiased round-
ing prevents the carry propagation, it may require
testing for all zeroes of the discarded digits, which
is also at best a logarithmic time operation. However,
the utilization of this unbiased mode is not required
when the initial value to be rounded is a HUB number.
For instance, that happens after a multiplication or
unaligned addition of two HUBs numbers. Due to the
definition of HUB numbers, these values could never
be exactly in the middle point between two ERNs.
Thus, the simple truncation of a HUB number always
produces an unbiased rounding when targeting an-
other HUB number with fewer digits.

4.2 Double rounding error

The double rounding error is a well-known problem,
which may happen when a number is rounded twice
in a row using an unbiased round-to-nearest mode,
first to a format with n1 digits, and then to a format
with n2 digits, being n2 < n1 [10]. It occurs when the
first round goes to a number which is in the middle
of two ERNs of the second format, and the second
rounding cause a round to the same direction, due to
the unbiased approach. Then, the rounding error of
the last number obtained is greater than 1/2 ULPs,
which means that it is not the nearest ERN to the
initial value. For example, if the value 3.174962 is
rounded to a conventional number with 4 fractional
digits first and then to a number with two fractional
digits using round-to-nearest-even, 3.1750 (round up)
is obtained first and then, the number 3.18 (round up)
is obtained at the end, but the closest one is 3.17.

Another advantage of using HUB formats is that the
double rounding error is overcome. Since the round-
to-nearest is performed by truncation, the rounding
error of the last number obtained, even after several
intermediate rounding operations, is always bounded
by 1/2 ULPs.

6

4.3 Radix-complement operation
Besides allowing the round-to-nearest by only trun-
cation, a side effect of using a HUB format is that
the radix complement operation (RC(x)) is also per-
formed without the final addition. The diminished
radix complement (DRC(x)) of a HUB fixed-point
number X ′ is

DRC(X ′) =

=

 n−1∑
i=−f

(β − 1−Xi)

+

(
β − 1− β

2

)
· β−f−1

= DRC(X) +

(
β

2
− 1

)
· β−f−1 (20)

Adding one ULP to obtain the radix complement

RC(X ′) = DRC(X) +

((
β

2
− 1

)
+ 1

)
· β−f−1

= DRC(X) +
β

2
· β−f−1

= (DRC(X))′ (21)

Therefore, the addition of one ULP does not pro-
duce carry propagation towards the rest of the digits
and the radix complement of a HUB number is ob-
tained by just computing the digit-wise diminished-
radix-complement of the HUB number. Thus, no fi-
nal addition is required. This simplification is very
beneficial for operations like absolute value, addi-
tion/subtraction for Sign-and-magnitude numbers, or
conversions.

4.4 Conversion from or to conventional represen-
tation
The conversion from a conventional number to a
HUB number may be performed simply by trunca-
tion. In this way, the original value is rounded to
the nearest HUB number. For example, considering
a conventional four-fractional-digit number (2, 3, 6, 8),
which represents the value 0.2368, its conversion to a
HUB would be (2, 3) (truncation), which represents
the value 0.235 (the closest HUB number). This con-
version (or rounding) could also be unbiased using
the technique explained in Section 4.1. This last option
is highly recommended when both formats have the
same numbers of digits, since in this case the conven-
tional number is always halfway between two HUB
numbers (see Figure 2). For example, the conventional
two-fractional-digit number (2, 3) is exactly halfway
between the HUB numbers (2, 3) and (2, 2), but the
latter is selected if the unbiased rounded defined
in Section 4.1 is used. However, the conversion be-
tween two formats with the same number of digits
should be prevented, since it introduces an unneces-
sary rounding error. Since the operations involving
both conventional and HUB numbers are easy to

implement (as we will see later), then it will be better
to delay the conversion until a rounding is really
required. For example, let suppose a system working
with HUB numbers as internal representation which
firstly requires the multiplication of two n-digit inputs
values to obtain another n-digit value. If the input
numbers are under conventional representation (or
only one of them is under HUB representation), it is
better to delay the conversion until the multiplication
is performed instead of before.

On the other hand, to study the conversion from
a HUB number to a conventional one, let us develop
eq(17) further:

Y ′ =

 n∑
i=−g

Yi · βi

+
β

2
· β−g−1

=

n∑
i=−g−1

Yi · βi (22)

being Y−g−1 = β/2. Therefore, from a different point
of view, the HUB format appends a new constant
LSD (Y−g−1) which is not represented explicitly in
the digit vector. For hardware implementation, said
digit is not stored or transmitted explicitly, since
this hidden digit is constant and equals β/2. But, if
said constant hidden LSD is represented explicitly,
an implicit conversion from g-digit HUB format to
a (g + 1)-digit conventional format has actually been
performed. This (g + 1)-digit number may be treated
as a conventional one. For example, the HUB four-
fractional-digit number (7, 3, 5, 6) represents the value
0.73565 and it is converted to conventional represen-
tation by appending the hidden constant LSD, pro-
ducing the conventional number (7, 3, 5, 6, 5). Thus,
conversion from HUB format to conventional one is
performed trivially by appending the hidden digit
explicitly and does not produce any error. Therefore,
as we will see later, this trivial conversion may be
used to perform operations (arithmetic, conversions
or other type) with those numbers using conventional
circuits. However, hardware implementation is usu-
ally simplified, when it is taken into account that the
LSD of those converted numbers are always β/2.

4.5 Signed fixed-point and floating-point repre-
sentations

In previous examples, only unsigned real fixed-point
values have been considered. However, the applica-
tion of the main idea to other conventional represen-
tation is straightforward. Basically, said main idea is
the half-ULP shifting of the ERNs, or viewing it in a
different way, the appending of an implicit LSD set to
β/2 to the initial ERNs.

Let us begin by including the sign information.
Using a sign-and-magnitude representation, one bit

7

TABLE 2
Examples of HUB and conventional binary
representation for negative real numbers

Real value HUB error(10−3) conventional error(10−3)

sign-and-magnitude
-0.1 1.0001 -6.25 0.0010 25
-0.2 1.0011 18.75 0.0011 -12.5

two’s complement
-0.1 1.1110 -6.25 1.1110 25
-0.2 1.1100 18.75 1.1101 -12.5

is utilized to encode the sign whereas the magni-
tude is represented using an unsigned HUB num-
ber as defined before. Then, the digit-vector X ′ =
(S,Xn−1, Xn−2, . . . , X1, X0, X−1, . . . X−g) where S ∈
{0, 1} is

X ′ = (−1)S ·

 n−1∑
i=−g

Xi · βi

+
β

2
· β−g−1

 (23)

It also could be seen as a conventional sign-and-
magnitude number extended with an implicit LSD set
to β/2. Thus, the magnitude preserves the properties
of a HUB representation, and the sign has to be
handled as under conventional sign-and-magnitude
representation.

Similarly to conventional radix complement rep-
resentation, to use HUB radix-complement represen-
tation, the definition of the unsigned HUB number
(Eq.(19)) is modified such as the MSD is negatively
weighted, i.e.,

X ′ = −Xn−1 · βn−1 +

 n−2∑
i=−g

Xi · βi

+
β

2
· β−g−1 (24)

Again, it could be seen as a conventional radix com-
plement number extended with an implicit LSD set
to β/2. HUB radix-complement representation has the
same properties as unsigned HUB representation, in-
cluding the simplicity of radix-complement operation
which allows constant time negation under this for-
mat. Table 2 shows a few examples of signed numbers
representation under HUB and conventional formats.

A floating-point HUB format should include a sig-
nificand represented using any of the HUB signed
fixed-point representations described before, along
with an exponent represented in any conventional
way. For example, using a sign-and-magnitude repre-
sentation for the significand and, E and B being the
exponent and base, respectively, (X,Ex)′ represents

(X,Ex)′ = (−1)S ·

 n−1∑
i=−g

Xi · βi

+
β

2
· β−g−1

 ·BE

(25)
Again, a floating-point HUB number could be seen
as a conventional floating-point number, where its

significand is extended with an implicit LSD set to
β/2. We should note that, as it is shown in Eq.(25),
the weight of this implicit digit is half ULP respect to
the significand, for all possible values of the exponent.
Since the exponent does not affect the rounding pro-
cess, this floating-point HUB representation also al-
lows rounding to the nearest by truncation along with
maintaining the remaining characteristics described
before. Moreover, the definition of special cases or
denormalized numbers is not modified by the implicit
LSD.

5 ARITHMETIC OPERATIONS WITH HUB
NUMBERS

Arithmetic operations with numbers under a HUB
format could be performed by converting them first
to a conventional format, then operating the con-
ventional numbers using conventional circuits and,
finally, converting the result back to a HUB format.
Supposing a HUB number with n digits, the first
conversion is performed by appending the hidden
LSD to the number, such as a conventional number
with n+1 digits is obtained (see Section 4.4). This new
LSB is constant and equal to β/2. It is clear that this
conversion is performed with no error and negligible
cost.

The desired operation is performed using a conven-
tional circuit for n + 1 digits. Therefore, support for
an extra digit is required, compared with the case of
having conventional numbers initially. The increase of
the cost will depend on the concrete operation. It is
important to note that the described process also al-
lows operating with HUB and conventional numbers
together, since the actual operation is performed in
the conventional way. In this case, HUB numbers are
converted before, whereas conventional numbers go
directly to the conventional circuit.

The conversion of the result back to the HUB format
is carried out simply by truncating it to obtain the
number of digits desired. This produces a round-to-
nearest result (the biased version) under the HUB for-
mat. Thus, the conversion and rounding is performed
with almost no cost. However, for the general case,
if unbiased rounding is desired, the sticky bit of the
discarded digits has to be computed. Then, one ULP
is subtracted from the LSD of the converted result, if it
is odd and the sticky bit is zero. For some operations,
this additional computation is not required, since the
sticky bit is known in advance for all cases, as we will
see later.

The process described above is a general way to
operate with HUB numbers. Then, theoretically, it
could be possible to use actual processors or systems
working with conventional number systems to op-
erate with HUB number by software. However, that
requires to make explicit the hidden LSD (for opera-
tion, storage and transmission), which eliminates any

8

advantage of using HUB formats. Although, it would
be more reasonable to modify the actual designs at
hardware level following the process described above
to deal with HUB number, simpler process could be
performed by studying each particular case. Follow-
ing, some main operations are studied.

5.1 Addition and Subtraction

Here we focus on addition since subtraction is per-
formed by negating one of the operands, which only
involves the diminished radix complement of each
digit thanks to the use of HUB format. For simplicity,
and without any loss of generality, let us consider two
fixed-point HUB numbers X ′ and Y ′, with g and f
fractional digits, respectively, being g ≤ f and only
one integer digit for both numbers (the left-aligning of
both numbers by following conventional techniques
and the generalization to a different number of integer
digits are straightforward). Considering eq(17), the
result of the addition of these two numbers is

X ′ + Y ′ = X +
β

2
· β−g−1 + Y +

β

2
· β−f−1. (26)

Now, two cases are considered. First, let us suppose
g < f , which represents the case when both operands
are not right-aligned. This is a typical circumstance
in floating-point addition for numbers with different
exponents. Let us consider that the number Y ′ rep-
resents the significand of the number with the lower
exponent. Then, Y ′ is right-shifted using conventional
left extension, and thus, it has more fractional dig-
its than X ′. On the other hand, this situation may
also happen in fixed-point digital processing systems,
since operands may be unaligned or have different
word-length [6]. In this case, it is fulfilled

X ′ + Y ′ = 0∑
i=−g

(Xi + Yi) · βi

+

(
β

2
+ Y−g−1

)
· β−g−1 +

−g−2∑
i=−f

Yi · βi

+
β

2
· β−f−1 (27)

The last two addends of Eq.(27) are simply the f −
(g + 1) explicit LSDs of Y ′ and its implicit LSD,
respectively. Thus, if those digits of the result are
required, they could be simply copied at the output.
The MSDs of the result, corresponding to the first
and second addend could be computed by using a
conventional (g + 1)-digit adder and a special logic
circuit(which adds the constant β/2 to one digit),
respectively. Thanks to the last addend of Eq.(27), the
exact result could be represented by using a HUB
number of f fractional explicit digits. Moreover, it
is guaranteed that the LSD of the exact result is
always non-zero. Thus, the result could be unbias-
edly rounded to the desired length (typically using g

s
−g−1

0
x x

−1
...x

−g y
−g−1

0
s s

−1
...s

−g

0
y y

−1
...y

−g

s
−g−2

 ... s
 −f

y
−g−2

 ... y
 −f

Adder
Cin

Fig. 3. Binary adder for unaligned HUB numbers

0
x x

−1
...x

−g y
−g−10

y y
−1

...y
−g

y
−g−2

 ... y
 −f

0
s s

−1
...s

−g

Adder
Cin

Fig. 4. Binary adder for unaligned HUB numbers with
rounding

fractional digits) simply by truncation, without using
hardware for computing the sticky bit. Figure 3 shows
an example of an adder with the exact result for
the binary representation. In this case, the special
logic to compute the second addend is simply an
inverter. Figure 4 shows another example with the
result rounded to the size of the shortest operand by
using unbiased round-to-nearest.

Now, let us suppose f = g, i.e., both operands are
aligned. This is a typical circumstance in fixed-point
processors or in floating-point computation when the
operands have the same exponent, then

X ′ + Y ′ =

 0∑
i=−g

(Xi + Yi) · βi

+

(
β

2
+
β

2

)
· β−g−1

= X + Y + β−g (28)

In this case, the addition could be computed using a
conventional (g + 1)-digit adder with the carry input
set to one. Unfortunately, the result could not be
exactly represented using a HUB number and several
options could be considered. Taking the resulting
output digit string directly from the adder as a HUB
number actually performs a round-to-nearest which
produces an error of 0.5 ULP (the maximum for this
rounding mode). Since this error is always in the same
direction, a bias is produced. However, setting the

9

LSD of the digit string result to zero (in fact, saving
hardware in many cases) turns this rounding into
an unbiased one, although the error of 0.5 ULP is
kept. For a floating-point implementation, the latter
should be the preferred solution when aligned ad-
dition occurs, i.e. when the operands have the same
exponent. For a specific application fixed-point data-
path, a better option may be delivering the result in a
conventional format and returning to the HUB format
whenever rounding is required.

In the case of multi-operand addition, the implicit
LSD corresponding to all input HUB numbers could
be gathered to be added together as a constant value.
For example, let us suppose a multi-operand addition
of K HUB input operands, all of them having the
same number of digits and being aligned. The result of
the addition of the explicit digits of all input numbers
could be computed using any conventional circuit.
Then, the final result could be computed by adding
the constant bK · β/2c (which is the addition of the
implicit LSD of all inputs), aligned to the right, to
the previous result. If K is odd the result is exact
considering a HUB output, whereas it is exact under
conventional representation if K is even. Similarly,
if the sizes of the input numbers are not the same,
the weight of the LSD corresponding to each number
needs to be taken into account to generate the constant
value.

5.2 Multiplication
Let us consider again the same two numbers of the
previous section, X ′ and Y ′. Using eq(17) the result
of the multiplication of these two numbers is

X ′ · Y ′

=

(
X +

1

2
· β−g

)
·
(
Y +

1

2
· β−f

)
= X · Y +

X

2
· β−f +

Y

2
· β−g +

1

4
· β−g−f

= X · Y +

 0∑
i=−g

Xi

2
· βi−f

+

+

 0∑
i=−f

Yi
2
· βi−g

+
1

4
· β−g−f (29)

Taking into account that the product X · Y has f + g
fractional bits, the first three addends of the final
addition in eq(29) are aligned and the last one is a
constant value. However, the feasibility of halving
all digits to compute the second and third addends
depends on the radix and the digit representation. If
we particularize for the binary case, eq(29) results

X ′ ·Y ′ = X ·Y +X ·2−f−1 +Y ·2−g−1 +2−g−f−2 (30)

Therefore, a conventional multiplier may be used, but
two new addends may be included into the partial
product compressor tree. These addends correspond

to the input operands left-shifted one bit more that he
LSB of the conventional multiplication result, whereas
the last term (β−g−f−2) corresponds to the implicit
LSB of the HUB format and it is omitted. Thus, at first,
the cost increase of a HUB multiplier is the inclusion
of these two values in the partial product array.
However, in many applications, including floating-
point units, the exact result of the multiplier has to
be rounded to fit into the size of one of the input
operands. In this case, since the LSB of the exact result
is always one, no sticky bit computation is required.
Then, for those LSDs which are going to be discarded,
only a logic to generate the carry signal corresponding
to those lest significant part is sufficient. Hence, the
use of HUB format not only avoids the cost of the
rounding circuit, but also the computation of the LSDs
of the results, and the overall cost may be significantly
reduced in many cases.

6 HUB FORMAT VERSUS CANONICAL RN-
REPRESENTATION

Although canonical RN-representation for other
radices is also defined in [5], they are not studied
deeply enough to be compared here. Thus, we focus
only on radix-2 representation.

To perform a fair comparison, let us consider fol-
lowing a HUB two’s complement fixed-point for-
mat and a canonical radix-2 RN-representation both
with the same number of bits (i.e., they require the
same amount of resources to be stored or transmit-
ted). Then, considering n fractional bits for the RN-
representation, since RN-representation also includes
the round-bit, the corresponding HUB format has
n + 1 fractional bits (the hidden bit is not taken into
account). An example of this situation is represented
in Fig. 5. It is clearly seen that the same binary string
in both formats represent the same set of non-ERNs
(the ones which produce the same result after trun-
cation). The difference between them is which value
is selected to represent this set of values. For RN-
representation, it is the closest n-fractional-bit number
and the round-bit allows to distinguish between the
right and the left interval. In contrast, for HUB format,
it is the value in the half-point of the interval, which
is a (n+ 2)-fractional-bit number with the LSB set to
one.

As we have seen in Section 4, HUB formats could
be defined for unsigned or signed numbers, including
two’s complement or sign-and-magnitude. Similarly,
although canonical RN-representation was only de-
fined for two’s complement in [5], we have extended it
to unsigned and sign-and-magnitude representation.
Following, only two’s complement is considered, but
the extension of the presented ideas to the others cases
is straightforward.

Given a real value (A), when encoding it using the
canonical RN-representation, and taking into account

10

0.10 0.110.01

I(001,0) I(001,1) I(010,0) I(010,1) I(011,0)I(000,1)

ν

ν (010,0)

(001,1)ν

ν

ν

ν

(000,1)

(001,0)

(010,1)

(011,0)

0.0101 0.0111 0.1001 0.1011

ν ν ν ν(000,1) νν (0010) (0011) (0101) (0110)(0100)

I(0010) I(0011) I(0100) I(0101) I(0110)I(000,1)

Fig. 5. Binary HUB format vs. binary canonical RN-
representation

the interval interpretation, the rounding error (ERN =
A− ν(a, ra)) fulfills{

0 ≤ ERN < 2n−1 if ra = 0
0 > ERN ≥ −2n−1 if ra = 1

(31)

Taking into account only the value represented, then,
it fulfills

|ERN | ≤ 2n−1 (32)

In contrast, when the same value is encoded under
the HUB format, the rounding error (EHUB) fulfills

|EHUB | ≤ 2n−2 (33)

Therefore, the maximum rounding error is halved us-
ing the HUB format instead of the RN-representation,
when the same numbers of bits are considered.

Both representations allow rounding to nearest and
negation without carry propagation. The former op-
eration simply requires a truncation and the latter,
inverting all bits. Similarly, both formats prevent
the double rounding error. Moreover, we have de-
fined biased and unbiased rounding for both formats
(although the rounding operation defined in [5] is
only biased, since the tie case is always rounding
up (see equation(5)). Nevertheless, although directed
rounding modes are easily implemented under RN-
representation, they require much more effort under
HUB formats. Due to the bias added, round toward
minus infinity may necessitate to perform a subtrac-
tion of one ULP, whereas round toward plus infinity,
an addition. Thus, directed rounding modes are at
least logarithmic time for HUB numbers. Therefore,
HUB formats are only recommended when round-to-
nearest is the only rounding mode. However, this is
the preferred rounding mode for most applications.

Regarding conversion to and from a conventional
two’s complement representation, there are important
differences. Although conversion from two’s comple-
ment to either the RN-representation, or the HUB
format, is a trivial operation, said conversion is not
exact for the latter. This fact should not be an im-
portant problem because this conversion is generally
associated with a rounding which absorbs this error.

It would be desirable that the input values were
converted to HUB format directly from the input
sources such as ADCs or the numbers in different
radix (e.g., converting from conventional decimal to
HUB binary). Otherwise, the conversion could be
delayed until a rounding is actually required.

On the other hand, conversion from HUB format
to two’s complement is also a trivial operation, which
simply requires appending a LSB set to one. However,
conversion from RN-representation requires, at least,
logarithmic time, since the number has to be incre-
mented if the round-bit is equal to one. In both cases,
no error is produced due to the conversion.

In general, arithmetic operations with RN-
represented numbers require special circuits designed
by carefully studying both the value and interval
interpretation of those numbers. However, HUB
numbers could be operated using regular circuits by
trivially converting them to conventional numbers
before. Nonetheless, it is recommendable to optimize
said circuits instead, taking into account that the LSB
of the converted numbers is always equal to one.

Focusing on the operations studied in detail, addi-
tion of two aligned RN-Represented numbers requires
a regular n-bit adder plus an AND-gate and an OR-
gate to provide the carry-in of the adder and the
round-bit of the result, respectively. Similarly, the
corresponding addition for the HUB case, could be
implemented by also using an n-bit adder plus an
OR-gate and an inverter to provide the carry-in of
the adder and the round-bit of the result, respectively.
Thus, the cost in both cases is practically the same.

Besides the hardware cost, we have empirically
studied the accuracy of the aligned addition for both
formats. In our experiment, we have utilized 16-bit
two’s complement fixed-point numbers within the
range (−1 1) (i.e., one sign bit and 15 fractional bits) as
exact real numbers. They have been converted to RN-
representation and HUB format, for both cases with 8
explicit bits. Thus, a rounding has been required for
this conversion, and round-to-nearest through trun-
cation has been used. To test the addition operation,
250000 exact results corresponding to the addition of
two real numbers generated randomly (excluding the
results which produces overflow) have been calcu-
lated by using 16-bit fixed-point arithmetic. Moreover,
the additions of the same pairs of numbers, but
previously converted to both studied formats, have
been computed using the corresponding algorithm
on each case, i.e. the algorithms described in [5] for
RN-representation and the ones in this paper for
HUB format. These results have been converted back
to their exact values (16-bit conventional fixed-point
representation) and compared to the exact results
obtained using 16-bit fixed-point arithmetic. Besides
the ERNs, since the interval interpretation of RN-
representation numbers provides more information
than only their value interpretation, the error of said

11

interval interpretation by considering both bounds of
the intervals have been also calculated .

In Fig. 6, the probability distributions of the errors
are shown by the histogram of the rounding error for
both HUB format and RN-representation. Solid lines
correspond to the computed value, whereas dashed
and dashed-dotted lines correspond to the lower and
higher bounds of the associated interval, respectively.
Since the addition of aligned HUB operands has
three possible implementations, as we described in
Section 5.1, all of them have been considered here for
comparison: HUBconv corresponds to an adder with
its output delivered under conventional representa-
tion, HUBbiased corresponds to an adder with its out-
put biased-rounded to HUB format and HUBunbiased
corresponds to an adder with its output unbiased-
rounded to HUB format. To facilitate comparison,
table 3 shows the main statistical parameters corre-
sponding to those errors.

It is clearly observed that the three cases of ad-
dition using HUB numbers produce less error than
using RN-representation. That is explained by the
fact that RN-representation algorithms use the ERNs
(which are one of the end-points of the interval and,
consequently, double the rounding error amount) to
compute the ERN of the result and the round bits
only to select the two possible intervals for this
ERN. Therefore, since the initial operands accumu-
lated more rounding error, the results are less accurate
than those for HUB representation.

As expected, the best result is produced when
adding HUB numbers and the output is provided in
a conventional format. In this case, the error that is
produced is half that of the one produced by using
RN-representation. If the output is preferred under
HUB format, the compulsory final rounding, increases
the total error, but it is still lower than the error
when using RN-representation. Regarding floating-
point computation, these results are directly applica-
ble to the case of operands with the same exponent,
since this study only considers the addition of aligned
operands. The unaligned addition will produce an
equal or lesser amount of error, since the aligned
case produces the maximum one (see Section 5.1).
The unbiased rounding would be usually the utilized
rounding, since it is the preferred one for floating-
point computation.

Regarding multiplication, first, this operation is
only defined for positive RN-represented numbers.
As a consequence, negative RN-represented numbers
must be negated before operating them. In contrast,
they may be signed or unsigned for HUB represen-
tation. Then, let us consider only unsigned multi-
plication here. For RN-representation case, this op-
eration requires an n-bit multiplier with two addi-
tional rows consolidated into the partial product array
and the computation of the round-bit, which means
an amount of hardware similar to a regular n+1-

TABLE 3
Statistical parameters of rounding error distribution.

Operation: Addition
Parameters: min(10−3) mean(10−5) max(10−3) σ(10−3)

HUBconv -7.81 -2.31 7.75 3.19
RN-rep. -15.63 -2.67 15.53 6.36
HUBbiased -11.72 -393 3.85 3.19
HUBunbiased -11.72 -3.12 11.66 5.05
Operation Multiplication
HUB -3.69 -0.214 3.60 0.839
RN-rep. 7.12 0.724 7.37 1.68

(a) HUBconv (b) RN-representation

(c) HUBbiased (d) HUBunbiased

Fig. 6. Histogram of the rounding errors for addition.

bit multiplier. However, for HUB format, it requires
an (n + 1)-bit multiplier with two additional input
addends in the compressor tree. Hence, multiplication
of HUB numbers requires more hardware than RN-
represented ones for the proposed format examples
with the same number of bits.

Similarly to addition, we have experimentally mea-
sured the correctness of multiplication for both num-
ber representations. The only difference compared to
the addition experiment process is that the results
are 32 bit-width for the exact computation, and 16
bit-width for others. The probability distribution of
the error is shown in Fig.7 by the histogram of
the rounding error for both HUB format and RN-
representation. In this case, the histogram for the
error when considering the bounds of the intervals
practically coincides with the one corresponding to
the values. It is clearly seen that the error for RN-
representation doubles the one for HUB format.

Therefore, seen from a different perspective, RN-
representation requires one bit more than HUB-format
to obtain the same precision. Thus, for the same

12

−0.01 −0.005 0 0.005 0.01
0

1

2

3

4

5

6x 10
4

Error

F
re

qu
en

cy

(a) HUB format

−0.01 −0.005 0 0.005 0.01
0

1

2

3

4

5

6x 10
4

Error

F
re

qu
en

cy

(b) RN-representation

Fig. 7. Histogram of the rounding errors for multiplica-
tion.

precision, a HUB number multiplier requires slightly
less hardware than an RN-represented multiplier.

Finally, the hardware implementation of unbiased
rounding after multiplication or unaligned addition
for RN-represented numbers requires the computa-
tion of the sticky bit (see Section 5). However, this
computation is not required in the case of HUB num-
bers. This may be an important hardware saving for
implementing floating-point adders or multipliers.

Summarizing, HUB formats and canonical RN-
representation present the same complexity to per-
form round-to-nearest and radix complement, i.e.,
constant time. Moreover, both representation sys-
tems are defined for general even radix, for floating-
and fixed-point numbers, and, after our extension,
for unsigned and signed values, including sign-and-
magnitude and two’s complement. Despite these sim-
ilarities, they also have some differences. Perhaps the
most important difference is that RN-representation
numbers require one bit more than HUB numbers
to obtain the same precision. Although conversion
from conventional formats is trivial in both cases,
it is not exact for HUB formats. However, conver-
sion in the other way is only trivial for HUB for-
mats whereas it is, at least, logarithmic time for RN-
representations. Considering the same precision, the
modifications required by arithmetic units to pro-
cess RN-representation operands mean a cost slightly
greater than the modifications for HUB operands. On
the other hand, HUB numbers could also be operated
using regular circuits by extending those with their
hidden constant LSB. Taking these characteristic into
account, HUB formats are generally more adequate to
implement real number computation when it requires
frequent round-to-nearest rounding.

7 CONCLUSION

In this work we have proposed and analyzed a new
family of formats for computing with real numbers
under round-to-nearest. By shifting the ERNs of the
standard real representations, the HUB format allows
performing radix complement and round to nearest
with negligible cost. HUB formats are defined for

unsigned or signed numbers, including two’s comple-
ment or sign-and-magnitude, and they could be used
as significand of floating-point numbers. Arithmetic
operations could be performed by trivially converting
the HUB operands to a conventional representation,
but optimized circuits are obtained by further analysis
as it is shown for addition and multiplication. Biased
and unbiased rounding has been defined and it has
been shown that the computation of the sticky bit
is generally not required when operating with HUB
numbers.

On the other hand, the binary canonical RN-
representation presents some similar characteristics to
HUB formats, mainly rounding to nearest by trun-
cation and constant time negation. In this paper we
extend the features of the canonical RN-representation
to unsigned and sign-and-magnitude numbers, and
unbiased rounding. Moreover, a deep qualitative and
quantitative analysis of both representations is per-
formed. Targeting systems which compute real num-
bers using round-to-nearest, we conclude that, for the
same precision, our proposal reduces the hardware
required, since it utilizes one bit less to store and
transmit the numbers, basic arithmetic operations are
simpler and does not need to compute the sticky bit.

Summarizing, HUB formats may be well suited for
general floating-point applications and application-
specific fixed-point data-paths with round-to-nearest.
Some suitable applications may be DSP, industrial
control or physics simulation, but it is not appropri-
ated for cryptography or other applications in which
exact computation is required. A few patent applica-
tions have been filed for different issues regarding this
representation.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry
of Education and Science of Spain under contracts
TIN2013-42253-P.

REFERENCES

[1] P. Kornerup and D. W. Matula, Finite Precision Number Systems
and Arithmetic. Cambridge University Press, 2010.

[2] IEEE Task P754, IEEE 754-2008, Standard for Floating-
Point Arithmetic, Aug. 2008. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[3] P. Kornerup and J.-M. Muller, “RN-coding of numbers: Defini-
tion and some properties,” in Proc. Intl Meeting on Automated
Compliance Systems (IMACS 05), Jul 2005.

[4] J.-L. Beuchat and J.-M. Muller, “Multiplication algorithms for
radix-2 RN-codings and two’s complement numbers,” in Int.
Conf. on Application-Specific Systems, Architectures and Proces-
sors, 2005, pp. 303–308.

[5] P. Kornerup, J.-M. Muller, and A. Panhaleux, “Performing
arithmetic operations on round-to-nearest representations,”
Computers, IEEE Transactions on, vol. 60, no. 2, pp. 282–291,
Feb 2011.

[6] J. Hormigo and J. Villalba, “Optimizing DSP circuits by a
new family of arithmetic operators,” in Signals, Systems and
Computers, 2014 Asilomar Conference on, Nov 2014, pp. 871–875.

13

[7] P. Kornerup, J.-M. Muller, and A. Panhaleux, “Floating-point
arithmetic on round-to-nearest representations,” arXiv preprint
arXiv:1201.3914, 2012.

[8] A. Panhaleux, “Contributions to floating-point arithmetic:
Coding and correct rounding of algebraic functions,” Ph.D.
dissertation, Ecole normale supérieure de lyon-ENS LYON,
2012.

[9] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[10] S. Boldo and G. Melquiond, “Emulation of a FMA and cor-
rectly rounded sums: Proved algorithms using rounding to
odd,” Computers, IEEE Transactions on, vol. 57, no. 4, pp. 462–
471, April 2008.

PLACE
PHOTO
HERE

Javier Hormigo received an M.Sc and a
Ph.D., both in Telecommunication Engineer-
ing, from the Universidad de Malaga, Spain,
in 1996 and 2000, respectively. He was a
member of the Image and Vision Department
of the Instituto de Optica, Madrid, Spain, in
1996. He joined the Universidad de Malaga
in 1997 and is currently Associate Profes-
sor in the Computer Architecture Depart-
ment. His research interests include com-
puter arithmetic, specific application architec-

tures, and FPGA.

PLACE
PHOTO
HERE

Julio Villalba received a B.Sc degree in
Physics in 1986 (Universidad de Granada,
Spain) and a Ph.D in Computer Engineer-
ing in 1995 (Universidad de Malaga, Spain).
During 1986-1991, he worked in the R&D
Department of Fujitsu Spain and was an
assistant professor. Since 2007, he has been
a Full Professor in the Department of Com-
puter Architecture at the Universidad de
Malaga. Currently he is an Associate Editor
of IEEE Trans. on Computers. His research

interests include computer arithmetic and specific application archi-
tectures.

