

Contributing to VRPN with a new server for haptic devices (ext. version)

Maria Cuevas-Rodriguez, Daniel Gonzalez-Toledo, Luis Molina-Tanco, Arcadio Reyes-Lecuona

University of Malaga – {mariacuevas, dgonzalezt, lmtanco, areyes}@uma.es

Abstract

VRPN is a middleware to access Virtual Reality peripherals.
VRPN standard distribution supports Geomagic® (formerly
Phantom) haptic devices through the now superseded GHOST
library. This paper presents VRPN OpenHaptics Server, a
contribution to VRPN library that fully reimplements VRPN
support of Geomagic Haptic Devices. The implementation is
based on the OpenHaptics v3.0 HLAPI layer, which supports all
Geomagic Haptic Devices. We present the architecture of the
contributed server, a detailed description of the offered API and
an analysis of its performance in a set of example scenarios.

CR Categories: I.3.7: Three-Dimensional Graphics and Realism
—Virtual reality. H.5.2: User Interfaces — Haptic I/O

Keywords: VRPN, haptic devices, OpenHaptics, Phantom.

1 Introduction

The demanding nature of haptic rendering, requiring 1kHz rates to
deliver simulation of realistic forces, has made researchers
explore different approaches to alleviate computational load
[Otaduy et al., 2013]. One strategy consists in distributing the
computational load among different CPUs. In order to do so, it is
necessary to define a protocol for transferring information among
these computers. In Virtual Reality applications, VRPN (Virtual
Reality Peripheral Network) is a popular middleware to
communicate devices and distribute Virtual Reality (VR)
applications [Taylor II et al., 2001]. In this paper we present a
novel VRPN OpenHaptics Server to distribute the haptic and
graphical rendering onto different machines over a network.
The VRPN OpenHaptics Server, as the name indicates, is a VRPN
server based on the OpenHaptics SDK, used to manage Geomagic
Haptic Devices (company who acquired Sensable Technology
Inc.’s® in 2012). VRPN is typically used for interfacing with
motion capture and tracker devices in a VR system. An example
can be seen in [Suma et al., 2011], where a Flexible Action and
Articulated Skeleton Toolkit (FAAST) is presented. FAAST
incorporates a VRPN server for streaming user’s skeleton joints
over a network. Another platform that uses VRPN protocol to
broadcast tracking data is described in [Freeman et al., 2010].
VRPN package to handle input data from all control peripheral
such as joysticks, gamepads, buttons and a tracking system
Beyond the control of tracking devices, VRPN also supports other
peripheral as button devices, analog input, sounds, haptic devices,
etc. [Renard et al., 2010] presents an open source software
platform called OpenViBE that includes a VRPN server module
to send analog and buttons values to a VR application. Also,
[Jacobson et al., 2005] presents a CaveUT which incorporates.
VRPN interface is provided by most popular tracker devices, and
it is supported by many graphic rendering engines for tracking.
Another example is presented in [Mashbrun et al., 2005], where
authors describes a real-time data-display system for a microscope,
the 3D-Force Microscope, that uses a client-server model and all
the network communications use VRPN protocol.

The VRPN standard distribution includes a server to handle
Geomagic® force feedback haptic devices (formerly Phantom
haptic device), called VRPN Phantom server. This server has been
implemented using the Ghost library, which is no longer
supported by the company. In [Cuevas-Rodriguez et al., 2013] a
haptic device server is presented, based in Haptic Library
Application Programmable Interface (HLAPI) from OpenHaptics
3.0, the currently Geomagic haptic device toolkit. However, this
interface was limited and the implementation had performance
issues.
This present work is a contribution to the VRPN standard
distribution with a new server which supports OpenHaptics
devices. We improve upon [Cuevas-Rodriguez et al. 2013] with a
novel implementation which follows VRPN coding rules, solves
its performance issues and widely extends its interface.
Development has been done in coordination with the current
VRPN curators. At the time of submission the contribution is
being evaluated to become part of VRPN standard distribution.
The paper is structured as follows. Section 2 describes the
technical background necessary to understand every technologies
used in this work. The third section explains the device features
and the advantages that the implemented server presents. The
OpenHaptics Server implementation is described in-depth in
section 4. Next, section 5, describes how to use the OpenHaptics
Server from the client and from the server side. Section 6 presents
a study to evaluate the performance of the server. Finally, the
conclusions are given in section 7.

2 Technical background

The VRPN OpenHaptics Server presented here relies on two
technologies: Geomagic Haptic Devices and the VRPN library.
Geomagic is a company that offers software and force-feedback
haptic devices that enable users to touch objects in a 3D virtual
environment. GHOST (General Haptic Open Software) was the
first commercial available Application Programmable Interface
(API) to manage these haptic devices, but is no longer supported.
The GHOST API has been replaced by the OpenHaptics™ toolkit
[Itkowitz et al., 2005], an OpenGL based library. OpenHaptics™
is organized in three layers. The lower level library, HDAPI
(Haptic Device API), allows the user to render forces directly.
The next layer, HLAPI (Haptic Library API), provides high-level
mechanisms to perform the haptic rendering. Finally, the
QuickHaptics micro API level is an even higher level API which
enables fast creation of haptic scenes with a minimal amount of
code. HLAPI is the chosen library to implement the Phantom
server, as: (1) the final users of our server will be developers with
no prior knowledge of haptics fundamentals, but still wanting to
add haptic properties to the graphic scenes; (2) QuickHaptics
library does not offer enough control to manage the haptic
rendering properties; and (3) HLAPI automatically computes the
haptic rendering based on geometric primitives and offers
commands to set haptic properties to the virtual objects, as friction,
stiffness, damping, viscosity, etc.
OpenHaptics v3.0 SDK supports every Geomagic haptic device:
the Geomagic Touch (formerly the Sensable Phantom Omni), the
Geomagic Touch X (formerly the Sensable Phantom Desktop)

This article is an extended version of the poster paper: Cuevas-Rodriguez, M., Gonzalez-Toledo D., Molina-Tanco, L., Reyes-Lecuona A., 2015, November.

“Contributing to VRPN with a new server for haptic devices”. In Proceedings of the ACM symposium on Virtual reality software and technology. ACM.

and the Geomagic Phantom Premium haptic device. These
desktop devices use motors to provide force feedback through a
mechanical arm with a pen-shape end-effector called stylus. To
use the device, the users hold the stylus as they would do with a
pen. The motors exert forces on the users’ hand to simulate
interaction between the pen tip and a virtual object. The devices
used to test the new VRPN OpenHaptics Server have been the
Geomagic Touch and the Geomagic Touch X. Both are 6 degrees-
of-freedom (DoF) devices which can measure the 3D spatial
position (along the cartesian x, y and z axes) and the orientation
(pitch, roll and yaw) of the handheld stylus, while exerting forces
along the three cartesian DoFs.
 VRPN is an open source C++ library aimed at supporting
distribution and modularity of virtual reality applications. The
library provides a set of servers that allow communication
between applications and interaction devices (e.g. mouse,
joystick). The provided servers have common features and
functionalities which are abstracted out in 5 canonical classes.
Each server derives from one or more of the canonical classes:
Tracker, Button, Analog, Dial and Force Device. The standard
distribution of VRPN 7.33 offers a device-specific class to
communicate a VR application with a Geomagic haptic device,
the vrpn_Phantom class. This class performs the haptic rendering
providing force feedback to user through the Geomagic device
and inherits from the following canonical classes: vrpn_Tracker
(which reports device position, orientation and acceleration),
vrpn_Button (which reports device buttons state) and
vrpn_ForceDevice (which reports device applied force). Most of
the VRPN standard distribution methods to manage the haptic
device force feedback are implemented using the currently
obsolete GHOST library. Only a subset of functions such as
device initialization and shutdown, use the OpenHaptics HDAPI
library. Cuevas-Rodriguez et al. [2013] developed a server based
on OpenHaptics HLAPI. However this server did not follow
VRPN coding rules and was therefore never contributed to the
VRPN. The server also had a limited interface and performance
issues. The server introduced here (1) widely extends the
functionality of the implementation by [Cuevas-Rodriguez et al.
2013]; (2) avoids performance issues by streaming data only when
required; and (3) closely follows VRPN coding rules with the goal
of contributing to the VRPN standard distribution by updating
VRPN support of haptic devices.

3 OpenHaptics Server: features

VRPN is a middleware that allows distributing applications and
devices over a TCP/IP network. In the case of the haptic server,
the system interacts locally with the haptic device according to
haptic scene, delivering the data to clients through a TCP/IP
network. In this section we review the advantages of this approach.
In general, transforming the architecture of a VR application into
a distributed one has several advantages. When the application
includes haptic interaction, this can be especially advantageous as
the rendering loop can be computationally very expensive. The
haptic server allows us to run as separate applications the haptic
render and the graphic render. This is advantageous for several
reasons, as (1) The computing power required for the simulation
can be distributed between different systems; (2) separating the
haptic and graph loop reduces the complexity of both with a small
cost; (3) we keep the flexibility of running both applications
(haptic and graph renderers) in the same or in different machine;
and (4) information on the haptic scene can be fed into auxiliary
applications within the virtual reality system, such as, for example,
monitoring and evaluation applications (Figure 1). Finally, from a
developer’s perspective, the OpenHaptics libraries can be
complex, while the interface offered by vrpn_OpenHaptics is

much simpler. The distributed architecture and the simpler
interface greatly facilitate adding haptic rendering to an existing
VR system that does not support it.

Figure 1: Distributed haptic solution for virtual simulation.

4 OpenHaptics Server: implementation

VRPN is distributed under the Boost Software License 1.0,
allowing users to modify this implementation according to their
needs. This section details all decisions taken in the
implementation of the VRPN OpenHaptics Server.

4.1 Server Architecture

VRPN is a client-server architecture, where the VRPN server runs
on the machine associated with the interaction device, and thus it
is the responsible of streaming data coming out of the device. The
VRPN client consumes the device-emitted data. The architecture
allows client and server to run on the same machine or separately
on different machines that communicate over a network.
The heart of the VRPN library is the vrpn_Connection class. This
class is the responsible of sending and receiving messages (using
callback handlers) between server and client. The
vrpn_Generic_Server_Object is a server class that process
instructions on which devices to open from a configuration file,
allowing developers to customize and expand the VRPN by
declaring new VRPN device server classes, such as the one
contributed in this work: vrpn_OpenHaptics class.
A simplified class diagram of the haptic Server classes is shown
in Figure 2. The new device server class responsible for the haptic
render loop is called vrpn_OpenHaptics, and supersedes the
original GHOST-based vrpn_Phantom class. The new class
inherits from three of the canonical classes: vrpn_Tracker,
vrpn_Button and vrpn_ForceDevice, which in turn derive from
vrpn_BaseClass. The purpose of each class is outlined below.

vrpn_BaseClass

vrpn_Buttonvrpn_Tracker vrpn_ForceDevice

vrpn_OpenHaptics

TCP/IPTCP/IP
Other application

(Client)

Other application

(Client)

Visual Information

Graphical Tool
(Client)

Graphical Tool
(Client)

Haptic perception

OpenHaptics
Server

OpenHaptics
Server VRPN

Figure 2: VRPN OpenHaptics Server simplified diagram

- vrpn_BaseClass is the parent of all canonic classes. It establishes
the connection by way of an instance of the vrpn_Connection
class. This class handles the registration of message types and
contains all methods to pack and unpack the messages that are
sent across the connection.
- vrpn_Tracker class is the responsible of managing the messages
that indicate position, orientation, velocity and acceleration of the
Phantom stylus. The implemented haptic server uses the
vrpn_Tracker standard class, without modifications.
- vrpn_Button class provides methods to relay messages
concerning the device button state. The vrpn_button class requires
no modifications from the standard one either.
- vrpn_ForceDevice class handles haptic parameter specifications
and reports applied force between the haptic device (server side)
and the virtual environment (client side). This class has been
modified to offer the new interface demanded by the VRPN
OpenHaptics server. The extension will be detailed in Section 4.2.
- vrpn_OpenHaptics class has direct communication with the
device and uses methods supported by the OpenHaptics v3 API.
This class performs the haptic rendering, defines structures to
hold device data (position, applied force, etc.) and provides these
data to the remote client application when any change happens on
the server side. The behavior and the interface provided by this
new class is detailed in Section 4.2.

4.2 Contributed server classes: (new)
vrpn_ForceDevice and vrnp_OpenHaptics.

The implementation presented in this work contributes to the
VRPN via a new vrpn_OpenHaptics class and a re-
implementation of the canonical vrpn_ForceDevice class.
The vrpn_ForceDevice class, as every canonical class, derives
into a remote client interface class and a device server interface
class, as shown in Figure 3.
The vrpn_ForceDevice_Remote class has two main roles. Firstly,
it defines the interface used by the client application to inform the
server about the graphic scene. Secondly, it provides a set of
callback functions to receive haptic information messages from
the server, such as force applied by the user, or device contact-
point coordinates. The Vrpn_ForceDevice_Server class in turn
handles a set of callbacks to receive haptic parameter messages
from the client and forwards them to the vrpn_OpenHaptics class.

The vrpn_OpenHaptics is the device-specific class, implemented
from scratch. The implementation is based on the OpenHaptics
v3.0 HLAPI layer. First, it defines methods to initialize, close and
reset the haptic device. Moreover, the class implements a set of
virtual methods declared in the vrpn_Tracker_Server,
vrpn_Button_Server and vrpn_ForceDevice_Server classes to
receive data to set the haptic scene. Data is stored in specific
structures or data types, many of them are OpenHaptics types, and
used to carry out the haptic rendering. The class defines a timer to
guarantee a 1kHz render frequency. Finally, vrpn_OpenHaptics
collects all events from the device, such as position, button state
and force feedback, and sends them to the client.

Both classes, vrpn_OpenHaptics and vrpn_ForceDevice, have
been written following the VRPN coding rules 1 . In terms of
functionality, these classes extend the interface provided by
Cuevas-Rodriguez et al. [2013], including methods to (1)
implement device vibration, motor vibration and contact
vibration; (2) set if a virtual object is touchable or not; and (3) set
the workspace bounding box or projection matrix. In terms of
performance, the Geomagic haptic servers greatly improve upon
the performance of [Cuevas-Rodriguez et al. 2013] by sending all
parameters (proxy position, proxy orientation, applied force,
depth of penetration, surface contact point, angle at contact point
and id of touched object) only when they change.

4.3 Client-Server communication

From the client program side, the haptic device is divided into
three different devices as Tracker, Button and ForceDevice, as
previously explained. This separation of interfaces allows
different types of client applications to access only the
information they require. A client class can declare an instance of
each remote canonical class (Figure 4) to send and receive each
type of data to and from the server.

A typical scenario involves a graphic client that requires total or
partial mapping of a graphic scene into a haptic scene. In this
context we describe all the interaction required by the client to (1)
initialize the haptic scene (from client to server) and (2) interact
with the haptic scene (from server to client).

4.3.1 Haptic Scene initialization

Setting up the haptic scene requires the client to follow a three-
step process: (1) establish the workspace, (2) define the haptic
objects and (3) define the force and vibration effects. The
implementation carried out allows flexibility in the order in which
these three steps are performed. What follows is a typical
initialization scenario.
Once the necessary connections for the operation of the interface
have been established, the first step will be to initialize the haptic
scene. This is done via the SetWorkspaceBoundingBox method or
the SetWorkSpaceProjectionMatrix method.
To define haptic objects and their properties, the client uses the
method called setObjectNumber to communicate the number of
objects to the server. For each of the objects to define, the client
will subsequently send vertex positions, transformation matrix
and haptic properties. For this the client should use the setVertex,
setTransformMatrix and setHapticProperty methods, respectively.
The order in which these parameters are sent is not strict. Figure 5
shows a typical scenario which follows this sequence. All this

1VRPN web site Coding rules section (accessed July 26th, 2015):
http://www.cs.unc.edu/Research/vrpn/codingRules.html

vrpn_ForceDevice

vrpn_ForceDevice_Remotevrpn_ForceDevice_Server

Figure 4: Client-server classes involved in the

communication

vrpn_Button_Remotevrpn_Tracker_Remote

vrpn_ForceDevice_Remote

Cliente VRPN

Figure 3: ForceDevice classes

http://www.cs.unc.edu/Research/vrpn/codingRules.html

when device is not moving

when device is movingalt

1.1. Proxy Position and Orientation

sd Scene Interaction

HapticClient.

Client

HapticClient.

Tracker

HapticServer.

Tracker

HapticServer.Op

enHaptic Server

sendProxyPosOrient

V
R

P
N

R
e

m
o

te
 M

e
th

o
d

 C
a

lls

geometric and haptic information is associated with each of the
objects by a unique identifier that identifies each object
unambiguously which the client must provide.
The setTouchableFace method allows specifying, for all objects
defined in the scene, which side will be touchable (front, back or
both). This is a global haptic property that must be defined only
once and affects all defined objects equally.
Finally, the last step consists in defining the force and vibration
effects, if any. These have to be defined via the setForceEffect
method, which must be called once for each of the effects to be
set. All the methods involved can be seen in the Table 1.

Figure 5: Sequence diagram of a Haptic Scene Configuration

4.3.2 Haptic Scene interaction

Once the haptic scene has been set, the interaction between client
and server occurs concurrently through the three different
interfaces: Button, Tracker and Force. The Button server reports
changes to the state of the device buttons; the Tracker server
reports changes to the position and orientation of the device; and
the Force server reports all haptic events and receives information
from the graphic scene (client). In the following, we describe the
interaction between server and client in three through these three
interfaces.

Tracker: The tracker interaction is established through the
vrpn_Tracker_Remote interface, as is usually done in VRPN.
Using this interface the server sends to clients the position and
orientation of the haptic device. A common use for this interface
is managing the position and orientation of the graphical
representation of the haptic device in the graphic scene.

Tracking information is not always sent; only when the device is
moving the server calls the sendProxyPosOrient method to avoid
saturating the network with irrelevant information. Figure 6
shown this scenario. The server considers that the device has
moved when configurable thresholds in linear or angular distance
are reached. Clients subscribe to this information via a callback
mechanism.

Button: The button interaction is established through the
vrpn_Button_Remote interface. By using this interface, the server
sends to clients status information of the haptic device buttons.
Similarly to the Tracker server, only changes on button state are
sent to clients.

Figure 6: Sequence diagram of Tracker Interaction

Force Device: The force interaction is established through the
Vrpn_ForceDevice_Remote interface. Its methods for haptic scene
interaction are organised in two groups: (1) A set of VRPN
callbacks, which allow the client to have access to the send
functions defined in vrpn_OpenHaptics; through these, the server
is able to send back to the client all the information about the
haptic events on the scene (Table 2 details these methods) (2) The
set methods (Table 3) through which the haptic client sends to the
server the information required to modify the scene.

1. Set WorkSpace

sd Scene Initialization

Client.Client
Client.ForceDevi

ce_Remote

HapticServer.

ForceDevice

HapticServer.

OpenHaptic

Server

2. Set Number of Objects setObjectNumber

loop For each Object

loop For each Vertex

setObjectVertex3.1. Set Vertex

3.2. Set Matrix of Transform setTransformMatrix

loop For each Haptic Property

3.3. Set HapticProperty setHapticProperty

4. Set Touchable Face

loop For each Force or Vibration Effect

5.1. Set Effect setEffect

setTouchableface

V
R

P
N

:
R

e
m

o
te

 M
e

th
o

d
 C

a
lls

setWorkspaceProjectionMatrix / setWorkspaceBoundingBox

Table 1: Methods added to vrpn_ForceDevice_Remote standard

distribution class to configure a Haptic Scene.

Methods Description

setObjectNumber Sets the number of objects to render

setObjectVertex Sets the vertex of an object

setTransformMatrix

Sets the transformation matrix for each

object, which provides orientation,

position, and scale of the object.

setHapticProperty

Sets the haptic properties of an object:

stiffness, damping, static and dynamic

friction, pop through, and mass.

setTouchableFace

Sets the face of the object that will be

haptically rendering: front, back, or

both. This feature is the same for all

objects.

setWorkspaceProje
ctionMatrix

Sets the workspace based in the model
and projection matrix. The workspace is
the space where the device is going to
interact with the VE.

setWorkspaceBoun
dingBox

Sets the workspace based in the model
matrix and a bounding box.

setEffect

Sets the force effects to render. HLAPI
provides four effects: constant force,
spring, viscosity, and friction. Besides,
we have added two vibration effects,
called motorVibration and
contactVibration. For each one is
necessary provide a few of this
parameters: gain, magnitude, frequency,
duration, position and direction. See
Table 4.

Figure 7 shows a typical scenario of interaction between a client
and haptic scene divided in the two blocks mentioned before: (1)
messages that flow from server to clients through the callback &
send interface, informing all subscribed clients about events
happening in the haptic environment. When a contact occurs the
vrpn_OpenHaptics server uses these methods to broadcast
information. When the contact stops, the server stops sending data,
with the only exception of the sendIsTouching method, which
sends continuous information to indicate clients whether any
contact is taking place. And (2) messages emerging from the
client (the graphic scene) to the server to modify the workspace;
turn on/off haptic rendering of an object; turn on/off a force or
vibration effect; and reset the scene at a given time.

Methods Description

startEffect
Indicates that the force effect should

begin.

stopEffect
Indicates that the force effect should

finish.

setObjectTouchable

Indicates that the server should start/stop

render an object. By default, the server

renders all objects.

resetScene
Reset the Haptic Scene. The server

deletes workspace, objects and effects.

4.4 Contributed Force Effects

The server developed offers two custom vibration effects, which
are not offered directly by OpenHaptics. The effects have been
developed in the context of industrial simulations and make use of
the low level HD libraries to operate. The effects are called Motor
vibration and Contact Vibration. Both of them are independent
vibration effects, which can operate together or independently
during the VR simulation. And both effects are parameterized by
two parameters, magnitude and frequency, which have to be set
by the client.

Once these effects have been defined, they may be activated when
desired by the client, through the corresponding interface. Once
they are activated, the server sets them in the OpenHaptics

rendering thread, using an OpenHaptics callback. In the following
we detail each of the vibration effects:

Motor Vibration: This effect is intended to render vibrations
such as those produced by an electric motor, allowing simulation
devices such as may be drills, polishers, grinder, etc. Once
activated, this effect of vibration is felt at all times until
deactivation. The vibration is generated by way of a sinusoidal
force effect with two components, Fx and Fy on the x-axis and y-
axis of the device, respectively:

𝐹𝑥 = 𝑀 cos(2𝜋𝜑𝑡)
𝐹𝑦 = 𝑀 sin(2𝜋𝜑𝑡)

where M and φ are the magnitude and frequency values set by the
client.

Contact Vibration: This vibration effect is intended to simulate
the vibrations that would occur by touching a surface with one of
the devices simulated by the other effect (e.g. rills, polishers,
grinders, etc.) This effect, once activated, is not operating
continuously. It only comes into operation when a virtual object is
touched with the device. The vibration is generated by way of a
sinusoidal force effect in the direction normal to the contact
surface. The value of this vibration is: FN = M sin (φt).

5 Using VRPN OpenHaptics Server

The development carried out may be of interest for any VR
application to which one would want to incorporate haptic
interaction. The main steps to incorporate haptics would be to (1)
compile the VRPN server for the required platform and (2) to
incorporate a VRPN client in the application. As explained in
Section 4.3, through this client the application first sends all the
geometric and haptic information to configure the haptic scene
and then receives all haptic events. Let us look at how one would
do this.

Figure 7: Sequence diagram of a Scene Interaction

1.1. If Any Object Touched

sd Scene Interaction
HapticClient.

Client

HapticClient.Force

Device

HapticServer.

ForceDevice

HapticServer.Op

enHaptic Server

1.2. ID of Touched Object

sendIsTouching

1.3. Force of Contact

sendTouchedObject

1.5. Angle of Contact

1.6. Depth of penetration

sendSCP

2.1. Set WorkSpace

sendForce

2.2. On Force or Vibration Effect

2.4. On/Off haptic Render of an
 Object

resetScene

startEffect

stopEffect

1.4. Point of Contact

par when the contact happens

upon client's request

2.5. Reset

sendAngle

sendDOP

HapticClient.ForceDe

vice_Remote

HapticServer.For

ceDevice_Server

setObjectIsTouchable

2.3. Off Force or Vibration Effect

V
R

P
N

:
R

e
m

o
te

 M
e

th
o

d
 C

a
ll
s

setWorkspaceProjectionMatrix / setWorkspaceBoundingBox

Methods Description

sendForce Sends the applied force

sendDOP Sends the Depth of Penetration

sendSCP Sends the Surface Contact Point

sendIsTouching Indicates if it is touching an object

sendTouchedObject Sends the identified of the object that this

is touching

sendAngle Sends the angle at contact point

Table 3: Methods added to vrpn_ForceDevice_Remote standard

distribution class to interacting with the Haptic Scene

Table 2: Send Methods, defined in vrpn_OpenHaptics

5.1 Client side

Follow the next steps to add the VRPN client inside your
application and access the services provided by
vrpn_OpenHaptics.

Instantiate the remote classes: Include the following VRPN
header files vrpn_ForceDevice.h, vrpn_Tracker.h and
vrpn_Button.h to be able to instantiate objects of the remote
classes vrpn_ForceDevice_Remote, vrpn_Tracker_Remote and
vrpn_Button_Remote. From that moment, the application will be
able to make use of the methods of these classes. The contribution
presented in this paper is focused on the ForceDevice and
ForceDevice_Remote classes. Hence, in the following we detail
how to use the methods of these classes; for the other interfaces
VRPN refer to the VRPN official documentation2. In Figure 8 an
example to subscribe to the force method of the ForceDevice
classes is shown.

Start the haptic scene: The right time to start the haptic scene is
just after the application has built the graphic scene. Once this has
happened the application can make use of the services provided
by vrpn_OpenHaptics to: (1) configure the haptic scene, (2)
interact with it.

Send the objects that form the haptic scene: Once the haptic
scene has been started, the first thing that must be sent is the
number of objects in the graphic scene to be rendered haptically.
For each object, its vertices, and its transformation matrix and
haptic properties have to be sent too.

 Configure the workspace: The application must send the
workspace too. This workspace can be defined based on the
model matrix and the projection matrix of the graphic scene, if

2 VRPN main page (accessed July 26th, 2015):

http://www.cs.unc.edu/Research/vrpn/index.html

one wishes to render haptically the whole graph scene.
Alternatively, it can be defined based on the model matrix and a
bounding box, if one wishes to render haptically only a part of the
graph scene. The necessary methods to do this scene
configuration have been detailed in Table 1 and Section 4.3 of this
paper.

The system developed does not need a signal to start the haptic
render. On the contrary, the haptic render is working from the
beginning. Consequently, once the objects and the workspace
have been defined it is possible to touch the objects by the device.
The reception of all these parameters by the server involves a high
computational load. Thus during configuration the server is not
able to guarantee correct timings in the haptic render. It is for this
reason that we have distinguished two stages in the
communication between haptic server and client (Section 4.3).

The configuration of the force effects should not slow down the
server, unless many of them will be defined consecutively. Still,
in order to ensure the correct haptic rendering is better to do it
now.

Define haptic effects: As a result, next step in the configuration
of the haptic scene is to define the effects of force or vibration, if
any. The server is able to render six different force effects. Four
of (constant, spring, viscous and friction) are directly offered by
OpenHaptics, please refer to the OpenHaptics documentation for
more info3 . The other two vibration effects (contact-vibration and
motor-vibration) are added by this sever, and they are not define
in the OpenHaptics libraries. To define an effect, the graphic
application should send a set of parameters (see Table 4). For the
vibration effects, these are a magnitude parameter to indicate the

3 OpenHaptics Programmer’s guide (accessed July 26th,

2015):http://www.geomagic.com/files/4013/4851/4367/OpenHapt

ics_ProgGuide.pdf

#include <vrpn_ForceDevice.h>

void VRPN_CALLBACK handle_force_change(void *userdata, const vrpn_FORCECB f)
{
 printf("Force:%lf,%lf,%lf\n",f.force[0],f.force[1], f.force[2]);
}
int main(int argc, char **argv)

{
ForceDevice = new vrpn_ForceDevice_Remote(server);

 // Wait until we get connected to the server.
 while (!ForceDevice->connectionPtr()->connected())
 {
 ForceDevice->mainloop();
 }
 //Sending Scene
 ……

//Register Remote Functions
 ForceDevice->register_force_change_handler(NULL, handle_force_change);

……
 // main loop
 while (state != quit)
 {
 ForceDevice->mainloop();

 }

}

Figure 8: Complete program to subscribe to the force method of the Send interface and print the force received

http://www.cs.unc.edu/Research/vrpn/index.html
http://www.geomagic.com/files/4013/4851/4367/OpenHaptics_ProgGuide.pdf
http://www.geomagic.com/files/4013/4851/4367/OpenHaptics_ProgGuide.pdf

maximum force that the effect can generate and the frequency of
the vibration.

Proceed with haptic rendering: Once the haptic scene has been
completely established, the server can guarantee the correct haptic
render of the scene. The user can now interact with the haptic and
graphic scene. For this the graphic application should interact
with the haptic server through the set methods and send methods
provided through the vrpn_ForceDevice_Remote interface.
Through the set methods the client can send orders to the server,
to indicate different actions to be executed such as start or stop of
a force effect. Through the send methods the server informs the
client of the haptic events that occur. These methods are called by
the server by the use of VRPN callbacks. Table 2 shows the
methods implemented in this server. By them the server will
inform when a contact happens, what force is being fed back by
the device and so on. The client has to subscribe to all or only any
of them, depending on its needs.

5.2 Server side

On the server side not many actions are required. In order to
deploy the server, one must download the VRPN project and
follow the instructions to compile the vrpn_server. It is mandatory
to activate the cmake options to add the VRPN OpenHaptics
packages and vrpn_OpenHaptics to the compilation. Once the
server is compiled, one should modify the vrpn.cfg file making
sure that the line to start the OpenHaptics server is present.

6 Performance

In a VR system, latency is a critical parameter; high latency can
cause offset, glitches and other bad user experiences. In this
section we present tests performed to check that at least the VRPN
performance was not altered by the introduction of this new server.
In order to assess the proposed server performance, it has been
measured the time it takes a haptic event to reach the VRPN client
since it is generated in the VRPN server (tVRPN). While in a stand-
alone, non-distributed application, where haptic and graphical
loops are directly connected, this time is negligible, in a
distributed application, in which haptic (server) and graphic
(client) render run in different machines, this time could become
in the main source of delays. Nevertheless, to provide a fair
comparison, network latency was excluded of the measurement.
For this reason, time was measured with both server and client
running on the same machine, but using the whole VRPN protocol
to transfer information, i.e both client are server are on localhost.
As a result, only the latency due to the VRPN overhead has been
considered in tVRPN.

The test was carried out on an Intel Core 2 Quad Q8400 at 2.66
GHz with Windows 7. We measured the time elapsed between the
generation of the haptic event by OpenHaptics, and its arrival to
the client. In particular, the test was done using the
sendTouchedObject interface. During the test a total of 49200
samples were taken. 99.91% of them took less than 0.5ms to reach
the client from the haptic server (see Table 5).

Table 5: Number of samples with very long tVRPN.

Figure 9 depicts the histogram of elapsed time from server to
client (tVRPN) in terms of occurrences, in order to illustrate the
server performance. The average elapsed time is a bit over 100µs
(SD < 50µs). During the test only 11 samples took more than 1ms
to reach the client. Although this is still a very small percentage, it
could cause glitches during the VR simulation. A deeper analysis
is necessary to understand whether these are related to the
experimental conditions.

Figure 9: Histogram of tVRPN (Elapsed time from a haptic event to

reach the graphical client).

Elapsed time Samples %

<300 µs 49041 99.68%

300-500 µs 115 0.23%

501-1000 µs 33 0.07%

>1000 µs 11 0.02%

Total 49200

Table 4: Parameters involved in rendering each of the effects.

Effect Type Gain Magnitude Duration Frequency Position Direction

constant - X X - - X

spring X X X - X -

viscous X X X - - -

friction X X X - - -

contactVibration - X - X - -

motorVibration - X - X - -

7 Conclusions

The Virtual Reality Peripheral Network (VRPN) library was
developed almost fifteen years ago, but we believe it is still a
good idea, and so do most of the providers of tracking technology.
When the VRPN is used to connect VR applications and haptic
devices, the graphic and the haptic render loops can be developed
separately which reduces developing effort and distributes
computational load.
We have presented a contribution to the (VRPN) aimed at
updating its support of the Geomagic (formerly Phantom) family
of haptic devices. The contribution follows VRPN coding rules,
creating a new vrpn_OpenHaptics server and extending the
vrpn_ForceDevice canonical interface.
The implementation allows both full and partial mapping of a
graphic scene in a haptic environment. Arbitrary geometries can
be haptically rendered by full use of the OpenHaptics HLAPI
libraries. The now obsolete GHOST libraries are no longer
required by our implementation, which offers a much richer
interface to clients. This allows greater control of the haptic scene,
and facilitates development of more advanced VR applications.
Still, the provided interface is simpler to the full OpenHaptics API,
reducing developing effort for most applications. The sever adds
two new vibration effects which are not present in OpenHaptics.
The current version of the new vrpn_OpenHaptics sever only
allows configuration of static scenes. Our future plans include the
simulation of rigid body dynamics in the client side, which
requires sending regular updates of rigid transformations of
individual objects from the graphical client to the haptics server.
Simulating deformable objects is also feasible, but a naïve
approach would imply sending frequent updates of multiple points
position (depending on the discretization used to compute
deformation) and optimizations would be needed to avoid high
band-width consumption and inconsistencies due to the time
needed to send the deformation state of each single object. To
improve scalability of the server for these and other future
improvements, we are working in a middleware based on VRPN
for multi-rate synchronization of the server and the different
clients (graphical and other), avoiding the need to send too
frequent (1kHz) updates to clients working at much lower rates.

References

CUEVAS-RODRIGUEZ, M., POYADE, M., REYES-LECUONA, A.,

MOLINA-TANCO, L. 2013. A VRPN server for haptic devices

using OpenHaptics 3.0. In New Trends in Interaction, Virtual

Reality and Modeling (pp. 73-82). Springer London.

FREEMAN, D., PUGH, K., VORONTSOVA, N., ANTLEY, A., SLATER,

M. 2010. Testing the continuum of delusional beliefs: an

experimental study using virtual reality. Journal of abnormal

psychology, 119(1), 83.

ITKOWITZ, B., HANDLEY, J., ZHU, W. 2005, March. The

OpenHaptics™ toolkit: a library for adding 3D Touch™

navigation and haptics to graphics applications. In Eurohaptics

Conference, 2005 and Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems, 2005. World

Haptics 2005. First Joint (pp. 590-591). IEEE.

JACOBSON, J., LE RENARD, M., LUGRIN, J. L., CAVAZZA, M. 2005,

JUNE. The CaveUT system: immersive entertainment based on a

game engine. In Proceedings of the 2005 ACM SIGCHI

International Conference on Advances in computer

entertainment technology (pp. 184-187). ACM.

MARSHBURN, D., WEIGLE, C., WILDE, B. G., TAYLOR, R. M., DESAI,

K., FISHER, J. K., SUPERFINE, R. 2005, October. The software

interface to the 3D-force microscope. In Visualization, 2005.

VIS 05. IEEE (pp. 455-462). IEEE.

OTADUY, M., GARRE, C., LIN, M. C. 2013. Representations and

algorithms for force-feedback display. Proceedings of the IEEE,

101(9), 2068-2080.

RENARD, Y., LOTTE, F., GIBERT, G., CONGEDO, M., MABY, E.,

DELANNOY, V., BERTRAND O., LÉCUYER, A. 2010. OpenViBE:

an open-source software platform to design, test, and use brain-

computer interfaces in real and virtual environments. Presence:

teleoperators and virtual environments, 19(1), 35-53.

SUMA, E., LANGE, B., RIZZO, A. S., KRUM, D. M., BOLAS, M. 2011,

March. Faast: The flexible action and articulated skeleton

toolkit. In Virtual Reality Conference (VR), 2011 IEEE (pp.

247-248). IEEE.

TAYLOR II, R. M., HUDSON, T. C., SEEGER, A., WEBER, H., JULIANO,

J., HELSER, A. T. 2001, November. VRPN: a device-

independent, network-transparent VR peripheral system. In

Proceedings of the ACM symposium on Virtual reality software

and technology (pp. 55-61). ACM.

