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Abstract: This paper shows realizations of a piezoresistive tactile sensor with a low cost 

screen-printing technology. A few samples were fabricated for different materials used as 

insulator between the conductive layers and as top layer or cover. Both can be used to tune 

the sensitivity of the sensor. However, a large influence is also observed of the roughness at 

the contact interface on the sensitivity and linearity of the output, as well as on mismatching 

between the outputs from different taxels. The roughness at the contact interface is behind 

the transduction principle of the sensor, but it also limits its performance if the wavelength 

of the roughness is comparable or even longer than the size of the contacts. The paper shows 

experimental results that confirm this relationship and discusses its consequences in sensor 

response related to the materials chosen for the insulator and the cover. Moreover, 

simulations with FEA tools and with simple models are used to support the discussions and 

conclusions obtained from the experimental data. This provides insights into the sensor 

behaviour that are shared by other sensors based on the same principle. 
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1. Introduction 

Several principles have been exploited to build tactile sensors (basically arrays of force sensing units 

or taxels) [1], resulting, mainly, in two large sets of sensors: piezoresistive and capacitive. The 

requirements of a large area, and also flexibility, impose severe limitations on the technology that can 

be used to make these sensors. One possible direct approach is to build a large array of force sensors 

made of silicon on a flexible printed circuit, though the cost can be high. MEMS on polymers [2] 

overcome the limitations of silicon in terms of brittleness and lack of flexibility, though they have not 

yet led to a mature enough to be commercialised. Moreover, the advantage of such an approach, in terms 

of accuracy and resolution in force measurement, is often handicapped by the need for an outer cover 

that avoids damage to the sensors and improves the impedance characteristics of the skin at the contact 

interface. For instance, if a rubber or elastomer is used as the sensor’s outer layer, the physical properties 

of the rubber will affect the sensor reading. As a consequence, since the rubber has the ability to store 

energy, undesired sources of errors arise, such as hysteresis and drift. 

Therefore, despite other cheaper technologies being more error prone than silicon based ones, the 

final result is not notably worse in terms of performance. For instance, a large set of capacitive sensors 

based on flexible electrodes, fabric and elastomers has been developed and is in the marketplace for 

diverse applications [3], and a few have been specifically built for robotics [4,5].  

Other large sets of tactile sensors are based on piezoresistive principles, i.e. the conductivity between 

two electrodes depends on the pressure on the taxel. They are basically composed of a layer of sensitive 

material placed on or between an array of electrodes. There are many examples of realizations that follow 

this basic approach, though they do not share the same working principle. Some realizations are based 

on conductive rubbers, where conductive paths are created because the concentration of conductive 

particles increases as the pressure increases, as stated by the percolation theory [6–9]. Others are based 

on quantum tunneling effects [10]. The resistance decreases when the load increases in these cases, while 

it increases with the load in the reported rubber nanocomposite in [11], due to the destruction of 

conductive paths created by contact or tunneling effects by transverse slippage of conductive  

black carbon particles. All these proposals are based on a change of the volume of the piece of  

sensitive material.  

Other realizations take advantage of the change of the contact area at the microscopic scale due to the 

roughness at the contact interface, thus achieving thinner sensors [12–14]. Many sensors based on this 

approach are commercially available [15–17] and have been used in robotics [18–20]. The change of the 

conductivity of these materials is used to tune the sensitivity of the sensor. A large spatial resolution is 

achieved by the arrays in [14,15,17], although their output actually depends on the compliance of the 

object in contact, so this should be taken into account when they are calibrated. The reason is that they 

are arrays of sensitive points surrounded by a non-sensitive area. If the object in contact has low 

compliance, the force is concentrated at the sensitive points and the output is large. On the contrary, if 

the object in contact is soft, the output is smaller [21]. Other sensors do not suffer from this limitation, 
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at least not to the same extent, since the active area is the whole contact interface between the sensitive 

material and the electrodes, and this area is that of the taxel. This is the case of the commercial sensors 

from Weiss robotics [22], where the sensors are composed of the sensitive material atop of an array of 

electrodes on a flexible printed circuit board [23]. The sensitivity and range of the sensor is determined 

by the properties of the sensitive material. The authors have reported sensors made with a similar 

technology, and have shown that the sensitivity can be tuned with the conductivity of the polymer at the 

contact interface [24]. 

The work presented here explores a different method that consists of changing the mechanical 

properties (i.e. the compliance) of some layers in a realization with a screen printing technology. Samples 

of the proposed sensor were fabricated using insulating materials of different compliance. Moreover, 

some pieces of different materials were used as covers or top layers. Simple calculations and FEA 

simulations on the ideal model predict a capability to tune the sensitivity and range of the sensor by 

choosing the suitable insulator and cover. However, other fundamental and practical issues that have to 

be taken into account arise. These are basically those related to the limited size of the contact electrodes 

with respect to the long wavelength features of the roughness along the contact interface. The 

dependence of the conductance of these factors has been studied for a long time in tribology [25]. Recent 

works [26,27] conclude that these features clearly determine the conductance at the interface in terms of 

sensitivity or linearity. This obviously affects the performance of tactile sensors based on piezoresistive 

materials on arrays of electrodes. This is the case with the sensors in this paper and many experimental 

measurements confirm it. Discussions based on simulations and other simple models explain this 

behaviour and provide conclusions to assess sensor performance depending on the materials used as 

insulator and cover.  

Though focused on a specific technology, several discussions made in this paper are applicable to 

many sensors made with conductive layers on electrodes. Its importance in the realizations based on the 

roughness at the contact interface is obvious, but it also has influence in the other cases based on changes 

in volume if they also have rough contact interfaces. It can only be neglected when the active layer is 

glued to the electrodes with a conductive adhesive [28,29], but it should be taken into account if both 

layers are not glued but are merely in contact. A relevant work shows this fact in [30], where pressure 

sensitive materials are tested with contact interfaces glued or not glued to the electrodes with a 

conductive adhesive. The result is quite surprising since the sensitivity to pressure is mainly due to the 

rough contact interface and not to the change of volume in the cases explored. Therefore, we presume 

that these effects should be taken into account in all cases with rough contact interfaces.  

The content of the paper is organized as follows: Section 2 introduces the design and realization of 

the sensor with a screen-printing technology. Section 3 describes the experimental setup and 

instrumentation used to obtain some relevant data of the materials and the fabricated sensors, and to 

measure their output. Section 4 provides the ideal model and detailed discussions about its limitations, 

and proposes another, still simple but extended model, that is able to better explain the sensor’s 

behaviour. Section 5 shows the experimental results and their related discussion on the basis of the 

analysis and models given in Section 4. Finally, Section 6 summarizes the main conclusions obtained 

from previous discussions. 
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2. Design and Realization 

Figure 1 depicts the sensor that has been proposed and tested in this paper. It is composed of six layers 

which are from bottom to top: the substrate (PET), the outer electrode, the insulator, the inner electrode, 

the polymer ink based (PEDOT) on plastic (PET), and the cover. Similar design conditions for both 

interfaces with the inner and outer electrodes are established this time. First, both are placed at the same 

height to assure that both electrodes are in contact with the conductive polymer at very low pressures 

and avoid a pressure threshold in the sensor response [24]. Second, the contact area between the 

electrodes and the sensitive material is a key factor to determine the sensor sensitivity. The larger this 

area is, the larger the sensitivity of the sensor is. We are usually interested in as high a spatial resolution 

as possible, so this means the area is reduced as much as possible. Moreover, the area at both contact 

interfaces, between the sensitive material and the inner electrode and between the sensitive material and 

the outer electrode, must be the same to achieve maximum sensitivity [24]. 

 

Figure 1. (a) 3D scheme and connection of the taxels in the array. (b) Proposed design of 

the taxel. 

Six 4 × 4 sensors were built to carry out the experiments of this paper. They differ in the material 

used as insulator. The fabrication process was carried out with a semiautomatic shuttle table screen 

printing machine (Thieme 1010 E, Teningen, Gernamy) [31] with moving print table for printing on 

rigid and flexible materials, as used in electronic applications. Figure 2a shows the manufacturing 

process steps: 
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1. Initially, a silver conductive layer (bottom electrode) is deposited onto the 175 µm PET 

(polyethylene terephthalate) flexible plastic support and cured at 130 °C for 4 min in a natural 

convection oven (Carbolite PN 200). 

2. Another conductive layer is placed atop the bottom electrode, and cured again in the oven at 

130 °C for 4 min. 

3. The insulating material is printed over it. The insulating materials have different thermal 

curing profiles. 

4. Another conductive layer is placed atop the bottom electrode, and cured again in the oven at 

130 °C for 4 min (outer electrode). 

5. In the last screen printing step, the inner conductive electrode is deposited on the insulating 

material to reach the same height as the outer electrode.  

6. In the final step, a film of conductive polymer PEDOT is deposited by spin-coating on a  

70 µm thick layer of PET. This layer is placed on top of the previous one with the PEDOT in 

contact with the electrodes. 

The printing of the layers in steps 1 to 5 is made through masks. Figure 2b shows a photograph of a 

sensor with row and column indexes to identify the taxels in the array. 

 

Figure 2. (a) Manufacturing process steps and (b) photograph of one sensor. 
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3. Experimental Setup 

3.1. Setup to Test the Tactile Sensors 

A block diagram of the setup used to obtain the results of this paper is depicted in Figure 3a, and 

Figure 3b shows a photograph of it. It is composed of a translation stage with three micro-step motors. 

One of them (T-NA08A50 from Zaber, Vancouver, BC, Canada) controls a piston with a spring inside 

that exerts the force in z axis while the others (T-LA60A from Zaber) move the stage along x and y axes. 

A precision force sensor (nano17 from ATI Industrial Automation, Apex, NC, USA) is placed at the end 

of the piston to register the force exerted against the tactile sensor. The motors and the nano17 sensor 

have their own control and acquisition electronics and are connected to a computer. The nano17 sensor 

is able to measure normal forces up to 70 N with a resolution of 1/80 N and has a 5 mm diameter circular 

probe. The T-NA08A50 motor provides a maximum operating load of 50 N, and the T-LA60A motors 

provide a maximum of 15 N. An interface board was developed to scan and provide the output voltage 

for every taxel in the tactile sensor. These voltages are registered by a signal acquisition board  

(USB-6259 BNC by National Instruments Spain S.L., Las Rozas, Madrid, Spain) and sent to the PC via 

USB. An application was also developed on Labview™ to control the whole system. 

 

Figure 3. Characterization setup: (a) block diagram and (b) photograph. 

3.2. Young’s Modulus Estimation  

Two different procedures were used to estimate Young’s Modulus, a microhardness measurement 

system (FISCHERSCOPE HM2000, Windsor, CT, USA) with a Vickers’ pyramid indenter and a tensile 

test with a testing machine from INSTRON (Norwood, MA, USA). The indentation test was used to 

estimate the modulus of the thin layers such as the insulators and the electrodes while the tensile tests 

were used to estimate the modulus of the remaining layers, i.e. the covers and the PET. Table 1 shows 

the values of the estimated Young’s modulus.  
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Table 1. Young’s Modulus values. 

Layer Young’s Modulus (Pa) 

Insulator WhiteUV 2.3 × 109 

Insulator Green 1.53 × 109 

Insulator GreenBlue 1.5 × 109 

Insulator RedEL 0.1 × 109 

Insulator Blue 1.7 × 109 

Insulator TranspUV 3.3 × 109 

Cover Pt 0.14 × 106 

Cover Red 0.68 × 106 

Cover Transp 323.52 × 106 

Cover PC 1299 × 106 

Substrate (PET) 2704.87 × 106 

Electrode 2.96 × 109 

3.3. Profilometries 

During the fabrication process, the profilometries of the printed layers were registered with a 

Vaccaro’s Form Talysurf Intra profilometer (Leicester, UK) [32]. Some of them are shown later (see 

Section 4.4) as a resource to explain the sensor behaviour. 

4. Analysis and Modelling of the Sensor Static Response 

4.1. Basic Electrical Model  

Figure 4a shows the electrical model of a taxel in the tactile sensor, where Rout and Rinn are the 

resistances associated to the contact interface between the sensitive layer with the conductive polymer 

and the outer and inner electrodes, respectively. 

 

Figure 4. (a) Electrical model of the taxel. (b) Readout circuitry. 

Rgap models the resistance of the conductive polymer in the gap between both electrodes. The voltage 

output provided by the common signal conditioning circuit for piezoresistive tactile sensors in Figure 4b 

is given by the expression [24]: 
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( )

gain

out bias

taxel

R
V V

R P
   (1)  

where ( )taxelR P  is a function of the pressure exerted on the taxel given by: 

( ) ( ) ( )  taxel inn out gapR P R P R P R  (2)  

The dependence of ( )taxelR P  on P is conditioned by the microscopic roughness of the conducting 

sheet in the side that makes contact with the electrodes in the described technology [33]. 

Classical results on tribology establish a linear relationship between total normal force on two 

electrodes in contact and the resulting electrical conductance between them, and assume an elastic 

behaviour [34] and non-adhesive contact. Other more recent models confirm this linear relationship, 

although only if the distribution of contact sizes and local pressures remains constant over a wide range 

of loads [26,27,35]. Therefore, under this assumption we can write: 

x x xC k P   (3)  

where the index x refers to the electrode (inn or out) and xk  is a constant that depends on the electrical 

and mechanical properties of the materials in contact [33]. The resulting conductance of the taxel from 

Equations (2) and (3) is: 

( ) ( ) || ( ) ||taxel inn inn out out gapC P C P C P C  (4)  

where: 

( || )
a b

a b
a b





 (5)  

Cgap is large (the conductivity of the polymer is 8.2 S/m) compared to the others and has little 

dependence on P [30], especially in the sensor of this paper whose sensitive material is a thin film. If 

Cgap is neglected and both inner and outer contacts are identical, we can write from Equations (1), (3) 

and (4): 

inn inn out out inn out
out gain bias gain bias

inn inn out out inn out

F F F F
V R V R V

F F F F

 


 

   
      

   
 (6)  

where /x x xk A   being xA  the area of the electrode x , and    inn out  if the size of both contacts 

is the same, as said in Section 2. innF  and outF  are normal forces at the inner and outer contacts 

respectively. If we assume: 

inn outF F F   (7)  

innF a F   (8)  

where the parameter [0,1]a  determines the balance of force between both electrodes and F  is the total 

normal force on the taxel, we can write from Equations (6), (7) and (8): 

 1outV k a a F      (9)  

Therefore we obtain a linear relationship between the output voltage and the normal force on the taxel 

with a sensitivity: 
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 1S k a a      (10)  

Note that this sensitivity is maximum when 0.5a  . 

4.2. Basic Mechanical Model  

Since the sensor is made of layers of continuous elastic materials a first simple model based on beams 

with linear elastic constants can help to understand the sensor behaviour and provide guidelines to its 

design [36]. This approach gives the simple model of Figure 5 for the sensor in Figure 1. The sensor is 

modelled as a stacked structure of layers with area 
layerA , thickness 

layerl  and elastic constant given by: 

layer layer

layer

layer

E A
K

l


  (11)  

where 
layerE  is the Young’s modulus of the layer.  

 

Figure 5. Basic mechanical model of the taxel. 

From Figure 5, we can write the following expressions for the forces at the contact interfaces with 

the electrodes: 

 

 

cov

cov

|| || || ||

|| || ||

er subsPEDOT ins inn subs

inn

eq

er subsPEDOT out subs

out

eq

K K K K K
F F

K

K K K K
F F

K

 

 

 (12)  

where    cov cov|| || || || || || ||eq er subsPEDOT ins inn subs er subsPEDOT out subsK K K K K K K K K K   is the equivalent 

elastic constant of the whole taxel. From Equations (8) and (12) we can write: 

 cov || || || ||er subsPEDOT ins inn subs

eq

K K K K K
a

K
  (13)  

Therefore, ideally it is possible to tune the sensitivity of the sensor if the geometry and mechanical 

properties of the layers, i.e. their elastic constants, are chosen properly. Note that the condition a = 0.5, 
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i.e. the forces on both electrodes are equal and the sensitivity is maximum, only fulfilled for 

||out ins innK K K  or: 

out inn
ins

inn out

K K
K

K K





 (14)  

Nevertheless, a balance of forces is also achieved if Kins ≫ Kcover because we can neglect Kins in 

Equation (12) (we also assume Kinn ≫ Kcover and Kout ≫ Kcover). Figure 6 shows how the parameter a 

changes for different values of the Young’s Modulus of the insulating and the cover for the sensor in 

Figure 1. The elastic constants of the other layers in Equation (13) are shown in Table 2 and the Young’s 

Modulus in Table 1. Note that a approaches 0.5, i.e. maximum sensitivity, for low values of the Young’s 

Modulus of the cover or for high values of the Young’s Modulus of the insulator. On the contrary, for 

increasing values of Ecover and decreasing values of Eins, the parameter a and the sensitivity decrease. 

Note also that a ≤ 0.5 in Figure 6. Values of a above 0.5 would mean a negative value of Kins in the 

model of Figure 5, which obviously is not possible. Nevertheless, if the heights of the electrodes are not 

the same, values of a above 0.5 are possible, as will be discussed later. 

 

Figure 6. Parameter a as a function of the Young’s Modulus of the insulator and the cover 

calculated with the basic mechanical model. 

Table 2. Elastic constants obtained from the Young’s modulus of the materials (see  

Table 1) and the geometry of the taxel (see Figure 1 and Equation (11)). 

Layer Elastic Constant K (N/m) 

Substrate PEDOT 7.05 × 108 

Outer electrode 1.68 × 109 

Inner electrode 2.52 × 109 

Substrate 2.74 × 108 

4.3. Finite Element Analysis 

The behaviour described in the previous section is confirmed by FEA simulations. Seven geometries 

have been defined in COMSOL for each simulation, six of them correspond to each layer of the sensor: 

the substrate, the outer electrode, the insulator, the inner electrode, the polymer ink on plastic and the 
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cover. The seventh corresponds to an aluminium plate atop the sensor to exert the force through it. All 

the boundaries of these geometries have a free constraint condition except for the following: 

1. The bottom boundary of the substrate has a fixed constraint condition. 

2. The lateral boundaries of the substrate, the polymer ink on plastic layer and the cover have a 

symmetry plane constrain condition. 

3. The top boundary of the aluminium plate has a free constraint condition and a load in the y 

axis direction. 

Four identity boundary pairs were created to join the different boundaries of the geometries in contact 

with each other. Moreover, a contact pair was created to study the contact pressure distribution on each 

electrode surface. This contact pair is composed of the bottom boundary of the polymer ink on the plastic 

layer and the top boundary of the outer and inner electrodes. A default triangular mesh was used 

considering that the upper boundary of the contact pair has to have at least twice the number of nodes 

than the bottom one (see Figure 7a). 

Figure 7 shows results from FEA simulations of the sensor in Figure 1. Low values of the Young’s 

Modulus of the insulator and high values of the Young’s Modulus of the cover cause unbalance between 

the forces on both electrodes as said in Section 4.2 and illustrated by Figure 7b. On the contrary, for high 

values of the Young’s Modulus of the insulator and/or low values of the Young’s Modulus of the cover, 

a balance in the forces at the interfaces of the inner and outer electrodes is observed, as shown in  

Figure 7d. Another remarkable feature that can be observed in Figure 7d is the effect of the indentation 

at the borders of the electrodes, which is especially noticeable in the case of soft covers. When the load 

is increased, the contact area in the borders is reduced theoretically to zero (see the inset in Figure 7c), 

so the pressure should be infinite in theory. Moreover, there is not contact between the conductive 

polymer and the electrode in the area close to the borders. The effect of this indentation is also observed 

in the uneven pressure profiles in Figure 7d. 

FEA simulations were carried out for Young’s Modulus of the insulator and the cover taking the 

values 105 Pa, 2.5 × 105 Pa, 106 Pa, 2.5 × 106 Pa, 107 Pa, 2.5 × 107 Pa, 108 Pa, 2.5 × 108 Pa, 109 Pa,  

2.5 × 109 Pa and 1010 Pa. In this case, the force at the interface was obtained by integrating the pressure 

along the interface so the uneven profiles observed in Figure 7d are taken into account. The difference 

between the surface depicted in Figure 6 and that obtained from FEA simulations is shown in Figure 8. 

The maximum difference in a for these simulations is 3.5%FS. Moreover, from Equation (10): 

1 2

1

dS a da

S a a

 
 


 (15)  

so /dS S  increases for decreasing values of a, and the maximum variation of the sensitivity is also 

3.5%FS for 0a  . 

Therefore, there is a reasonable agreement between the sensitivity predicted by the simple model in 

Sections 4.1 and 4.2 and the FEA simulations despite of the observed influence of the indentation. 

However, if there are significant deviations between the implemented sensor and this simple model, the 

sensitivity cannot be obtained only from Equations (10) and (13). This is covered by the next Sections 

4.4 and 4.5. 
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Figure 7. FEA simulations: (a) geometry and mesh, (b) example of contact pressure between 

the electrodes and the conductive polymer layer for low values of the Young’s Modulus of 

the insulator and high values of the Young’s Modulus of the cover,  

(c) example of indentation at the borders of the electrodes, and (d) example of contact 

pressure between the electrodes and the conductive polymer layer for high values of the 

Young’s Modulus of the insulator and low values of the Young’s Modulus of the cover. 

 

 

Figure 8. Difference between a calculated with the basic mechanical model and obtained 

from FEA simulations. 
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4.4. Limitations of the Simple Model 

The simple model of Sections 4.1 and 4.2 makes the following assumptions that also constitute goals 

of an ideal design: 

1. The contacts are identical or at least the relationship between inn  and out  in Equation (6) 

does not depend on F . 

2. The force is distributed between both electrodes as stated in Equation (7), i.e. the total force 

on the taxel equals the summation of the forces on the electrodes. 

3. The balance between the forces on both electrodes, i.e. the parameter a, does not depend  

on F . 

4. The electrodes are flat and are at the same height. 

5. The pressure along the surface of the contacts is uniform. 

 

Figure 9. (a) Microphotograph of the sensor with redEL insulator layer, and  

(b) profilometry of one row of the sensor. 
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Figure 10. Profilometry of the sensitive side of the conductive polymer layer. 

However, these assumptions are not valid for the sensors fabricated with the technology described in 

Section 2. The reason is that this technology achieves profiles of the sensor without the conductive layer 

such as those in Figure 9b, and the profile of the sensitive side of conductive polymer layer is shown in 

Figure 10. Both roughness, that of the electrodes and of the conductive polymer can be added to consider 

an equivalent interface between the resulting rough surfaces and a flat surface one [37]. We observe 

from these figures that they show a significant roughness. This is confirmed by the microphotograph in 

Figure 9a, where it is observed that the deposition of the silver layer on the insulator is not even, which 

is especially noticeable in the case of the redEL insulator. Moreover, the electrodes are at different 

heights, and peaks of insulator as high as, or even higher than, that of the inner electrode are observed 

in some profilometries, so Equation (7) is not fulfilled. Finally, the simulations in Section 4.3 show 

uneven pressure profiles along the electrodes in many cases and a noticeable increase of the pressure at 

the borders of the electrodes. The pressure profiles for the sensors with profilometries like that in Figure 

9b are obviously much more complex. 

To illustrate the influence of roughness at the contact interface, Figure 11 shows a COMSOL 

simulation of a contact between a flat and a rough interface. The relationship between the force at the 

contact interface and the displacement of the cover is linear in the case of the flat electrode, while it is 

not for the rough interface. This can be modelled by a non-linear elastic constant, as explained in the 

following paragraphs. 

The conductance at the contact interface can also be written as [33]: 

int* *

2
xC K

E
 


 (16)  

where 
*  and *E  are combined resistivity and elastic modulus of the materials in contact and 

int /xK dF d  being xF  the normal force on the contact and   the displacement caused by it. This 

interfacial stiffness intK  can be considered in series with the other elastic constants in the model on 

Figure 5 [27]. In the thermodynamic limit [27] there is self-similarity and the statistical distribution of 

the microcontacts sizes and local pressures remains constant as the load increases, then intK  is linear 

with Fx and Equation (3) is valid [26,27]. 

This is not fulfilled for small loads, when only a few microcontacts are established, nor when there 

are borders that cause indentation. Long wavelength features at the surface profile determine the 
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behaviour in this regime, quantitatively through their amplitude and also qualitatively through their 

texture [38,39]. intK  scales sublinearly with P and a large difference in response is expected between 

samples. As the load increases, the contact area ‘allowed’ by long wavelength features reaches a 

maximum and the interfacial stiffness and the conductance scales again linearly with the pressure on the 

contact. Nevertheless, this only happens if this long wavelength is smaller when compared to the contact 

size [26]. If this is not fulfilled, the relationship is not linear and again the mismatching between samples 

is large. Therefore Equation (3) should be written as: 

m

x x xC k P   (17)  

where m = 1 in the thermodynamic limit. For small or medium loads, there is a sublinear dependence, 

m < 1. Actually, m depends on the fractal dimension D (or on the Hurst exponent) of the surface  

profile [27,40]. For a finite squarish indenter [40] gives the value 0.2567m D   that ranges from 0.51 

to 0.77 for a fractal dimension from 2 to 3. 

 

Figure 11. Geometries for the FEA simulation of (a) a flat contact and (b) a rough contact. 

Relationship between the force at the contact interface and the displacement of the cover 

obtained for (c) a flat contact and (d) a rough contact. 
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4.5. Extended Model 

From the analysis in the previous section it is clear that long wavelength features of the surface profile 

have a direct impact on the sensor response, specifically in its sensitivity and linearity. Detailed 

simulation of the complete sensor in Figure 9 that includes fine roughness, is too complex and does not 

reach a solution. An alternative to explain the sensor response, regarding the above mentioned 

limitations, is the use of a Winkler foundation model. This simple model splits the elastic layer into 

beams with an associated elastic constant. It has been used in [41] to model the cover of the sensor in 

the fingers of a robotic hand. The model can be extended to multiple layers [42]. A model of the taxel 

with profilometries like that in Figure 9b can be made in this way by a set of independent beams, each 

one composed of different layers, as Figure 12 depicts. To model long wavelength roughness features, 

the beams of the model are placed at different heights, so the contact is first established with the beams 

at a highest height and the others will make contact gradually as the load increases. Note that this 

approach resembles the classical theories in the sense that contacts at beams intend to model highly 

clustered micro-contacts that act as a single contact equal to the envelope size [25], the position of the 

clusters being determined by the large-scale waviness of the surface, and the micro-contacts by the  

small-scale surface roughness [25,33,43]. Moreover, [34] predicts a linear relationship between the 

electrical conductance and the normal force regardless of the assumed shape of the asperities at the 

contact interface. However, these models lack the inclusion of interaction effects between asperities [44]. 

These effects are contemplated in [45] by introducing not only a local but a global displacement of the 

asperities in contact. Our approach resembles this model in the sense that the force exerted by one beam 

depends on the force exerted by the others as: 
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Note that iF  depends on  , and   is determined by all the beams in contact, i.e. iF  has to be 

calculated iteratively. If the area of all beams is the same: 

( ) (out) ( )

1 1 1

              
  

    
N M O

inn i inn out i ins i ins

i i i

F F F F F F  (21)  

where N , M  and O  are the number of beams to model the inner electrode, outer electrode and the 

insulator respectively. The normal force on the taxel is now: 

inn out insF F F F     (22)  

so Equation (7) does not fulfil because part of the force is borne by the insulator. 
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Moreover, taking into account the more general expression in Equation (21), Equation (6) can be 

rewritten as (note that the contact is always between PEDOT and silver, both in the inner and in the outer 

electrode): 

( ) (out)

( ) (out)

N M
m m

i inn i

i i
out gain biasN M

m m

i inn i

i i

F F

V R V

F F





   



 

 
 (23)  

This extended model, though still simple, contemplates different sizes of the electrodes, different 

forces on the electrodes and different heights of the electrodes. The latter is implicit in the model and 

introduces the possibility that there is a threshold due to the absence of contact with one of the electrodes. 

The progressive settling of contacts with the beams in Figure 12 also introduces the effect of texture and 

the dependence of the balance of force between the electrodes on the total force on the taxel F. Finally, 

the parameter m contemplates the nonlinearity when the thermodynamic limit is not reached, for instance 

for low loads. Taking into account that the contact is always settled between the conductive polymer 

PEDOT and the silver electrodes, we assume the same fractal dimension for the contact at a beam 

regardless of the insulator or the cover that are used. For the sake of simplicity we do not introduce the 

dependence of m on the load ([27] provides a complex theoretical expression for the limit between the 

sublinear and linear regimes but we do not have all the data to contemplate it in the model). In summary, 

the model overcomes many limitations of the simpler previous one described in Sections 4.1 and 4.2. 

 

Figure 12. Winkler model of the taxel. 
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5. Experimental Results and Discussion 

Two sets of experiments were carried out to explore the performance of different realizations of the 

sensor. A first set was devoted to see the influence of the insulator. Five sensors with different insulators 

were fabricated as explained in Section 2. The set-up in Figure 3 was used to exert a normal force on the 

taxel. A square 15.24 mm side and 4 mm thick metal piece was placed between the force sensor probe 

and the taxel under test.  

Figure 13 shows the average of the output of the taxels for five tactile sensors with different insulators. 

The comparison of these curves clearly shows that Young’s Modulus does not determine the sensitivity 

of the sensor. Moreover, this sensitivity also depends on the pressure on the tactile sensor because the 

curves are not linear. The explanation is that the roughness at the contact interface between the electrodes 

and the condutive polymer has a large influence for this size of the taxel, because it is high in comparison 

to the size of the taxel, so a large mismatching between taxels is expected (see Section 4.4). To illustrate 

it, Figure 14 shows the output of the four central taxels of the sensor with redEL insulator, note that there 

is a large difference between the curves. 

 

Figure 13. Average of the output of the taxels for sensors with different insulator layer. 

 

Figure 14. Output of central taxels for the sensor with redEL insulator.  
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A second set of tests was carried out with two insulators, the transpUV one (E = 3.3 GPa) and the 

redEL one (E = 0.1 GPa) with high and low Young’s Modulus respectively. The profilometries of a 

sample taxel of the sensors with both insulators are shown in Figure 15. This time the output was also 

registered for four different covers (see Table 1). Moreover, the metal piece placed between the cover 

and the force sensor was 7.62 mm side and 4 mm thick, and the outputs of all the taxels were registered. 

Figure 16 shows the outputs of the taxels of the 4 × 4 tactile sensor with the redEL insulator while  

Figure 17 depicts the output of the taxels of sensors with the transpUV insulator (the output of a few 

taxels that did not work properly has been removed). 

 

Figure 15. Profilometry of a taxel with (a) redEL insulator and (b) transpUV insulator. 

The discussion and models in Section 4 can be used to understand the response of the sensors in 

Figures 16 and 17. We can use the profilometry of a taxel from the sensor with redEL insulator in  

Figure 15a to build a model as stated in Section 4.5. We observe from this profilometry that there is a 

quite clear u-shape envelope in the inner electrode. We also can see that there are deep valleys where 

the contact of this electrode with the sensitive layer is unlikely. To model the latter feature, we set the 

condition that a twenty percent of the beams never make contact. To model the u-shape envelope a  

v-shape profile is used as envelope of the beams. Moreover, the slope of the two pieces of the v-shape 

of different taxels follows a normal distribution (with the valley point between an interval of  

15 microns). The heights of the beams of the model are then obtained by adding the height of the 

envelope to another term, also dependent of a normal distribution ( 6 3  microns). Finally, a normal 

distribution of the difference between the average heights of the beams of both electrodes was also 

introduced ( 6 5  microns). 

The average of the curves in Figure 16 are shown in Figure 18a with circles of different colours 

associated to the four covers. The dashed lines in this figure are the boundaries of the range of variation 

of the averaged curves. Figure 18b shows the average of the four central taxels to isolate the border 
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effects. Moreover, Figure 18c shows the output of the ideal model in the Section 4.2 and  

Figure 18d shows the average of sixteen curves given by the extended model in the Section 4.5. 

 

Figure 16. Output of taxels for the sensor with redEL insulator layer and different  

cover layers. 

From the comparison of the average curves in Figure 18a and the output of the basic model in Figure 

18c it can be concluded that the basic model is able to predict quite well the dependence of the sensitivity 

on the cover. However, the average of the experimental curves is not as linear as the output from the 

basic model. The extended model provides a response closer to the experimental one in this sense, and 

its output curves are slightly sublinear. Nevertheless, we are comparing average curves from sixteen 

taxels, so actually the comparison is somewhat equivalent to that made for taxels sixteen times larger 

than that in Figure 1, because random features are partially filtered. This can be useful to predict the 

behaviour of a sensor with lower spatial resolution made using the same technology, but Figure 16 shows 

curves that diverge quantitatively and also qualitatively from the average output. The extended model 

with random parameters is able to reproduce such behaviour. Specifically, the mismatching of the curves 

associated to soft covers such as the Pt and the Red is quite low, as observed in Figure 18b, where the 

dashed lines are close to the average curve. On the other hand, the mismatching between the response of 

different taxels of the sensor is quite large for rigid covers (labelled Transp and PC in the figures). This 

is also observed in the output of the extended model, where the dashed lines are far from the averaged 

curves for these covers. Moreover, this variation is not only quantitative, i.e. it is not only a change in 
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the sensitivity of the curve, but the shape of the curves varies quite significantly from one taxel to the 

other. As stated in Section 4.5, the reason is the progressive settling of contacts with the beams in the 

model or the asperities in the real contact interfaces. Figures 19a,b show sixteen sample curves obtained 

from the extended model for low compliance covers (Transp and PC), and they also have quite different 

shapes, some of them even showing a few knee points where the slope changes. 

 

Figure 17. Output of taxels for the sensor with transpUV insulator layer and different  

cover layers. 

Regarding the sensor made with the low compliance insulator transpUV, its profilometry is shown in 

Figure 15b. The profile of the external electrodes is similar to that in the sensors with the redEL insulator 

(Figure 15a), which is logical because they are made on the same substrate in both cases. However, the 

profile of the inner electrode is different. Firstly, there is not a clear envelope as in the sensor with the 

redEL insulator (the u-shape). Secondly, the shape of the profile is somewhat similar to a triangular 

waveform, while it is closer to a square waveform (added to the envelope) in the profilometry of the 

redEL insulator in Figure 15a. Moreover, although the valleys in Figure 15b are not as deep as in  

Figure 15a, they are also present in the profile of the inner electrode in Figure 15b. Finally, it is worth 

noting that the insulator has a remarkable uneven profile in the gap between both electrodes in  

Figure 15b, with peaks higher than those of the internal electrode. 



Sensors 2015, 15 25454 

 

 

 

Figure 18. Output for a sensor with redEL insulator: (a) average of the output of all taxels, 

(b) average of the output of the four central taxels, (c) output of the basic model, and  

(d) output of the extended model. 

 

Figure 19. Set of sixteen output curves from the extended model for a sensor with redEL 

insulator and (a) transp cover and (b) PC cover. 
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Figure 20. Output for a sensor with transpUV insulator: (a) average of the output of all 

taxels, (b) average of the output of the four central taxels, (c) output of the basic model, and 

(d) output of the extended model. 

Figure 20 shows the same information that Figure 18 but for the sensors made with the transpUV 

(low compliance) insulator. The output of the basic model in Figure 20c does not reflect well this time 

the dependence of the sensitivity with the cover in the case of low compliance covers (Transp and PC). 

With respect to the extended model, as a first approach the heights of the beams in Figure 12 were 

generated from a random normal distribution (6·σ = 5 microns), without adding any envelope term. 

However, the output of the obtained model did not resemble the experimental data in Figure 20a. The 

curves provided by the model were more linear and had more sensitivity than the experimental curves. 

The reason for this difference is the limitation of the Winkler model to contemplate the interaction 

between beams. This interaction is clear when both, the insulator and the cover, are made of low 

compliance materials. As said above, the profile of the inner electrode in Figure 15b shows peaks that 

are more shapely than those in the sensor with the red insulator (they are quite flat in Figure 15a). As a 

consequence, taking into account the interaction between beams, the actual contact area is a small 

percentage of the area of the electrode. If this effect is introduced in the model by setting a number of 

beams that never come into contact with the sensitive layer, a knee point appears in the average output 

curve provided by the model. This is illustrated in Figure 21, where different percentages of the total 
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number of beams were removed. It can be seen that the higher this percentage the higher the change of 

the slope or second derivative in the knee point, so the previous interpretation is confirmed. Nevertheless, 

once this condition is set and the beams are removed, the response of the model is similar to the 

experimental data in Figure 20b. Specifically, it predicts a higher sensitivity and low mismatching for 

soft covers (Pt and Red), and lower sensitivity, less linearity and larger mismatching for low compliance 

covers (Transp and PC). It also reflects the existence of a small threshold that can be seen for instance 

in the curves in Figure 17 for low compliance covers, and is due to the lack of contact with one of the 

electrodes. Finally, the mismatching between the curves provided by the model for the transpUV 

insulator is now lower than that observed for the redEL insulator and the same covers in Figure 18b, 

which is also observed in the experimental data. This is also confirmed by Figure 22, that shows the 

result of a similar simulation to that displayed at Figure 19 but for the sensors with transpUV (low 

compliance) insulator. Note that the dispersion or mismatching between curves is lower in Figure 22 

than in Figure 19. 

 

Figure 21. Output from extended model with transpUV insulator where different 

percentages of the total number of beams were removed: (a) 50%, (b) 60%, (c) 70% and  

(d) 80%. 
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Figure 22. Set of sixteen output curves from the extended model for a sensor with transpUV 

insulator and (a) transp cover and (b) PC cover. 

To complete the analysis of the behaviour of the sensors, Figure 23 shows the average of the  

loading-unloading curves of the sensors with different covers, and Table 3 shows data related to the 

hysteresis measured in the average output curve, and also the area below the absolute value of the second 

derivative of the loading curve, the last one used as a figure to understand how linear the curve is. Note 

that the cover has also a significant influence on the hysteresis, the Red being that with less hysteresis. 

Regarding the linearity, the average curves in Figure 23 and the data of the area under the second 

derivative curve in point to a better behaviour of the sensors with the soft redEL insulator. However, 

these are average values and there is a large mismatching between the curves from different taxels for 

low compliance covers, as said above. Generally speaking, the linearity is improved with soft covers in 

the whole input range, while a knee point is observed in the curves from the sensors with low compliance 

insulator and cover. However, the curve is quite linear to the right of this knee point, though the 

sensitivity is lower. 

Table 3. Parameters of the curves. 

Insulator Cover Hysteresis (%) Area 2nd derivative (V/MPa) 

RedEL 

Pt 14.03 36.90 

Red 7.35 45.59 

Tranps 14.87 22.96 

PC 13.58 24.40 

TranspUV 

Pt 15.27 49.66 

Red 7.60 45.88 

Transp 13.58 51.59 

PC 11.68 48.01 
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Figure 23. Average of the loading-unloading curves (blue and red curves respectively) of 

the sensors with different covers and insulator layers. Asterisks represent the standard 

deviation of the curves. 

6. Conclusions 

This paper analyses the response of sensors made with a common approach and a low cost technology. 

The discussions and conclusions can be valid for other sensors that exploit the same principle. A clear 

discrepancy between the experimental data and the basic model that assumes an ideal taxel is observed. 

This ideal model provides a linear output whose slope can be tuned by changing the compliance of the 

insulator between conductive tracks or of the cover atop the sensor. However, the response of the sensor 

diverges from this behaviour except in the case of a soft insulator and for the average of the curves from 

all taxels. Nevertheless, the inspection of these curves from different taxels show a large mismatching 
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for low compliance covers. They differ quantitatively (different sensitivity) and also qualitatively 

(different shape). The mismatching is lower for low compliance insulators and covers, but the curves 

have a noticeable knee, though they are quite linear for increasing input values. 

The explanation of all these main observed features requires a finer modelling, since the 

profilometries show that the real electrodes are different and are at different heights, the insulator has 

peaks at similar or even higher height that the electrodes and there is a remarkable roughness at the 

contact interface. Some results from studies of the physics of contact between rough surfaces are 

incorporated. Specifically, a Winkler model is implemented to contemplate the roughness. The taxel is 

split into many beams composed by slices of the layers that form the taxel. The conductance associated 

to each beam depends on the force it supports. The conductance of the beams of the same electrode is 

aggregated, and the resulting conductance from both electrodes is computed by a parallel operator. The 

result is not linear if the relationship between the conductance of both electrodes depends on the force. 

The profilometry of the model is inspired in the measured one, with a few random parameters. This 

model explains quite well the experimental data from a sensor with soft insulator. However, it does not 

fit the behaviour of the sensor with a low compliance insulator because the Winkler model does not 

contemplate the interaction between beams. After a heuristic and simple change, this interaction is 

introduced and the result confirms that the knee in the curve is mainly explained by an actual contact 

area of the inner electrode much smaller than its total area. In short, the differences of the contact 

interface of both electrodes cause a nonlinear response. This nonlinearity is also explained by the 

progressive making of contact with the beams when the load increases. Moreover, FEA simulations also 

show a clear effect of the indentation at the borders. Covers of soft materials can be used to improve the 

result and have a response closer to the ideal model, though the error due to border effects is larger. A 

sensor with taxel of larger area also performs better, as seen from the average curves of the sensors in 

the paper. A technology that achieves more uniform contact profiles, where the roughness shows a 

wavelength much shorter than the size of the contact, will also perform better. The borders at the 

mechanical contact interface should be minimized, being the ideal contact interface a flat one along the 

whole sensor area with the mentioned fine roughness added. Finally, from the results and discussions of 

the paper, it is envisaged that a taxel with only one active contact interface would provide better results.  
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