

Gait analysis for challenged users based on a rollator equipped with force sensors

Joaquin Ballesteros¹, Cristina Urdiales¹, Antonio B. Martinez² and Marina Tirado³

University of Malaga, Spain {jballesteros,acurdiales}@uma.es

²Department of Automatic Control Polytechnic University of Catalonia, Spain antonio.b.martinez@upc.edu

³UGC Rehabilitación Hospital Regional of Malaga, Spain mtiradoreyes@gmail.com

This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (MEC), Project n.TEC2011-29106 and Hospital Regional Universitario de Malaga.

Authors acknowledge Universidad de Málaga, Campus de. Excelencia Internacional Andalucía Tech for their support.

" INTRODUCTION

Gait analysis

- Neuropathology: Step time (Left vs Right) or step length (Left vs Right)
- Orthopaedic lower limbs: Weight-bearing
- Elderly: Cadence, walking velocity,...

How disability affect to some gait parameters

Gait	Division	Gait Parameters							
Gait	Division	CAD	SdT	SdL	SpT	SpL	WV	WB	
Hoolthy [12]	Men	102(8)	1.18(0.08)	1.39(0.014)	0.59(0.05)	0.69(0.08)	1.17(0.16)	_	
Healthy [12]	Women	113(20)	1.06(0.13)	1.23(0.17)	0.53(0.06)	0.61(0.09)	1.16(0.2)	_	
Antalgic	affected				↓ [18]	↓ [18]		↓ [19]	
	non affected				- [18]	- [18]			
Ataxic	-	↓ [20]	∨ [21]	↓ [21]	↑ ∨ [21]	↓ [21]	↓ [21]		
Hypokinetic		- [22]		↓ [23]		↓ ∨ [21]	↓ [21]		
Vestibular		↑ [24]	↓ [24]				↓ [25]		
Spastic		↓ [26]					↓ [26]		
Paretic	affected	↓ [27]	↑ [27]	↓ [27]	↓ [28]	↓ [27]	↓ [27]	↓ [28]	
	Non affected	Ψ [2 /]	[[27]	Ψ [=,]	- [28]	∜ [2/]	Ψ [=,]	Ψ [20]	
Cautious [29]	-			↓			1		
Dyskinetic	Involuntary movements or postures, these abnormalities can not be measured consistently.								

Specific tools

GAITRite System

MVN BIOMECH Awinda

Optotrak Certus

Force sensors on i-Walker

- 3 force components in handlebar
- Encoders in both wheels
- Tilt sensor and 2 forces sensor for normal force
- 2D laser

Force sensors on a rollator

- Disadvantages:
 - Low accuracy
 - It can not measures gait kinematic, only spatiotemporal gait parameters.
- Advantages:
 - Assistive device for rehabilitation process.
 - Minimal configuration changes.
 - Can be used in everyday conditions and for a long term monitoring.

METHODOLOGY

When users initiates heel contact...

Input sensors for user 8

Peaks in difference between forces

Estimation of gait parameters

Testing our algorithm

- 9 volunteers: 6 women and 3 men
- They had a variety of cognitive and/or physical disabilities
- Users are in average 68 years old (range 45-86 years)
- 10 meter test

Left prosthetic femur fracture. Women (77)

Result

Results validated by medical staff

User	Leg	CAD	SdT	SdL	SpT	SpL	WV	UrS
1]	Left	73.9336	1.5813(0.4308)	0.7649(0.2002)	0.8458(0.2896)	0.4302(0.1412)	0.4829	56.5301(7.0931)
1	Right 73.	73.9330			0.7308(0.3655)	0.3296(0.171)	0.4629	55.4994(7.8742)
2 Left Right	22 (247	2 (10(0.5206)	0.6472(0.1260)	1.8733(0.3698)	0.3183(0.1328)	0.1001	141.7732(50.2771)	
	Right	33.6347	3.619(0.5296)	0.6473(0.1369)	1.74(0.3781)	0.329(0.0522)	0.1801	138.5881(58.2236)
3 Left	55 5556	2.187(0.1967)	0.7089(0.0618)	1.125(0.0541)	0.3339(0.0541)	0.3248	107.3875(32.7621)	
3	3 Right	55.5556	2.187(0.1907)	0.7089(0.0018)	1.0708(0.184)	0.3806(0.0546)	0.3246	112.432(28.6415)
4	Left	51.1013	2.3741(0.2923)	0.6933(0.0459)	1.0821(0.2366)	0.3208(0.0465)	0.2899	184.1019(39.8449)
	Right				1.3036(0.2341)	0.3731(0.0482)		193.2380(32.2076)
5	5 Left	142.5532	0.9409(0.0056)	0.2020(0.0252)	0.4076(0.0911)	0.1029(0.0222)	0.2423	129.4412(10.126)
3 Right	142.3332	0.8408(0.0956)	0.2039(0.0253)	0.4348(0.0701)	0.102(0.0221)	0.2423	124.7827(10.1273)	
6	Left	34 1969	3.4935(0.6364)	0.6256(0.1848)	1.6813(0.4557)	0.376(0.1817)	0.1782	181.2906(56.7767)
0	6 Right				1.8156(0.4456)	0.2465(0.043)		122.3216(44.4457)
/	Left	81.95	1.5058(0.1728)	0.72(0.0791)	0.6357(0.1486)	0.3150(0.0721)	0.4788	73.0059(11.5508)
	Right				0.8654(0.1819)	0.4018(0.0786)	0.4700	70.9994(12.8941)
o	8 Left Right	82.3713	1.4262(0.192)	0.2242(0.0468)	0.7143(0.1898)	0.1124(0.0331)	0.1544	217.7974(50.0625)
8					0.7091(0.1931)	0.1103(0.0356)	0.1344	228.4787(70.0204)
9	Left Right 72.7273	70 7072	1.6192(0.2324)	0.5846(0.0931)	0.7932(0.2231)	0.2845(0.0853)	0.2626	59.062(7.8287)
		12.1213			0.8214(0.1578)	0.3005(0.0676)	0.3626	57.6729(8.3495)
-		1	1	1	1			

CONCLUSION AND FUTURE WORK

Conclusions

- It has been validated with a number of volunteers presenting a variety of disabilities.
- The gait parameters evolve according to reported clinical studies and is coherent with the reported users' diagnosis
- Unlike more complex methods, it does not provide enough information for detailed gait analysis (e.g. kinematic analysis of joint rotations).
- It requires the user to lean on both handlebars

Future work

- Normalization of the obtained data
- To increase the number of volunteers (currently we have 25)
- To reduce the margin of error in heel contact detection

The end

Thank you for your attention