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Abstract. The paper addresses terrain modeling for mobile robots with
fuzzy elevation maps by improving computational speed and perfor-
mance over previous work on fuzzy terrain identification from a three-
dimensional (3D) scan. To this end, spherical sub-sampling of the raw
scan is proposed to select training data that does not filter out salient
obstacles. Besides, rule structure is systematically defined by considering
triangular sets with an unevenly distributed standard fuzzy partition and
zero order Sugeno-type consequents. This structure, which favors a faster
training time and reduces the number of rule parameters, also serves to
compute a fuzzy reliability mask for the continuous fuzzy surface. The
paper offers a case study using a Hokuyo-based 3D rangefinder to model
terrain with and without outstanding obstacles. Performance regarding
error and model size are compared favorably with respect to a solution
that uses quadric-based surface simplification (QSlim).

Keywords: Elevation maps, mobile robots, 3D scanners, fuzzy model-
ing

1 Introduction

Environment mapping is a key issue in mobile robots targeted to unstructured
terrains [1, 2]. In this sense, three-dimensional (3D) laser scans provide valuable
information for applications such as planetary exploration [3–5] or urban search
and rescue [6, 7]. However, as point clouds require coping with a huge amount
of spatial data, a simplified and compact representation of navigable terrain is
necessary for both motion planning [8] and tele-operation [9].

Elevation maps offer a compact 2.5-dimensional model of terrain surface. In
robotics, elevation has been generally represented by regular grids [10–12] or
by irregular triangular meshes [4, 13]. Removal of artifacts and mesh simplifica-
tion algorithms, like mesh decimation [14] and quadric-based polygonal surface
simplification (QSlim) vertex clustering [15], can improve the compactness and
reliability of these maps [8]. Nevertheless, as tesselated models have limitations
in the face of incomplete and uncertain sensor data, some works have proposed
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using tools that can model elevation in a more robust and natural way. In ge-
ographic information systems (GIS), fuzzy logic has been applied to elevation
maps for incorporating height uncertainty [16] and assessing visibility between
pairs of points [17]. In mobile robotics, elevation grids have been processed with
fuzzy rules to assess traversability [18, 19]. Gaussian processes have also been pro-
posed to model terrain from uncertain and incomplete sensor data [20]. Adaptive
Network-based Fuzzy Inference Systems (ANFIS) [21] has been employed to rec-
ognize objects like trees and buildings from aerial stereo images [22]. Moreover,
ANFIS was preliminarily proposed to obtain fuzzy elevation maps of natural ter-
rain from ground-based 3D data [23]. These elevation maps have been already
employed for assessing traversability and local path planning [24].

The main contribution of this paper is extending [23] to improve computa-
tional speed and performance. To this end, two major modifications have been
introduced: i) spherical sub-sampling [25] is used to select proper training data
from a raw point cloud, and ii) rule parameters have been systematically de-
fined by considering triangular sets with standard fuzzy partition [26] as well as
zero order Sugeno-type inference. Furthermore, the capability to model a salient
obstacle on the terrain surface has been considered in a case study using a 3D
Hokuyo-based range-finder. Besides, performance regarding error and computa-
tion time are compared with a solution based on the QSlim algorithm.

Following this introduction, section II presents the fuzzy terrain modeling
method. Then, section III describes the experiments including comparisons with
QSlim. Finally, Section IV offers conclusions and future work.

2 Fuzzy terrain modeling method

The proposed fuzzy terrain modeling method is outlined in Fig. 1. The input is a
range image from a single 3D scan. It is assumed that the local frame of the 3D
rangefinder has its Y and Z axes pointing forwards and upwards, respectively
(see Fig. 2). The goal of the method is producing a local elevation map in which
ground surface can be represented as a function z = H(x, y), where x and y are
the Cartesian coordinates on the XY plane and z is the corresponding elevation.
The following subsections develop the major parts of this algorithm.
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Fig. 1. Fuzzy point cloud terrain modeling algorithm.
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2.1 Point sub-sampling

The purpose of point sub-sampling is to produce a reduced set of representative
training points in Cartesian coordinates (x, y, z). The reason for sub-sampling
is twofold: improving the speed of fuzzy identification and homogenizing the
spatial distribution of training data. In [23], sub-sampling was performed by
selecting the highest point within grid cells of a sufficiently high resolution. This
approach provides a representative set of points for a smooth terrain but is not
so effective to model salient obstacles, such as tree trunks or rocks, which can be
filtered by the fuzzy identification method when represented by a small number
of samples. Furthermore, finding the maximum value within each cell entails the
computational load of processing all scan points in Cartesian coordinates.

Alternatively, spherical sub-sampling [25] performs a fast range-independent
data reduction for 3D rangefinders that combine a 2D scan with an additional
rotation, as usually found in mobile robots [27]. Moreover, by equalizing the
measure-direction density, spherical sub-sampling maintains a proportion of mea-
surements accumulated by salient obstacles, so their contribution can be relevant
when adjusting a fuzzy surface. Thus, Cartesian coordinates are only computed
for sub-sampled points.

The field of view of the 3D sensor is defined by the scope of both scan
angles: Φ for the 2D scan and Ψ for the additional rotation, as shown in Fig.
2(left). Then, angular resolution is given by Δφ and Δψ for the first and second
rotations, respectively. The amount of data reduction of spherical sub-sampling is
established by an equalization factor 0 < p ≤ 1. The equalized angular resolution
of the sub-sampled scan (see Fig. 2(right)) is given by Δθs as:

Δθs =
max(Δψ,Δφ)

p
. (1)

In this way, by setting p = 1, the measure-direction density is equalized with the
coarsest resolution (either Δφ or Δψ) actually provided by the sensor.
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Fig. 2. Measure-direction density. Left: raw scan; right: spherical point sub-sampling.
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2.2 Neuro-Fuzzy Training

The set of sub-sampled Cartesian points is used to adjust a fuzzy model z =
H(x, y). Particularly, neuro-fuzzy ANFIS modeling [21] is adopted to identify
a fuzzy model with Sugeno inference. ANFIS yields the rule consequents for a
given fuzzy structure where membership functions (MFs) have to be specified
for each input variable.

The definition of MFs has an impact on the model size; i.e., on the number
of parameters. One interesting property of the standard fuzzy partition (SPF) is
that triangular or trapezoidal MFs share parameter values with neighbor MFs
[26]. In an SPF, the ith MF Fi defined for a given variable u in the universe U
is convex, normal, and it only overlaps with its neighboring fuzzy sets, in such
a way that:

∀u ∈ U,
∑
∀i

Fi(u) = 1. (2)

When defining the fuzzy structure, a greater number of MFs improves terrain
adjustment at the cost of processing a greater number of rules. This conflict can
be coped with by considering that higher detail is more important for the regions
that are closest to the robot. Thus, an uneven membership function distribution
can provide an appropriate fuzzy structure if the density of MFs for variables x
and y is specified depending on the distance to the sensor [23].

Let us define the universe Ux = [−umax, umax] for variable x, and Uy =
[0, umax] for y, which corresponds to a 2umax × umax rectangular area in the
forward direction of the sensor. Then, uneven SPF MFs can be defined by com-
puting the peak parameter fi of each triangular MF Fi (i.e., Fi(fi) = 1) as:

fi = sign(i)

(
r|i| − 1

rk − 1

)
umax (3)

where r > 1 is the expansion ratio and i = −k, ..., 0, 1, ..., k for the x variable
and i = 0, 1, ..., k for y. This definition yields (2k + 1) MFs for x and (k + 1)
MFs for y. This means (2k + 1)× (k + 1) rules.

Furthermore, the order of Sugeno inference affects training time as well as the
number of rule parameters. In [23], first-order consequents Gi were considered
for every rule i as:

Gi(x, y) = ai + bi x+ ci y, (4)

where three parameters (ai, bi, ci) per rule had to be identified. Alternatively,
using zero-order Sugeno consequents:

Gi(x, y) = ai (5)

requires just one parameter per rule, as bi = ci = 0. First order Sugeno can
be useful for ome applications, like interpolating between piecewise linear con-
trollers, but zero-order consequents can provide good accuracy when approxi-
mating nonlinear functions [28]. Furthermore, the output of a zero-order Sugeno
model is smooth as long as neighboring MFs in the antecedents are overlapped,
as in SPF [29]. Therefore, zero-order Sugeno consequents are proposed as an
effective solution for this application.
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2.3 Fuzzy Reliability Mask

ANFIS renders a fuzzy surface that can be evaluated for any (x, y) pair in the
universe of discourse. This surface filters sensor noise and interpolates missing
data from small shadowed areas but can provide erroneous estimations in larger
regions with no input data. Since shadowed regions are frequent in ground-
based scans of natural terrain proper use of the elevation map requires reliability
assessment, which is a fuzzy concept in itself.

A fuzzy reliability mask is proposed as a continuous function v = V (x, y),
where v ∈ [0, 1] for inputs x ∈ Ux and y ∈ Uy. This function can be trained
with ANFIS with the same fuzzy structure as in the elevation map. For this
purpose, an occupancy binary matrix is computed from the sub-sampled points.
This matrix represents an XY grid with a uniform resolution δ, where ones
and zeroes are assigned to cells with or without points, respectively. Then, the
training data consists of the set of all matrix values with the corresponding cell
center XY coordinates. In the resulting fuzzy model, values of v = V (x, y) close
to one indicate high reliability of H(x, y), whereas values close to zero mean
unreliable regions.

3 Experimental results

3.1 Experimental Setup

This section discusses the application of fuzzy elevation modeling using 3D range
images from a natural terrain —see Fig. 3(left). Four different scans obtained
from the same sensor pose are considered: without obstacles, and with a person
standing at three different positions with respect to the sensor frame: close-front,
at a distance of 2.94m with approximate XY coordinates (0.05m, 2.94m); close-
side, at 3.94m with (3.49m, 1.83m); and far, at 7.26m with (−0.14m, 7.26m).
Computations have been performed by a QuadCore Intel Core i7 at 2.2GHz
under the Matlab environment, whose Fuzzy Toolbox includes ANFIS.

Range images have been obtained with a 3D laser scanner built by pitching a
Hokuyo UTM-30LX 2D rangefinder [30] —see Fig. 3(right). This device has the
following specifications: 270◦ × 135◦ field of view; measurable ranges between

Fig. 3. Experimental setup. Left: outdoor scene; right: 3D laser rangefinder.
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0.1m and 30m; horizontal resolution Δφ = 0.25◦; and vertical resolution Δψ
is adjustable from 0.067◦ to 4.24◦. The scan times at minimum and maximum
resolution are 1.54 s and 95.75 s, respectively. In particular, 3D scans have been
obtained with Δψ = 0.278◦, which is similar to Δφ, with the sensor stand-
ing 1.0m above the ground. This configuration produces range images with a
maximum of 505036 points in 12.43 s.

3.2 Fuzzy Performance Evaluation

Performance of the proposed method has been studied for different rule numbers
and sub-sampling rates. Two different fuzzy rule structures are considered by
using (3) with r = 1.3 and a universe of discourse umax = 10m: First, k = 7
yields 15× 8 rules, and second, k = 3 results in 7× 4 rules. As for training data,
several p values are compared for spherical sub-sampling. Besides, Cartesian
points whose coordinates fall out of the 20m× 10m rectangular area have been
discarded. Fig. 4 illustrates training data for the close-front obstacle case with
no sub-sampling and with p = 0.5.

The root mean squared error (RMSE) given in Table 1 has been computed
from the difference between the Z value of all raw scan points within the uni-
verse of discourse and the corresponding fuzzy model elevation. As expected, the
RMSE for the 15× 8 rulebase is better than the 7× 4 model. Besides, fuzzy sur-
faces improve RMSE for smooth terrain, i.e., with no close salient obstacles. On

Table 1. Effect of spherical sub-sampling on ANFIS performance.

Obs-
p

Training No. RMSE Time Obs-
p

Training No. RMSE Time
tacle points of rules (m2) (s) tacle points of rules (m2) (s)

None

- 186767
15× 8 0.0237 176.00

Far

- 185673
15× 8 0.0369 174.00

7× 4 0.0413 116.00 7× 4 0.0558 117.00

1 115423
15× 8 0.0237 83.63

1 114768
15× 8 0.0369 80.84

7× 4 0.0420 50.63 7× 4 0.0563 47.84

0.75 65019
15× 8 0.0238 43.33

0.75 64666
15× 8 0.0369 41.32

7× 4 0.0421 21.33 7× 4 0.0564 20.32

0.5 28916
15× 8 0.0238 22.07

0.5 28770
15× 8 0.0370 21.12

7× 4 0.0421 9.07 7× 4 0.0564 9.12

0.1 1180
15× 8 0.2568 11.90

0.1 1168
15× 8 0.4484 10.96

7× 4 0.0451 5.90 7× 4 0.0642 5.96

Close

- 187600
15× 8 0.0951 177.00

Close

- 189688
15× 8 0.0871 174.00

-side

7× 4 0.1283 115.00

-front

7× 4 0.1259 119.00

1 115525
15× 8 0.0955 80.87

1 117941
15× 8 0.0879 87.65

7× 4 0.1295 48.87 7× 4 0.1262 50.65

0.75 65122
15× 8 0.0955 40.33

0.75 66465
15× 8 0.0872 44.26

7× 4 0.1295 20.33 7× 4 0.1262 21.26

0.5 28939
15× 8 0.0956 21.07

0.5 29554
15× 8 0.0872 23.05

7× 4 0.1295 9.07 7× 4 0.1262 10.05

0.1 1174
15× 8 0.1580 10.89

0.1 1206
15× 8 0.1568 11.19

7× 4 0.1305 4.89 7× 4 0.1495 5.19
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Fig. 4. Training points of the close-front obstacle scene. Top: raw scan points; Bottom:
spherical sub-sampling with p = 0.5.

the other hand, the sub-sampling rate has an important effect on computation
time, but it does not generally produce important RMSE differences within the
same rule structure and scene. This indicates that spherical sub-sampling gives
a representative subset of the complete scan. The only exception to these results
is with 15× 8 rules and sub-sampling factor 0.1, where the 120-rule fuzzy model
is overadjusted to a small data sample (around 1200 points, which is only about
0.6% of the raw data set).

From this analysis, if fast rough terrain model is needed, the 7×4 rule model
with 0.1 sub-sampling could offer an appropriate solution. For a compromise
between acceptable model accuracy and computation time, good results are given
by the 15× 8 rule model with 0.5 sub-sampling (see Fig. 5).

3.3 Comparison with QSlim

The proposed method has been compared with a QSlim-based solution. QSlim
[15] performs mesh surface simplification by iterative contraction of vertex pairs
using plane-based error quadrics. QSlim has been employed for terrain simplifi-
cation of topographical maps [31, 32]. However, QSlim cannot be directly applied
to the Delaunay mesh corresponding to raw ground-based scans because of arti-
facts due to shadows and salient objects [8]. Therefore, preprocessing is necessary
to produce a proper surface to start with. In this paper, a proper Delaunay mesh
is built from the XY coordinates of the maximum height points within grid cells
of resolution δ = 0.1m. The resulting mesh has been fed to the QSlim algorithm
to produce models with both 100 and 1000 faces, as illustrated by Fig. 6.
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Table 2 compares results obtained with the proposed method, the solution
proposed in [23], and the QSlim approach. QSlim is an efficient method, so most
of the computation time corresponds to preprocessing. As this preprocessing is
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Fig. 5. Fuzzy elevation maps of the close-front obstacle scene. Top: p = 0.1 and 7× 4
rules; bottom: p = 0.5 and 15× 8 rules.
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Fig. 6. QSlim maps of the close-front obstacle. Top: 100 faces; bottom: 1000 faces.



Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan 9

Table 2. Comparison between ANFIS and QSlim-Based Approaches.

Scene
Modeling

Characteristics
RMSE Time Number of

method (m2) (s) parameters

No obstacle
ANFIS

15× 8, p = 0.5 0.0238 22.07 143
7× 4, p = 0.1 0.0451 5.90 39
15× 8 ([23]) 0.0468 31.01 406

QSlim
1000 faces 0.0250 29.17 4590
100 faces 0.0357 29.17 483

Far obstacle
ANFIS

15× 8, p = 0.5 0.0370 21.12 143
7× 4, p = 0.1 0.0642 5.96 39
15× 8 [23] 0.0660 31.20 406

QSlim
1000 faces 0.0383 32.21 4572
100 faces 0.0783 32.03 471

Close-side obstacle
ANFIS

15× 8, p = 0.5 0.0956 21.07 143
7× 4, p = 0.1 0.1305 4.89 39
15× 8 [23] 0.1256 32.14 406

QSlim
1000 faces 0.1349 29.14 4578
100 faces 0.1959 29.14 477

Close-front obstacle
ANFIS

15× 8, p = 0.5 0.0872 23.05 143
7× 4, p = 0.1 0.1495 5.19 39
15× 8 [23] 0.1303 33.07 406

QSlim
1000 faces 0.1212 33.18 4569
100 faces 0.2038 33.16 477

very similar to sub-sampling in [23], both methods achieve similar computa-
tion times. Spherical sub-sampling improves these times, which is particularly
noticeable for 7 × 4 rules and p = 0.1. Regarding accuracy, the best results
are obtained by the new method with 15× 8 rules and p = 0.5, where RMSE is
greatly improved with respect to [23] for the same number of rules. The accuracy
of QSlim with 1000 faces is comparable to the best ANFIS performance with no
close obstacles. However, the proposed method prevails when the model includes
close obstacles. Table 2 also offers model size as the number of parameters. The
proposed model requires one consequent parameter per rule. Triangular MFs
are defined by three parameters, but as neighbor MFs share parameters in an
SPF, only one parameter per MF is actually needed. These are improvements
over [23], which required three consequent parameters and plus two values per
Gaussian MF. As for QSlim, it consists of a list of vertices and a list of faces.
Vertices are defined by three Cartesian coordinates and faces are specified as
three vertex indices. The number of parameters of the proposed model improves
[23] and clearly outperforms QSlim.

3.4 Application of the Reliability Mask

ANFIS training of fuzzy elevation from data-less regions may not be reliable
and can even create artifacts, like those around (10m, 10m) in Fig. 5(top) or
behind the person like in Fig. 5(bottom). Fig. 7 shows the fuzzy reliability mask
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Fig. 7. Top: fuzzy reliability mask of the close-front obstacle scene with p = 0.5.
Bottom: Application of the mask to the elevation map with 15× 8 rules for v ≥ 0.1.

computed for the close-front obstacle scene with p = 0.5 and δ = 0.1m as well
as its to the ANFIS model of 15× 8 rules with v ≥ 0.1. The result is a reliable
fuzzy elevation map without modelling artifacts.

4 Conclusions

This paper has addressed terrain modeling with fuzzy elevation maps from a
ground-based 3D laser scan. Fuzzy surfaces provide a non-discrete representation
of terrain elevation that greatly reduces the number of parameters with respect
to raw point clouds. In particular, substantial performance improvements over
[23] have been contributed. Proposed enhancements are spherical sub-sampling
for training data selection, triangular membership functions with standard fuzzy
partition, and zero order Sugeno-type inference. Furthermore, the problem of
fuzzy surface artifacts in shadowed regions has been addressed by computing a
fuzzy reliability mask from the same set of sub-sampled data.

Scans from a Hokuyo-based 3D rangefinder have been used to model natural
terrain with and without salient obstacles. The proposed method outperforms
QSlim and the previous ANFIS model in the adjustment to the original scan
data, as indicated by the root mean squared error, especially with close obstacles.
Besides, the new solution reduces significantly the number of model parameters.
Future work will explore fuzzy identification with no predefined structure.
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Cerezo, “Navigability analysis of natural terrains with fuzzy elevation maps from
ground-based 3D range scans,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 1576–1581.

25. A. Mandow, J. L. Martnez, A. J. Reina, and J. Morales, “Fast range-independent
spherical subsampling of 3D laser scanner points and data reduction performance
evaluation for scene registration,” Pattern Recognition Letters, vol. 31, no. 11, pp.
1239 – 1250, 2010.

26. Z.-H. Xiu and G. Ren, “Stability analysis and systematic design of Takagi-Sugeno
fuzzy control systems,” Fuzzy Sets and Systems, vol. 151, no. 1, pp. 119 – 138,
2005.

27. J. Morales, J. L. Mart́ınez, A. Mandow, A. J. Reina, A. Pequeño Boter, and
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