An equivalence result for (Logit) QRE and Level-k

Antonio J Morales (UMA)

David Cooper (FSU), Enrique Fatas (UEA),

April 15th, 2016

IMEBESS (Rome)

Introduction

- This paper is part of a long running research programme on boundedly rational models, joint with Enrique and David.
 - It all started with a "numerical coincidence" for the Minimum Effort Game (EconLett, 2013)
 - It has continued with "this paper"
 - It all will end with an paper on an "intuitive contradiction"

The numerical coincidence

 Fatas and Morales (EconLett, 2013) for the Minimum Effort Game, Goeree and Holt (2005)

$$\pi_i(x_i, x_j) = \min\{x_i, x_j\} - cx_i$$

Table 1 Minimum-effort games.

Effort in last 3 periods	Minimum-effort games predicted and actual average efforts								
	n = 2		n = 3						
	c = 0.25	c = 0.75	c = 0.1	c = 0.5					
Actual	159	126	170	127					
Logit	153	127	154	129					

For the logit predictions, estimation of a noise parameter is required. The objective is to match actual behaviour

The numerical coincidence

 Fatas and Morales (EconLett, 2013) for the Minimum Effort Game, Goeree and Holt (2005)

$$\pi_i(x_i, x_j) = \min\{x_i, x_j\} - cx_i$$

Table 1 Minimum-effort games.

Effort in last 3 periods	Minimum-e average effo	effort games pi orts	edicted and a	ictual				
	n = 2		n = 3	n = 3				
	c = 0.25	c = 0.75	c = 0.1	c = 0.5				
Actual	159	126	170	127				
Step thinking	155	125	151	128				
Logit	153	127	154	129				

For Step Thinking, no estimation is needed. level 1 play = Level 2 = Level 3 ...

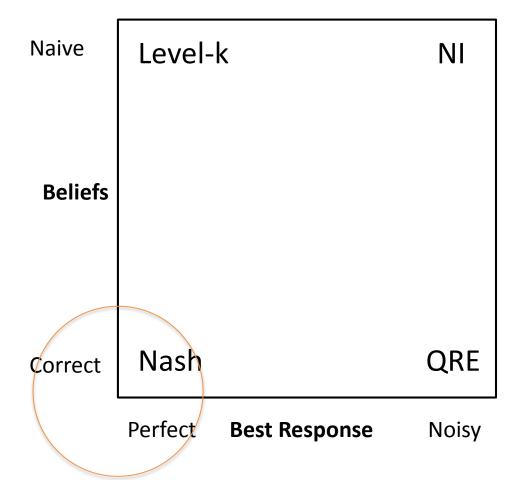
The numerical coincidence

- Out of these results, there were two research questions
- 1. Why is the Logit best estimation so close to level k?
- 2. Why is actual behaviour so close to predictions?

This paper is about Research Question #1

Was it just a coincidence??

Nash Play = Perfect best response + Correct beliefs



Step-Thinking

- A "simplification" of NE
- Models based on best responses without mutual consistent beliefs
 - Level-k (Nagel, 1995 and Stahl and Wilson, 1994, 1995)
 - Cognitive Hierarchy (Camerer et al, 2004)
- Types of players:
 - L0 players: Typically choose randomly
 - L1 type best responds to L0
 - Lk types best respond to lower types

16

Quantal Response Equilibrium

- A "generalization" of NE
- Choices are positively but imperfectly (errors) related to expected payoffs...
 - QRE (McKelvey and Palfrey, 1995)
 - Logit version (Anderson, Goeree and Holt, 2002)
- Fixed point (equilibrium approach)

$$f_i(x) = \frac{\exp(\pi_i^e(x)/\mu)}{\int_0^\omega \exp(\pi_i^e(s)/\mu) \, \mathrm{d}s}$$

• μ is a noise parameter

The conventional wisdom

- Their different nature...
 - QRE is an equilibrium model that requires "learning" ->
 Long run
 - Level-k simplifies others' decisions-> initial stage
- ... suggests a differential time horizon
- Experimental literature focuses on their differences:
 - Logit QRE: Holt et al...(Goeree and Holt, AER 2001)
 - Level-k: Crawford et al (JEL 2014)

The conventional wisdom

- There is also a "fight" as to which model better captures human behaviour within the same time horizon (usually in the initial round)
 - Crawford et al (2009) on VHBB coordination games
 - Arad and Rubinstein's experiment on "11-20 Game" (2013)
 and Goeree et al's reaction (2013)

 In this paper, we explore the connections between level k and logit quantal response

This paper

- We explore the <u>connections</u> between Level-k and Logit QRE
 - Schmutzler (GEB 2011): A unified approach to <u>comparative statics</u> puzzles in experiments (over a wide class of games)
- We focus on <u>point predictions</u>
- The key insight was to realise that the minimum game belongs to a particular class of games
 - Games with the local payoff property (Anderson et al, 2002)

Local Payoff Property

- Consider (2-player) games with actions in the interval $[\underline{x}, \overline{x}]$ with **rank-based payoffs**, e.g. the payoff to a player depends on whether his action is the higher or lower action (Anderson et al, 2002)
 - Examples are price competition, minimum coordination game, traveller's dilemma, auctions ...

Local Payoff Property

• Suppose the expected payoff to player i when he expects player j to play according to "mixed strategy" f_j can be written as follows where the $\alpha()$ and $\beta()$ are additively separable and continuous

$$\pi_{i}^{e}(x) = \int_{\underline{x}}^{x} [\alpha_{H}(x) + \beta_{H}(y)] f_{j}(y) dy + \int_{\underline{x}}^{x} [\alpha_{L}(x) + \beta_{L}(y)] f_{j}(y) dy$$
i's action is the higher
i's action is the lower

- Such a game has the local payoff property
 - The expected payoff derivative $\pi_i^{e'}(x)$ only depends on the player's own decision, on the distribution function F(x), on the density function f(x) evaluated at x and on a "shift" parameter c_i .
 - Example: Minimum effort game

$$\pi_i(x_i, x_j) = \min\{x_i, x_j\} - c_i x_i$$

$$\pi_i^e'(x) = 1 - F(x) - c_i$$

Logit QRE and Level-k

- Proposition 4 in Anderson et al (2002) is about the comparative statics of the logit equilibrium prediction wrt parameter α
- The conditions required in Prop 4 imply the same comparative statics for the level k prediction

Logit QRE and Level-k

Logit QRE is the solution to the following

differential equation:
$$\mu f_i'(x) = f_i(x) \pi_i^{e'}(x) \begin{cases} \mu \to 0 : \text{Nash equilibrium} \\ \mu \to \infty : \text{Uniform play} \end{cases}$$

Derivative of expected payoffs

• Level-1 solves the simpler equation: Uniform distribution $\pi_i^{e\,\prime}(x) \,=\, 0$

$$\pi_i^{e'}(x) = 0$$

The Equivalence Result

Proposition 1. If the symmetric game satisfying the local payoff condition is such that the marginal expected payoff is (i) not increasing in x and (ii) strictly decreasing in F, then the comparative statics of the optimal behaviour of a type-1 player and the logit equilibrium with respect to the exogenous parameter α coincide.

$$\pi^{e}'(F_j(x), f_j(x), x, \alpha)$$

- The most notorious applications of the logit QRE comply with these conditions
- In many applications, the logit equation cannot be explicitly solved. But the simpler "level-k equation" can be easily solved

Table 1. LQRE and L1 predictions for some games with the local payoff property

Game:	Comparative statics
Expected payoff derivative $\pi^{e'}(x)$	LQRE
Travellers' Dilemma $1 - F_j - 2Rf_j$	R(-)
Minimum Effort game $ (1 - F_j)^{N-1} - c $	c (-) N (-)
Imperfect Price Competition $-(1-\alpha)xf_j + 1 - F_j$	α (+)
Bertrand Game $(1 - F_j)^{N-1} - x(N-1)(1 - F_j)^{N-2} f_j$	N (-)
Spatial Competition $\frac{-F_j}{2} + \frac{1 - F_j}{2} + f_j(1 - 2x) - c$	c (-)

Table 1. LQRE and L1 predictions for some games with the local payoff property

		<u> </u>	
Game:		Comparati	ve statics
Expected payoff derivative $\pi^{e'}(x)$	Level 1 prediction	Level 1	LQRE
Travellers' Dilemma $1 - F_j - 2Rf_j$	$\overline{x} - 2R$	R (-)	R (-)
Minimum Effort game $ (1 - F_j)^{N-1} - c $	$\underline{x} + (\overline{x} - \underline{x})(1 - \sqrt[N-1]{c})$	c (-) N (-)	c (-) N (-)
Imperfect Price Competition $-(1-\alpha)xf_j + 1 - F_j$	$\frac{\overline{x}}{2-\alpha}$	α (+)	α (+)
Bertrand Game $ (1 - F_j)^{N-1} - x(N-1)(1 - F_j)^{N-2} f_j $	$\frac{\overline{x}}{N}$	N (-)	N (-)
Spatial Competition $\frac{-F_j}{2} + \frac{1 - F_j}{2} + f_j(1 - 2x) - c$	$\frac{2+\underline{x}+\overline{x}-2c(\overline{x}-\underline{x})}{6}$	c (-)	c (-)

Level-k predictions within games with the local payoff property

- A "nice" property of level k predictions within the class of games with the local payoff property is that level k predictions do not depend on the distribution of types in the population
 - In games with continuous strategy space, the optimal behaviour of higher types in these auction-like games will be arbitrarily close the optimal choice of a type-1 player
 - There is no freedom of degree

Pure coordination game (Goeree and Holt, 2005) with n=2

Effort interval [110, 170]

	Predicte	ed efforts
Model	c = 0.25	c = 0.75
LQRE ($\mu = 10$)	150	129
Step Thinking	155	125

Travellers' Dilemma (Basu, 1994)

- Two travellers have lost their baggage, which happen to be identical
- The airline announces that they will be reimbursed the lowest of their claims but that a reward R will be transferred from the highest to the lowest claimant
- Unique NE for all values of R: lower bound of the claim interval (undercutting argument)

Capra et al (1999)

Claim interval [80, 200]

	Predicted claims									
Model	R=5	R=10	R=20	R=25	R=50	R=80				
LQRE ($\mu = 10$)	181	173	151	136	112	82				
Step thinking	190	180	160	150	100	80				

Imperfect price competition

- Two firms
- The market price is the minimum price
- The low price firm gets her price (the minimum price)
- The high price firm gets a fraction α of the minimum price (In Bertrand, α =0)

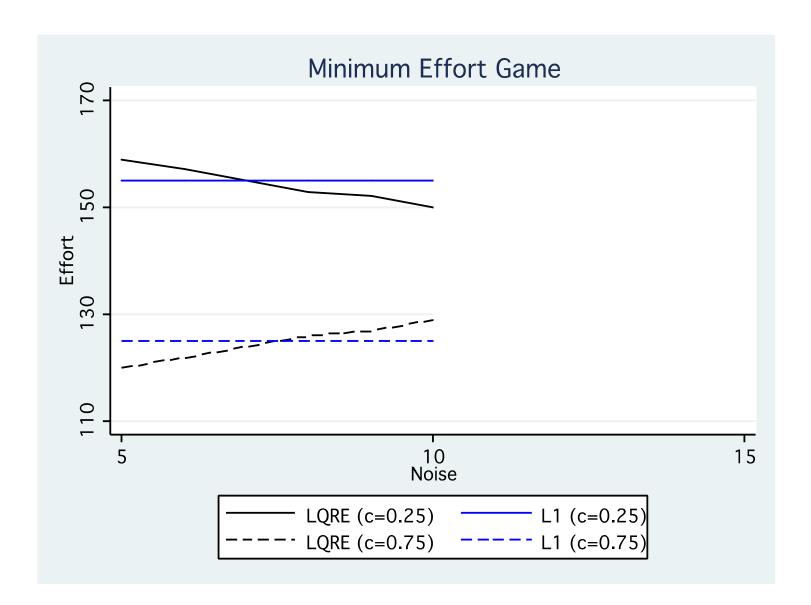
Capra et al, (2002)

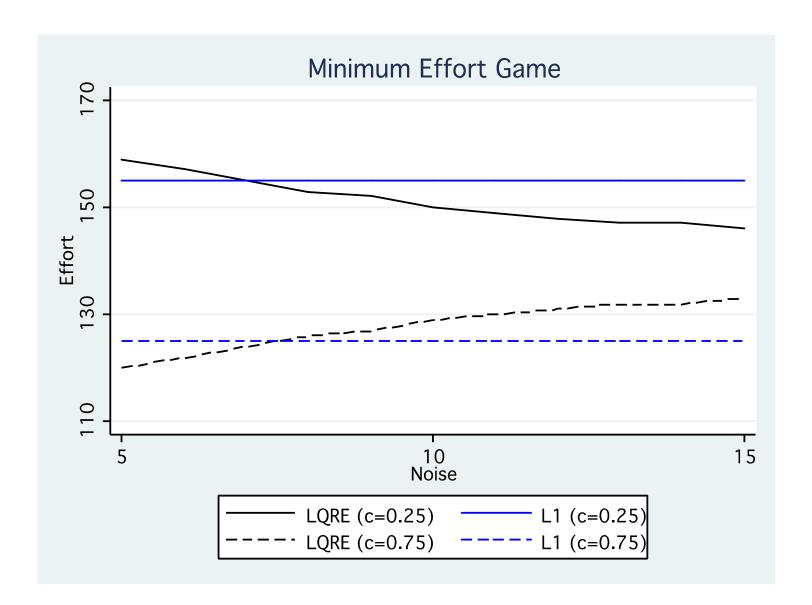
Price interval [60, 160]

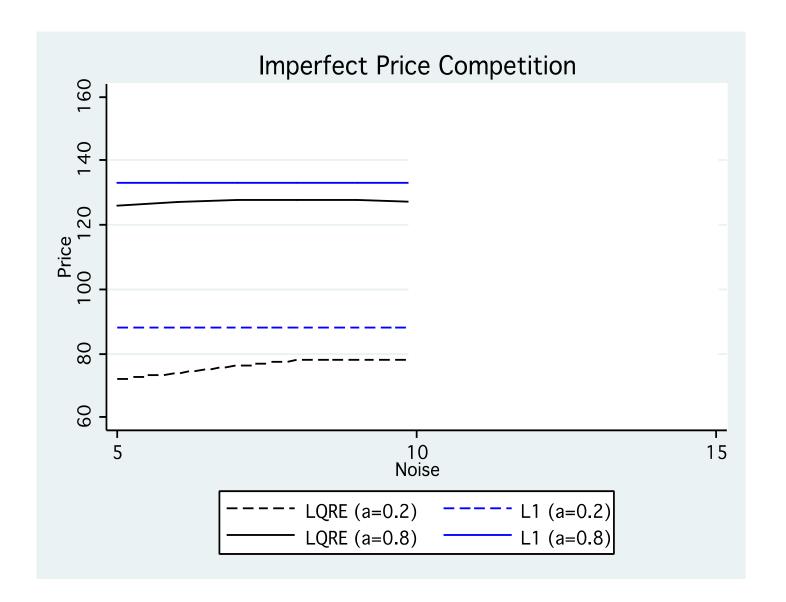
	Predicte	ed prices
Model	$\alpha = 0.2$	$\alpha = 0.8$
LQRE ($\mu = 10$)	78	127
Step Thinking	88	133

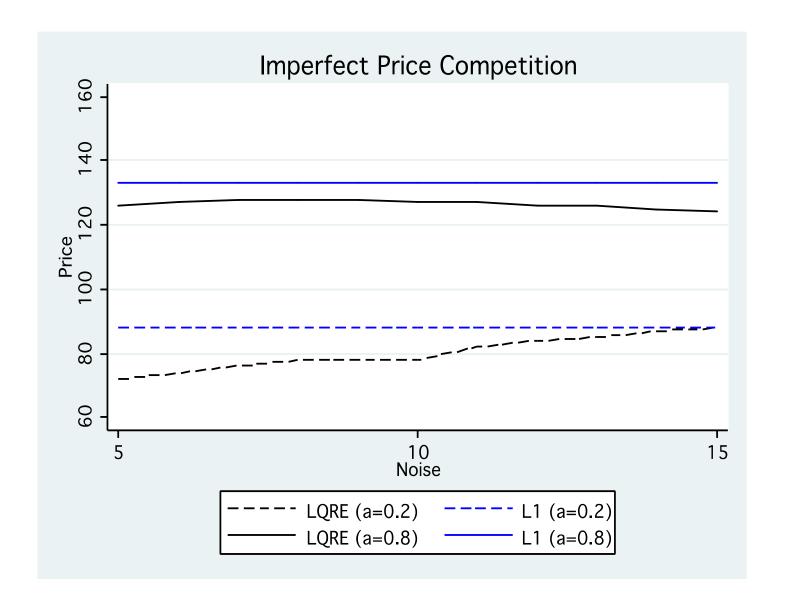
Why LQRE is so close to level-k?

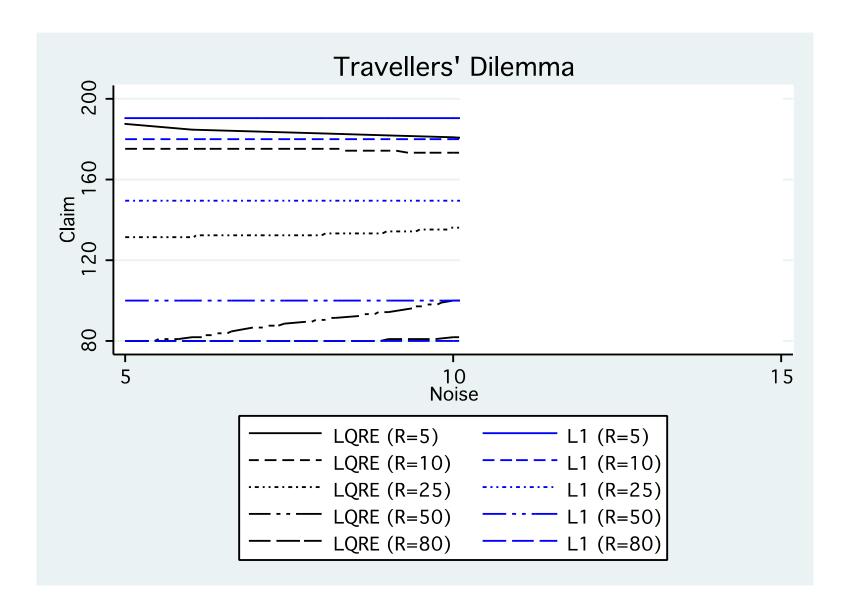
- Two points here:
- 1. Logit QRE predictions are quite insensitive to the noise parameter (Within the class of games with the local payoff property) within reasonable values
 - There is a footnote on this in Anderson et al (2002)
 - Within this class, there is no degree of freedom (remember Haile et al (AER, 2008))
- What seems to matter is that some kind of randomness is added to the decision making process, not the logit structure of LQRE

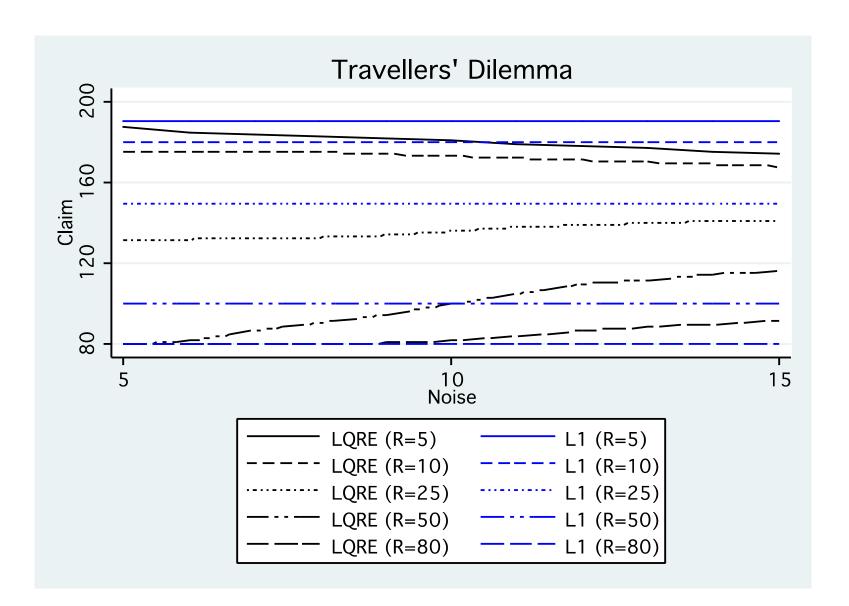












Randomness, which randomness??

- The level-k predictions are based on the uniform distribution
- Level-k was "conceived" for one shot games (or initial play) while Logit QRE is for later rounds
- I have shown data on last periods of play and compare it with level-k

Recall the numerical coincidence

 Fatas and Morales (EconLett, 2013) for the Minimum Effort Game, Goeree and Holt (2005)

$$\pi_i(x_i, x_j) = \min\{x_i, x_j\} - cx_i$$

Table 1 Minimum-effort games.

Effort in last 3 periods	Minimum-e average effo	effort games pi orts	edicted and a	ıctual
	n = 2			
	c = 0.25	c = 0.75	c = 0.1	c = 0.5
Actual	159	126	170	127
Step thinking	155	125	151	128
Logit	153	127	154	129

For Step Thinking, no estimation is needed. level 1 play = Level 2 = Level 3 ...

Randomness, which randomness??

- When subjects play a game several times, they may learn about two things:
 - 1. About others' play
 - 2. About the game

- Can we replicate the treatment effects within the class of games with the local payoff property in one shot games?
 - If so, logit beliefs run into problems...

New experiments - Experimental design

- One-shot games
- Discrete strategy space: (110, 120, 130, ... 190, 200)
- Within subject analysis: Subjects made 20 decisions
 - They played 5 games (imperfect price competition, minimum coordination, travellers' dilemma, "11-20" game and all-pay auction).
 - They played 4 variations for each game:

Player	1
(α_1)	

Low, Low	Low, High
High, Low	High, High

Player 2 (α_2)

LOW: 20

HIGH: 80

New experiments - procedures

- Experiments conducted at U. of Valencia
- ≈ 1½ hours, 18 20 euros
- Four sessions, 224 subjects
- All subjects play all 5 classes of games
 - Minimum game, Travelers' dilemma and Imperfect price competition rotated across sessions
 - − 11 − 20 and All-Pay always last two classes
- No feedback, subjects paid for one randomly selected game
- All games were played with paper & pencil
- Initial Instructions (on how to read payoff matrices)
- Each class of games was handed out as a separate packet
- Each class had a set of instructions, comprehension questions, and four payoff tables.

Participante 2 (20%)

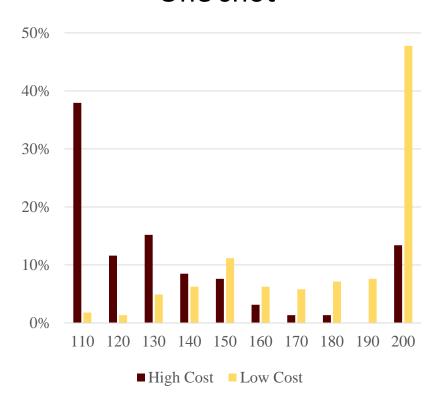
			110		120		130		140		<u> 150</u>		160		<u> 170</u>	1	.80	1	90	2	00
	110	66		110		110		11(0	110		110		110		110		110		110	
			66	22		22			22		22		22		22		22		22	22	
	120 22			72		120)	120	0	120)	120)	120		120		120		120	
			110		72		24		24		24		24		24		24		24		24
	130	22		24		78		130	0	130)	130)	130)	130		130		130	
			110		120		78		26		26		26		26		26		26		26
	140	22		24		26		84		140)	140)	140)	140		140		140	
%0			110		120		130		84		28		28		28		28		28		28
Participante 1 (20%)	150	22		24		26		28		90		150)	150)	150		150		150	
ţe .			110		120		130		140		90		30		30		30		30		30
oan	160	22		24		26		28		30		96		160)	160		160		160	
ticik			110		120		130		140		150		96		32		32		32		32
Jari	170	22		24		26		28		30		32		102		170		170		170	
_			110		120		130		140		150		160		L02		34		34		34
	180	22		24		26		28		30		32		34		108		180		180	
			110		120		130		140		150		160		L70	1	.08		36		36
	190	22		24		26		28		30		32		34		36		114		190	
			110		120		130		140		150		160		L70	1	.80	1	14		38
	200	22		24		26		28		30		32		34		36		38		120	
			110		120		130		140		150		160	-	L70	1	.80	1	90	1	20

Descriptive results

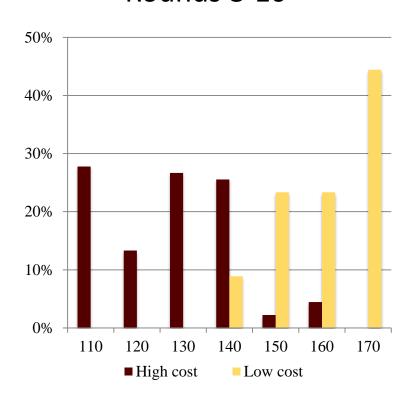
 Our data –remember, one shot game- looks similar to earlier datasets gathered for these games –remember, last periods-.

Minimum Game

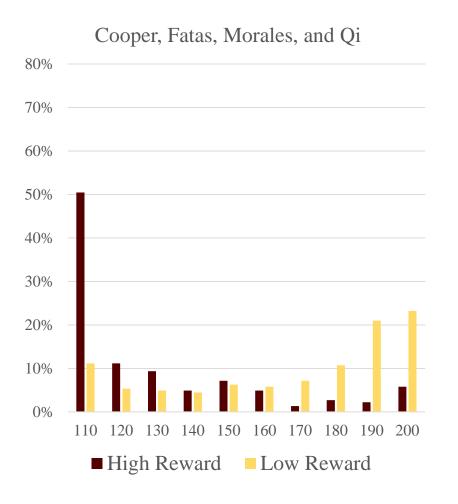
Cooper, Fatas, Morales, and Qi
One shot

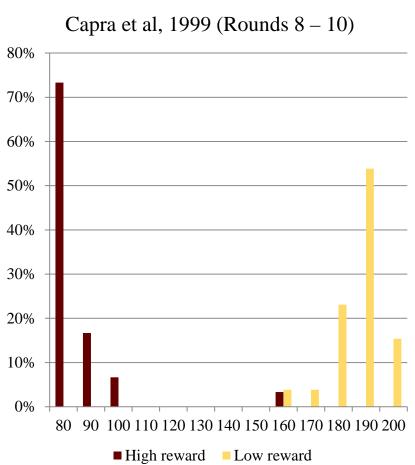


Goeree and Holt (2005) Rounds 8-10

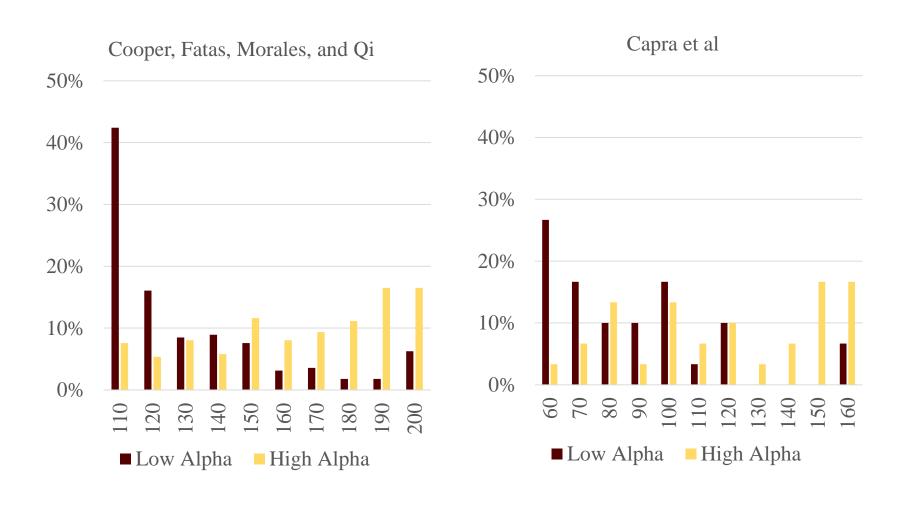


Travelers' dilemma





Imperfect Competition



Conclusions

- As Holt and coauthors state: "Randomness is key to capture intuitive deviations"
- Both level-k and logit QRE include randomness
- Within the class of games with the local payoff property
 - Both models share the same comparative statics
 - Both models provide similar point predictions
 - This suggests that equilibrium beliefs are not needed -> in repeated versions of the games, subjects learn about the game, not about others' play

Conclusions

 Thank you very much for your attention (and comments ☺)