UNIVERSIDAD DE MALAGA
ESCUELA TECNICA SUPERIOR DE INGENIERIA INFORMATICA

GRADO EN INGENIERIA INFORMATICA

SUPERCOMPUTACION GRAFICA APLICADA AL ANALISIS DE IMAGENES
CEREBRALES CON NIFTYREG

GRAPHICS SUPERCOMPUTING APPLIED TO BRAIN IMAGE ANALYSIS
WITH NIFTYREG

Realizado por

Fco. Nurudin Alvarez Gonzalez

Dirigido por
Manuel Ujaldon Martinez

Departamento de
Arquitectura de Computadores.

MALAGA, SEPTIEMBRE DE 2015

Fecha de defensa:
El secretario del tribunal

Resumen: El procesamiento de imagenes médicas, y especialmente de ima-
genes cerebrales, tiene un elevado coste computacional. Afortunadamente, técnicas
tales como la programacion de GPUs nos permiten economizar y liberalizar su uso. En
este trabajo estudiamos NiftyReg, una libreria de tratamiento de imagenes cerebrales
con implementacion en GPU mediante CUDA y analizamos distintas posibles formas
de optimizar mas aun los codigos existentes. Nos centraremos en el aprovechamiento
total de la jerarquia de memoria y el uso de la capacidad computacional de la GPU. Las
razones que conduzcan a los distintos cambios seran expuestas a modo de hipoétesis,
las cuales seran probadas de forma empirica segun los resultados obtenidos con la
aplicacion. Finalmente, para cada conjunto de optimizaciones relacionadas estudiare-
mos la validez de sus resultados en términos tanto del rendimiento como en cuanto a
la precisidon de las imagenes resultantes.

Palabras clave: GPU, CUDA, GPGPU, NiftyReg, supercomputacion, registro de
imégenes, imagenes biomédicas, imagenes cerebrales

Abstract: Medical image processing in general and brain image processing in
particular are computationally intensive tasks. Luckily, their use can be liberalized by
means of techniques such as GPU programming. In this article we study NiftyReg, a
brain image processing library with a GPU implementation using CUDA, and analyse
different possible ways of further optimising the existing codes. We will focus on fully
using the memory hierarchy and on exploiting the computational power of the CPU. The
ideas that lead us towards the different attempts to change and optimize the code will
be shown as hypotheses, which we will then test empirically using the results obtained
from running the application. Finally, for each set of related optimizations we will study
the validity of the obtained results in terms of both performance and the accuracy of
the resulting images.

Keywords: GPU, CUDA, GPGPU, NiftyReg, supercomputing, image registra-
tion, medical imaging, brain imaging

1

Contents

Introduction 11
1.1 Motivation 11
1.2 Document structure and methodology 12
The GPGPU movement 15
2.1 The GPU Streaming Processor 15
2.1.1 Advantagesanddrawbacks 16
2.2 From graphics to general purpose oL 16
221 Startingpoint 17
2.2.2 Towards GPGPU: Firststeps 18
223 Thearrivalof CUDA, 19
224 OpenCL e 20
2.2.5 Presentand future of GPGPU 21
GPU programming using CUDA 23
3.1 CUDA (Compute Unified Device Architecture) 23
3.1.1 Software 24
3.1.2 Firmware e 24
3.1.3 Hardware 24
3.2 Programmingmodel 24
3.2.1 Processinglevels. o 25
322 Streams 26

3.23 Processingflow. oo 27

3.3 Hardwaremodel
3.4 Evolution of the architecture by generations
3.4.1 The first generation: Tesla (G80 and GT200)
3.4.2 The second generation: Fermi (GF100)
3.4.3 The third generation: Kepler (GK110 and GK210)
3.4.3.1 Dynamic Parallelism

3.4.3.2 Hyper-Q

3.4.4 The fourth generation: Maxwell (GM204)
3.4.41 Memory improvements

3.4.4.2 Atomicoperations

NiftyReg and NifTK: Brain Image Processing

41 Overview e e e e
4.2 Structure of GPU-based NiftyReg

Memory optimizations on NiftyReg’s GPU (CUDA) implementation

5.1 Memory bound vs. compute boundcode
5.2 Memory organizationin NiftyReg
5.3 Tested changes and attempted optimizations
5.3.1 1-dimensional textures. Usage and replacements.
5.3.2 3-dimensional textures. Usage and replacements.

Exploiting the computing power of the GPU in NiftyReg

6.1 GPU computing power: underlyingideas
6.2 Improving computation performance in NiftyReg
6.2.1 Optimizations for the _reg toolskernels
6.2.2 Optimizations for the _reg_localTransformation kernels

Conclusions

7.1 Enespanol.

Bibliography

55
55
56
56
63

71
72

75

University of Malaga School of Computer Engineering

Introduction

1.1 Motivation

In general, medical image processing algorithms and techniques are computationally
intensive. This also applies to brain image analysis and registration. The use of GPUs
to speed up the bottlenecks that happen in those processes can lead to performance
improvements that help towards the liberalisation and generalisation of those tech-
niques.

This project falls under the scope of a joint research project from the University
of Malaga and a company located in the Parque Tecnolégico Andaluz called Brain
Dynamics granted by the Junta de Andalucia. The main motivation of the joint research
project is to study, improve and accelerate the business processes of the company
associated with neuroimaging and brain image processing.

The objective of our subproject is to analyze and improve the GPU implementa-

Computer Architecture Dept. 11 Fco. Nurudin Alvarez Gonzalez

tion of a medical processing library (mostly aimed at brain image processing) known as
NiftyReg. Most of our focus, then, is set on attempting to apply improvements brought
by the latest GPU architectures, in order to to squeeze out performance from already
existing GPU code.

Throughout this document we will start introducing concepts from the most general to
the most specific. Three introductory chapters will provide readers with some knowl-
edge about GPUs, their evolution, how they are programmed and the nature of the
GPU implementation of the library. Afterwards, two chapters will introduce the changes
and optimizations performed, the reasoning behind them and the obtained results. Fi-
nally, we will draw conclusions from the set of results and summarize what has been
done and what has been obtained in a succinct manner.

Results depicted throughout the document will be, unless noted otherwise, col-
lected from an Ubuntu LTS 14.04.2 machine, using the 7.0 version of the CUDA driver.
The hardware used was an NVIDIA GeForce GTX 980 (from the Maxwell generation
of NVIDIA GPUs), an Intel(R) Core(TM)2 Duo CPU E8200 @ 2.66GHz processor and
4 GB of System RAM. Similarly, unless noted otherwise, all results in terms of accu-
racy perform in the same way as the original GPU implementation. The methodology
followed to obtain the results is described below.

First, an analysis was performed on the library to study its nature. Using CMake,
a multiplatform source project manager with which the library was built to work on, the
study begun.

Given the sheer size of the library, the analysis was performed with different
degrees of granularity. As a console application whose output is a set of files, the first
step was to label the code so that the amount of kernel launches could be parsed from
the console output. Upon a first inspection, a more detailed labelling was added to
study the amount of time spent per function and the amount of function calls. To aid in
this task, a Python program was developed to parse the timing results.

After the first analysis of the library, and considering the highlights and changes
on newer GPU architectures, the focus was shifted onto GPU code that appeared to
be both computationally expensive and susceptible of being improved. To ensure that
the results would represent how the application really performs, and to pave the way
for this document, the Python parser was extended so that it would produce reports
and plots. The matplotlib library was used for this purpose.

12

Knowing the improvements and changes over the latest GPU generations and
the code, changes were implemented if a performance gain could be expected. Changes
that were expected to produce greater improvements were implemented first. When
each implementation was finished, its correctness was tested with several different
datasets as input by comparing the results obtained with the ones from the original
GPU implementation. Comparison was performed via root-mean squared error of the
resulting images. When the implementation was matured and corrected, testing was
performed to study its impact in performance.

To ensure the testing was uniform, the parsing tool was extended yet again to be
able to perform tests autimatically. Several executions with the same input options and
data were performed, in order to make ensure the validity of the obtained results.

The results depicted in this document were all obtained using one of the larger
images from the dataset provided. Bigger images performed worse in terms of ex-
ecution time with respect to the CPU than their smaller sized counterparts, so we
considered that working on the worst case scenario would provide more meaningful
results. Upon being obtained and verified, the results were summarized and converted
into plots and graphs, using the plots of the parsing tool as a base. The plots show-
ing the obtained results throughout this document are those obtained programatically,
enhanced for the shake of presentation.

The following list summarizes the technologies and tools used:

CMake 2.8
CUDA 7.0
GCC 4.8.2
Python 2.7.6

Matplotlib 1.4.3

13

University of Malaga School of Computer Engineering

The GPGPU movement

In order to understand the principles behind GPU programming and its applications
to general problems such as the one covered in this project, we must first introduce
the context and evolution of GPUs as a platform. After doing so, we will describe their
generalization and evolution, with overviews of several different models and architec-
tures. Finally, some perspective will be drawn to the current state of the art and the
expectations for the future.

2.1 The GPU Streaming Processor

Graphics Processing Units (GPU) were conceived as a processor dedicated to graph-
ics, that is, a piece of hardware which frees the CPU from tasks related to graphic pro-
cessing. One of the reasons for the existence of this dedicated processor is the high
computational cost of these tasks, due to the large amount of data to be processed in

Computer Architecture Dept. 15 Fco. Nurudin Alvarez Gonzalez

short time intervals.

From its inception, the CPU, based on the Von Neumann architecture, has fo-
cused on the instructions that manipulate data rather than on the data itself. Because
of this, CPUs are not efficient when working on multiple data simultaneously.

The high performance offered by the GPU versus the CPU is due to a large
change in the way information was handled historically, from a sequential model, to a
data-centric one. In this new model, data were grouped in streams, and it was possible
to perform calculations on each of their elements at the same time.

This model, as a programming paradigm, resulted in the development of a pro-
cessor specialized in streams, referred to as a Streaming Processor.

2.1.1 Advantages and drawbacks

The way GPU processor-based streaming operated is what has mainly defined its ad-
vantages and drawbacks.

Its main advantage is scalability, that is, the ability to handle arbitrary workloads
using the same architecture. Since this benefit is a result of the architecture itself, the
improvement rate is much higher. As a result, GPU performance doubles every six
months, much faster than CPUs.

However, it must be pointed out that not all applications benefit from its architec-
ture. Naturally sequential algorithms, which are hard to parallelize, will not perform well.
Neither will applications that make heavy use of selection structures in their algorithms.

Over the past few years, the use of GPUs to speed up codes that originally ran on a
CPU has increased. This transition was mainly caused by the evolution of GPUs from
their original approach (rendering graphics) to a flexible and programmable computing
architecture (General Purpose GPU or GPGPU).

Despite its relative novelty, it is becoming widely accepted. This interest steems
from the continuous evolution of GPUs in the context of GPGPU, as well as the results
obtained when compared the CPU architectures.

Since the arrival of the first graphics processing platforms, a number of improve-
ments have followed to build more efficient devices. In the following sections we will
examine in a deeper way the most important stages of this evolution.

16

2.2.1 Starting point

From its inception, the GPU has executed highly parallel algorithms. However, these
were initially only responsible for the different stages of the rendering process (graphics
pipeline), and, as such, were fixed.

During the 90s, graphical programming gave birth to several APIs (including
OpenGL and later DirectX), beginning the normalization of GPU programming. Those
frameworks allowed developers to work with the GPU in a more transparent and effi-
cient manner.

As software evolved, hardware companies also modified the graphics pipeline in-
troducing two programmable processors called shaders (processing vertexes and frag-
ments), making GPUs more versatile. However, these early shaders were programmed
using assembler. Because of this, new tools that simplified their programming were
needed in order for them to become popular.

Thus, in 2002 HLSL (High-Level Shading Language) was born as an initiative
started by Microsoft. It was a language with a higher level of abstraction than GPU
assemblers, but it still required the programmer to know the architecture of the target
GPU.

Afterwards, in late 2002, Cg appeared (C for graphics). It was developed by
NVIDIA in collaboration with Microsoft and was very similar to HLSL. The language
was based on the C programming language with elements adapted to GPU architec-
tures. Compared with HLSL, Cg had all the features of a higher level language, more
functions for the programmer, and also made the code less dependent on hardware.

Finally, GLSL (OpenGL Shading Language) appeared as an alternative from the
OpenGL Architecture Review Board. Also based on C, it allowed developers to make

Polygons, Lines Location Pixel

Stream & Points Stream Updates
GPU I) Primitive |) Rasterization & | mmmmp ~ Raster | py.
Front End Assembly Interpolation Operations Frame Buffer

Transformed Rasterized Transformed
Vertices Pretransformed Fragments
Fragments Programmable
Fragment

L Programmable
Vertex Processor Processor

Figure 2.1: Graphics pipeline after the inclusion of shaders.

GPU
Command &)
Data Stream Assembled Pixel
Vertex Index

Pretransformed
Vertices

17

cross-platform applications that took advantage of most of the new features of GPUs.
It was initially introduced as an extension to OpenGL 1.4, and officially included in
OpenGL 2.0 in 2004.

2.2.2 Towards GPGPU: First steps

In the early 2000s, GPUs were becoming more and more programmable. However,
until then they had only been used for programming graphics applications.

It was the scientific sphere that, upon gaining consciousness about the power of
GPUs, attempted to solve problems for general-purpose applications. From the con-
ventional implementation of a CPU algorithm, its GPU counterpart required a total
rewriting to restructure input data, instructions and operators as the geometry of a spa-
tial problem. That way the problem could be computed by the programmable graphics
processors.

Developers had to ensure that no side effects or changes ocurred, as such com-
putations could not happen within the graphics pipeline, which was not designed for it.
These tasks required a deep knowledge of the internal architecture, paired with suffi-
cient skills and experience.

Algorithms Improvement Factor
Particle systems
Physics simulations 2-3x

Molecular dynamics
Database queries
Data mining 5-10x
Reduction operations
Signal processing
Volume rendering

. 10-20x
Image processing
Biocomputing
Raytracing +20x

3D visualization

Table 2.1: Improvement with respect to the CPU when executing different kinds of intrin-
secally parallel algorithms.

Since 2003, codes taking advantage of GPUs performance began to fluorish.
These programs made clear the difference between the CPU and the GPU, which

18

increased as years went by and as developers gained experience and improved their
algorithms. 2.1 shows the improvements that were observed with some of those early
implementations.

2.2.3 The arrival of CUDA

In 2003, a team of researchers led by lan Buck announced the first programming model
that allowed to develop on a GPU using a high level language as if it were a general
purpose processor. This meant not only a higher level of abstraction and ease when
developing code, but also improved performance.

NVIDIA knew their incredibly fast hardware should be accompanied by an equally
cutting edge programming model, so they invited the team to join the company to start
developing what came to be CUDA. Integrating both hardware and software, NVIDIA
released CUDA in 2006 as the first global solution for general purpose computing on
GPUs. Some of the improvements included:

Code readability.

Programming ease and shorter development time.
Simpler debugging and code optimization.
Platform-independent code.

Complex mathematical operations and accurate results.

The CUDA computing platform provided developers with a environment based
on C/C++ alongside with several extensions that allowed programmers to implement
parallel applications. Overtime it also offered alternatives that gave programmers the
ability to express parallelism using other high level languages (Fortran, Python ...) and
open standards (such as OpenACC directives).

2008 2015
CUDA GPUs 100.000.000 | 600.000.000
Supercomputers in top500.org 1 75
University courses 60 840
Scientific articles 4.000 60.000

Table 2.2: Evolution of CUDA.

The release of CUDA was widely accepted by scientific, academic and devel-
oper communities in general. Furthermore, NVIDIA refined the paradigm overtime and

19

brought a number of improvements that eliminated all the difficulties encountered. In
fact, since its arrival day to today, the CUDA platform has been used in more than
600.000.000 GPUs and 60.000 research applications (see 2.2).

2.2.4 OpenCL

At the end of 2008, OpenCL was released as an open alternative to proprietary solu-
tions for GPGPU. It was the result of many years of development by an open software
consortium. Originally conceived by Apple and developed in conjunction with AMD,
IBM, Intel and NVIDIA ; it was retaken by the Khronos Group and converted into an
open, royalty-free standard.

Unlike CUDA, OpenCL is defined as a general purpose programming standard in
heterogeneous systems that can run on different architectures, such as CPUs, GPUs
and FPGAs. OpenCL provides an API for parallel computing and a programming lan-
guage based on ISO C99 with extensions for data parallelism.

OpenCL operates in a way that is based on a host machine that distributes the
workload between all devices in the system, which can be one or more computational
units. The latter is divided into multiple processing elements.

Although OpenCL is a valid alternative to CUDA, the distance between both is
sometimes tremendous. If the implementation and distribution of work is perfectly ad-

Compute unitﬁ
Compute
[iniN / device
‘ s B s I s | |
[——y— —
H ,: Host
&Processing

elements

Figure 2.2: The processing model employed by OpenGL.

20

justed to the target architecture, OpenCL performance should not be much lower than
that of CUDA. However, and since the main feature of OpenCL is its portability, it gen-
erally does not perform as well as CUDA does.

2.2.5 Present and future of GPGPU

GPU programming has evolved enormously and at a steady rate in recent years. How-
ever, and due to the evolutive trends of the platform, the obvious following step was to
attempt to increase scalability out of the GPU itself.

As a result, computer clusters were designed with devices being interconnected,
operating in groups and acting as a single graphics device. This led to a momentum
gain in the field of high performance computing for GPUs and the principles of GPGPU,
which have since then popularized in that scope.

The obtained improvements were not only limited to the amount of servers and
workstations in existance. It also caused a raise in the number of heterogeneous super-
computers, incorporating novel GPU technology (such as GPUs from the latest genera-
tions) as coprocessors to carry out part of the computing work. 2.3 shows the evolution
of graphics coprocessors in the TOP500 supercomputers list in the last four years.

Switching towards the hybrid model, making use of GPGPU techniques is rela-
tively recent, and as such it still has a long way to go. GPUs offer performance several
orders of magnitude greater than the CPU in problems that could be computationally
untractable before. They are positioned as an alternative to traditional processors and,
without a doubt, will continue to grow and develop in the future; cooperating further
with the CPU to allow for a more efficient and complete problem solving.

June 2011 June 2012 | June 2013 | June 2014
NVIDIA Fermi 12 53 31 18
NVIDIA Kepler 0 0 8 28
Intel Xeon Phi 0 1 11 21
ATI Radeon 2 2 3 3
IBM Cell 5 2 0
Hybrid 0 0 1 4
Total 19 58 54 74

Table 2.3: Evolution of GPUs in TOP500.

21

University of Malaga School of Computer Engineering

GPU programming using CUDA

After describing the historical context, evolution and importance of GPGPU, our focus
is set on describing a current and popular framework that allows developers to use
such techniques. We will introduce the CUDA model designed by NVIDIA , which en-
compasses both an API (Application Programming Interface) and a hardware platform,
and that has been used to implement our work.

Beyond describing the computing platform and the programming model, the evo-
lution of the architecture will also be briefly discussed.

3.1 CUDA (Compute Unified Device Architecture)

CUDA [13]is a parallel computing platform and programming model designed by NVIDIA
which allows developers to access the computing power of GPUs to deploy task and

Computer Architecture Dept. 23 Fco. Nurudin Alvarez Gonzalez

data parallelism. The model is composed of three different levels: software, firmware
and hardware.

3.1.1 Software

On the software level, the CUDA model offers a set of different ways to develop appli-
cations and write code to be run on GPUs. Among them we can find:

Programming APIs: Allow developers to implement GPU code in their program-
ming language of choice. Although C/C++ are the most common high-level lan-
guages to develop CUDA applications, there exist APIs for other languages such
as Fortran, Java or Python.

Optimized libraries: There are several libraries prepared so that developers can
make full use of them with just a few lines of code, allowing them to make use of
GPU-acceleration. (cuBLAS, cuFFT, Thrust, etc.)

Compiler directives: Standard compiler directives, like those of an open initia-
tive called OpenACC, simplify code acceleration by only requiring programmers
to identify code sections that can exploit data parallelism. The bulk of the paral-
lelization effort is, thus, left to the compiler but with a performance payoff.

3.1.2 Firmware

NVIDIA offers a computing driver that is compatible with the one responsible for ren-
dering. This driver can be controlled through simple APIs to manage CUDA devices,
video memory and other components of the architecture.

3.1.3 Hardware

Finally, CUDA is implemented so that applications can be run on different compatible
hardware implementations. This point is expanded upon in section 3.3.

Next, the CUDA programming model is presented, taking C as its baseline language.
It extends the C language, supplying tools that serve as an interface for parallel pro-
gramming on GPUs. In this model the GPU acts like a coprocessor and only executes

24

a fraction of the code, while the rest is handled by the CPU. This is made transparent
to the developer by to the CUDA compiler driver (NVCC) and the separation of CPU
and GPU code:

Device code compiles to PTX ' code files. It is decoupled from the underlying
hardware, allowing the developer to ignore the details the platform.

Host code is sent to C compiler to create object files. Depending on the platform,
a different compiler will be used, with GCC as an example in LINUX and CL when
using Windows.

Finally, the linker produces a CPU-GPU executable. For NVCC to be able to
divide the code, it is necessary to introduce new syntax elements that are used by the
programmer to define kernels. Kernels are CUDA-C functions that contain code for one
GPU thread only, and will be executed by all GPU threads. Context switch among them
is immediate, and they tend to perform only one simple task.

3.2.1 Processing levels

First, and in order to be used from CPU code, kernels have to be declared as __global__.
To launch a kernel, host code must include a declaration similar to KernelToLaunch
«<G, B, m, s»>, with G and B being grid and block sizes, m being shared memory
size and s being the stream to be used. We will describe these arguments more thor-
oughly, starting with G and B. Threads are identified within kernels as follows:

Threads are organized in blocks. Each thread has an identifier that is accessible
within the kernel by means of the built-in variable threadIdx.

Similarly, blocks are grouped within a grid and, like threads, to each block is given
a unique identifier within the kernel, blockIdx.

Both grid and thread blocks can be 1D, 2D or 3D, and their sizes are set by
the programmer under certain constraints. Their dimensions are accessible within the
kernel through the variables blockDim and gridDim respectively. This hierarchy allows
CUDA code to be scalable by being able to run on any compatible hardware without a
need to recompile for different target sizes.

1PTX is a low- level parallel thread execution virtual machine and instruction set architecture
(ISA).

25

University of Malaga School of Computer Engineering

Block (1,1)

Figure 3.1: Graphical representation of a grid with six thread blocks each one of 12
threads. NVIDIA Corporation [13]

In addition to configurable grid and block sizes, threads are also grouped as
warps, that up to this day contain 32 threads?. They are the atomic execution unit, and
are executed in unpredictable order although they can be synchronized if required.

Warps execute one common instruction at a time for all their threads. Because
of this, warp divergence caused by branching is a hurdle in terms of performance.
When such divergence happens, each branch is serialized disabling threads that do
not participate in the running branch. When all execution paths complete, the threads
converge back. This serialization only occurs within a warp, and two differents warp are
able to execute distinct paths simultaneously. On the other hand, blocks are executed
in free order and they cannot be synchronized. Threads are able to comunicate only
with others threads in the same block. These details must be carefully handled by the
programmer in order to ensure program correctness.

3.2.2 Streams

Since the second generation of CUDA capable GPUs, concurrent execution of differ-
ent kernels has been made posible by means of streams. A stream is a sequence of
kernels that execute in order. Kernels in different streams will execute independently,
although CUDA provides functions for synchronize them.

By default all the kernels are executed within the same stream. To create new

2The number of threads per warp could change on future generations of NVIDIA GPUs.

Computer Architecture Dept. 26 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

streams, CUDA C offers a new data type, cudaStream_t, and a new constructor,
cudaStreamCreate(). The following code is an example of an array with two streams:

cudaStream_t stream[2];
for (int i = 0; i < 2; ++1)
cudaStreamCreate (&¢stream[i]);

Kernels are assigned to a stream through the fourth parameter of the kernel
launch call, s, we previously discussed. The amount of concurrent streams depends
of the generation, (with 16 streams in Fermi and 32 in Kepler). The details of stream
concurrency are explained in Section 3.4.3.2.

3.2.3 Processing flow

As already mentioned in section 3.2, in the CUDA model the GPU (device) acts as a
coprocessor for the CPU (host) but with its own memory. Because of this, it is neces-
sary to transfer data from host memory to device memory, perform the computation and
bring the data back [4]. A diagram of the processing flow can be observed in Figure 3.2:

Although this scheme is still in use, future generations will simplify it by adopting
an unified memory architecture for both host and device.

1

GigaThread Engine GigaThread Engine ,

N N .
interconnect
12 Cache
DRAM

CPU Memory

GigaThread Engine

CPU Memory

Figure 3.2: CUDA processing flow.

Computer Architecture Dept. 27 Fco. Nurudin Alvarez Gonzalez

The massively parallel threading model is built upon the CUDA hardware model. Gen-
eration after generation, the model is expanded upon but backwards compatibility is
maintained. We will discuss the modelin a general way, with the specifics being ex-
plained in section 3.4.

The NVIDIA GPU architecture is based on SIMT (Single-Instruction, Multiple-
Thread) processing, similar to SIMD (Single Instruction, Multiple Data) but different in
that it specifies the execution and branching behaviour of each single thread. This is
achieved in hardware by an array of Streaming Multiprocessors (SMs) where each of
them contain lots of CUDA cores.

In addition, the computing cores are paired with a memory hierarchy. CUDA
GPUs three memory layers on-die for each multiprocessor. In order from faster to slow-
est:

Registers: fastest of them all and implemented as register banks in each SM for
the cores to perform most of their computing work.

Shared memory: slightly slower than registers, shared among threads in the
same SM and used as a cache memory managed by the programmer.

Read-only memories: constant and texture caches, both slightly less popular
and general purpose oriented.

If on-chip memory is not enough, the GPU can make use of its SGRAM global
memory common to all multiprocessors. This memory, of a SGRAM (Synchronous
Graphics Random Access Memories) nature, is three times faster than its CPU coun-
terpart. However, it is still 500 times slower than shared memory.

28

University of Malaga School of Computer Engineering

Multiprocessor N
o

Multiprocessor 2

Multiprocessor 1

Ennl

Figure 3.3: CUDA hardware model. NVIDIA Corporation [13]
3.4 Evolution of the architecture by generations

To identify the different architecture models, NVIDIA assigns a version number to each
device generation. This number, called CUDA Compute Capability (or C.C.C.), is used
by applications at runtime to determine which hardware features and/or instructions
are available on the present GPU. The C.C.C. is formed by two numbers (x.y):

+ X is the major version number and it determines the generation: 1 for Tesla, 2 for
Fermi, 3 for Kepler and 5 for Maxwell.

-y is the minor version number and represents the incremental improvement to the
core architecture.

The main features of the different generations are explained below.

3.4.1 The first generation: Tesla (G80 and GT200)

Tesla was the first CUDA capable GPU generation, launched in 2006. It unified the ver-
tex shader with the pixel shader, and allowed them to be used for GPGPU by changing
the pipeline from a lineal model to a loop pipeline.

Computer Architecture Dept. 29 Fco. Nurudin Alvarez Gonzalez

‘University of Malaga

School of Computer Engineering‘

GK110 GK110 GK110 GK210 GM204
Architect G80 GT200| GF100
chitecture ‘ (k20) (k20x) ‘ (k40x) (k80) ‘ (GTX 980)
C.C.C. 1.0 1.2 2.0 3.5) 3.5 3.7 5.2
Launch year 2006 2008 2010 2012-13 2013 2013-14 2014 2015
TPC 8 10 4 - - - - -
SM 16 [2] 30[3] 16 [4] 13 14 15 (2x) 15 16
[SM/TPC]
Int and fp32
128 [8] 240[8] 512 [32]| 2496 [192] 2688 [192] 2880 [192] (2x) 2880 [192] 2048[128]
[cores/SM]
Fp64
0[0] 30[1] 2561[16] 832 [64] 896 [64] 960 [64] (2x) 960 [64] 64 [4]
[cores/SM] |
LSU
0 [0] 0[0] 256[16] 416 [32] 448 [32] 480 [32] (2x) 480 [32] 512 [32]
[cores/SM] |
SFU
32[2] 60[2] 64 [4] 416 [32] 448 [32] 480 [32] (2x) 480 [32] 512 [32]
[cores/SM] | | |
‘Warp Scheduler 1 1 2 4 4 4 4 4
per SM
32-bit register 8K 16K 32K 64k 64k 64k 128k 64k
per SM
Shared memory
per SM Iggs s 16KB | 16KB + 32KB | 16KB + 32KB 16KB + 32KB 16KB + 32KB + 48KB EORELRLLRE)
L1 Cache + 48KB + 48KB + 48KB + 48KB + 80KB + 96KB + 112KB
None None None
per SM
L2 Cache None None 768KB 1.5MB 1.5MB 1.5MB (2x) 1.5MB 2MB

Table 3.1: Summary table with the main features of several models on each hardware

generation.

Each G80 GPU has 8 Thread Processing Clusters (TPC), which in turn have
two SMs with 8 cores each. This means that there are 128 scalar processing cores,
that in addition support dual-issuing of MAD and MUL operations. G80 GPUs have 8K
32bit registers and 16Kb of shared memory per SM. Figure 3.4 shows a diagram of the

architecture.

Overtime, NVIDIA improved the Tesla architecture with the GT200 GPU. The
main enhancements are listed below:

- An increase in the amount of cores. The number of TPC blocks was raised
from 8 to 10, with an increase in the amount of SMs per TCP to three. Due to
this, GT200 GPUs had 240 cores.

- More threads per chip. The software limitation on G80 only allows 768 threads
per SM whereas the GT200 accepts up to 1024 threads.

- Doubled register file size. The register bank is doubled from the previous archi-
tecture, increasing the amount of registers to 16K per SM.

- Double-precision floating-point support. One core for fp64 operations is added
in each SM.

Computer Architecture Dept.

30

Fco. Nurudin Alvarez Gonzalez

University of Malaga

School of Computer Engineering

Host

+
4

Vtx Thread Issue Geom Thread Issue

v

Setup / Rstr / Zcull

Pixel Thread Issue

Thread Processor

Figure 3.4: GeForce 8800 GTX (G80) block diagram. NVIDIA Corporation [9, pg. 02]

- Improved shared memory. Hardware memory access coalescing was added to
improve memory access performance.

Figure 3.5 shows the three SMs in a TCP of a GT200, revealing that in this case
the increase in the number of cores is produced by an increment of TCP units instead

of a higher number of cores per SM.

Computer Architecture Dept.

31

Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

[gl g g
o o o
0 (e} 0
3] 3] 3
< < <
)) o
3 3 3
o <) 5
= = =
< < <

L1 Cache

Figure 3.5: Thread Processing Cluster of the GT200 GPU. NVIDIA Corporation [10, pg. 13]

3.4.2 The second generation: Fermi (GF100)

With Fermi, the TCP disappears and NVIDIA makes a new hardware block, called
the Graphics Processing Cluster (GPC), that encapsulates all key graphics processing
units. Inside of this hardware block there are four stream multiprocessors.

In opposition to the intergenerational enhancements implemented with Tesla,
with Fermi NVIDIA decided to reduce the number of SMs and increase the number of
cores per multiprocessor. Thus, Fermi has three different types of cores:

1. Integer and floating point units. 32 cores per SM redesigned for optimized
64-bit int operation. These cores are used for both simple and double precision

calculations?.

2. Load/Store units. For Load/Store operations 16 cores are incorporated allowing
source and destination addresses to be calculated for sixteen threads per clock.

3. Special Functions Unit (SFU). Four cores are added for quick calculation of
complex functions such as sin, cos, reciprocal and root (with an accuracy tradeoff)

3Fermi can only run 16 fp64 operations at a time.

Computer Architecture Dept. 32 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

M Host Interface

Instruction Cache = -
Warp Scheduler Warp Scheduler GigaThread Engine
Dispatch Unit Dispatch Unit GPC

¥ ¥
— t
Register File (32,768 x 32-bit) " 0

L2 2 3 2 +
CUDA Core 2 2 2 c LD/ST
ore Core Core Core
Dispatch Port LD/ST

LD/ST
Core Core Core Core
FPUNIt | INTUnit D/sT]
LD/ST
¥ Core Core Core Core
Result Queue LD/ST

LD/ST
Core Core Core Core

DS EED EEXO 2N EEEE EEEE EETE EE2m BE=T5E

LD/ST
Core Core Core Core
LD/ST

LD/ST
Core Core Core Core
LD/ST

LD/ST
Core Core Core Core
LD/ST

LD/ST
Core

Operand Collector

Memory Controller
13][043U0D) AJOWB

L2 Cache

Memory Controller
13][013u0D) AtowB |y

Memory Controller
13]1013u0)) AJowa|n

Raster Engine Raster Engine

GPC

Figure 3.6: GF100 block diagram and Stream Multiprocessor detail[11, pg. 11 and 16].

In addition, GF100 GPUs have two warp schedulers, with an instruction dispatch
unit in each of them. This configuration allows to launch two warps concurrent and
independently, and due to this the schedulers do not need to check for dependencies
from within the instruction stream.

One of the main improvements over the previous generation is the memory hi-
erarchy. Each SM in Fermi has 64KB of on-die memory that it is configurable in two
different modes: 16KB of shared memory and 48KB of L1 cache or vice versa. The first
mode helps optimising algorithms where data addresses are not known beforehand,
while the second works best mode for algorithms with well defined memory accesses.
Moreover this generation incorporates 768KB of L2 cache common to all stream pro-
cessors. In the left side of Figure 3.7 we can find a diagram of this hierarchy.

3.4.3 The third generation: Kepler (GK110 and GK210)

Following the trend introduced by Fermi, Kepler also increased the number of cores per
SM and reduced the amount of multiprocessors. Even though the GK110 was not the
first chip implementing the Kepler architecture, this section is focuses on the GK110
and beyond as they are the most widely used models of it.

The quantity of cores per SM is the same in the different incremental improve-
ments to the architecture, although the number of stream multiprocessors changes

Computer Architecture Dept. 33 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

from one to another. Table 3.1 shows the different versions and their main features.

SMs in Kepler (called SMXs) have 192 single precision CUDA cores, and each
core has fully pipelined floating-point and integer arithmetic- logic units. In addition,
these SMs increase the double-precision computation capacity with 64 dedicated units.
Moreover, GK110 GPUs have 32 LD/ST units per SM, doubling the amount of load and
store units available in the Fermi architecture. Finally, each SM has 32 Special Function
Units (SFU).

Four warp schedulers with two instruction dispatch units in each each can be

found in every SMX. This allows up to eight warps to be issued and executed concur-
rently.

Kepler follows a memory hierarchy akin to that of Fermi, although texture mem-
ory was made accessible for GPGPU as a 48KB read only memory. Furthermore, all
memory layers were improved:

- Register Bank. The amount of 32-bit registers per multiprocessor increased up
to 64K.

- Shared Memory and L1 cache. In addition to the shared memory configuration
modes that were seen in Section 3.4.2, a new mode is added in this generation:
32KB shared among L1 cache and shared memory.

- L2 cache. The amount of memory in this layer is doubled to 1536KB. In addition,
the L2 cache on Kepler offers twice the bandwidth per clock available on Fermi.
[12]

Fermi Memory Hierarchy Kepler Memory Hierarchy

Shared Memory
L2 Cache

L1 Cache

L2 Cache

Figure 3.7: Fermi and Kepler memory hierarchy. NVIDIA Corporation [11, pg. 19] and [12,
pg. 13]

Computer Architecture Dept. 34 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

PCI Express 3.0 Host Interface
GigaThread Engine

Memory Controller
13]]013u0) AJoWad|N

Memory Controller
13][043u0D) AJoWdN

SEEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SIEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SiEEEEEEEEEEEEER
SEEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
ENNEEEEEEEEEEEEE
SNEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
SNEEEEEEEEEEEEER
13](013U0D) Atowd |y

Memory Controller

Figure 3.8: Kepler GK110 full chip block diagram. NVIDIA Corporation [12, pg. 06]

Both GK210 and GK110 implement the features depicted in Section 3.4.3.1 and
Section 3.4.3.2. Both are models in the Kepler architecture, but GK210 GPUs have
more resources on-chip than their GK110 counterparts. Thus, both chips share the
same amount of cores per SMX but GK210 GPUs have 128K 32-bit registers per SMX
and 128KB of shared memory/L1 cache with the available configurations shown below:

112KB shared memory + 16KB L1 cache

96KB shared memory + 32KB L1 cache

48KB shared memory + 80KB L1 cache

Reversed values for the previous configurations

3.4.3.1 Dynamic Parallelism

Prior to the release of GK110 GPUs, those acted as a coprocessor for the CPU, capa-
ble of producing large speed-up factors but without any autonomy of their own. Dynamic
parallelism allows the GPU generate and process new work by itself. This way, the CPU
does not need to be interrupted in order to launch new kernels and create events and
threads to control dependencies, synchronize the results and control task scheduling

Computer Architecture Dept. 35 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
+ + + + + + + +

Register File (65,536 x 32-bit GK110) | (131,072 x 32-bit GK210)

3 + + + +

-
«

+ + + + + + + +

«
.

Core Core Core LD/ST SFU Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST Core Core Core Core Core Core

Core Core Core LD/ST | SFU Core Core Core Core Core Core

Interconect Network

(64 KB Shared Memory / L1 Cache GK110) | (128 KB Shared Memory / L1 Cache GK210)

48 KB Read-Only Data Cache

Tex Tex

Tex Tex

Figure 3.9: SMX with 192 single-precision CUDA cores, 64 double-precision units, 32 SFU
and 32 LD/ST units. NVIDIA Corporation [12, pg. 08]

[1]. Figure 3.10 depicts how dynamic parallelism is performed, helping to minimize the
back and forth communication between CPU and GPU and improving performance.

By means of dynamic parallelism, the programmer is able to develop recursion
from within the GPU. Because of this, algorithms that were impossible to implement
on Fermi GPUs, such as Quicksort, adaptative grids or variable length loops, can be
implemented on Kepler.

On Fermi GPUs, only the host could send a grid to the CUDA Work Distributor
(CWD), which would then distribute blocks among the different SMs. Kepler GPUs,
however, include a Grid Management Unit (GMU) in charge of both device and host
grids. This component processes grids from both host and device and sends them
to the CWD. The work distributor, which admits up to 32 grids, then sends blocks to
occupy the SMs. Furthermore, the GMU can pause the dispatching of new grids if
there happens to be a two-way link. Figure 3.11 shows Fermi and Kepler workflows.

Computer Architecture Dept. 36 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Dynamic Parallelism
GPU Adapts to Data, Dynamically Launches New Threads

Fermi GPU CPU Kepler GPU

l_. l_.
- ;\,
---.. MENEE
I | AN 4

l .4_-. R

.<

Figure 3.10: With Dynamic Parallelism the GPU can deploy data parallel tasks by itself.
NVIDIA Corporation [12, pg. 15]

Fermi Workflow Kepler Workflow

Stream Queues
Ordered queues of grids

Stream Queues
Ordered queues of grids

Grid Management Unit
2

One-way Flow

Work Distributor
Tracks blocks issued from grids

16 Active Grids

CUDA-Created
jork

1000's of pending grids
Two-way link allows
pausing dispatch

Work Distributor
Actively dispatching grids

32 Active Grids

Figure 3.11: Fermi (left side) and Kepler (right side) workflow. NVIDIA Corporation [12,
pg. 19]

Computer Architecture Dept. 37 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

3.4.3.2 Hyper-Q

On Fermi up to 16 streams could be launched concurrently, but the underlying imple-
mentation uses single queue, and thus, only the end of a stream and the start of other
could be executed at the same time. On Kepler, up 32 streams can be executed con-
currently, due to the fact that each stream is managed independently on a different
hardware queue. Moreover, this also allows to execute streams in parallel with respect
to other stream coming from the same or a different CUDA program, MPI process or
POSIX thread.

3.4.4 The fourth generation: Maxwell (GM204)

SFU

e

SFU

/ST | SFU

LO/ST | SFU

Texture/L1 Cache.
Tex

e |Core| |Core| Lo/sT | SFU

e |Core| |Core| Lo/sT | SFU

ore |Core| |Core| Lo/sT | sFU

e Core| |Core| Lo/sT | sFU

| |Core| Core| |Core| Lo/sT |sFU

ore |Core| |Core| Lo/sT | sFU

ore |Core| |Core| Lo/sT | sFU

Texture/L1 Cache.
Tex Tex

96KB Shared Memory

Figure 3.12: Depiction of the SMMs found in Maxwell. NVIDIA Corporation [14, pg. 8]

Following the current trends in computer architecture, the Maxwell architecture
is focused on maximising the performance per watt consumed. Thus, NVIDIA reorga-
nized internal components of the multiprocessors (called SMMs in Maxwell), so that
they are split in four parts as shown in Figure 3.12. Each processing block of CUDA
cores contains:

Computer Architecture Dept. 38 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

1. 32 int and floating points units (128 per SMM).
2. 1 double precision unit (4 per SMM).
3. 8 Load/Store units (32 per SMM).

4. 8 Special Functions Unit (SFU) (32 per SMM).

In addition, each of the four splits contains a warp scheduler, which is capable
of dispatching two instructions per warp on every clock cycle. This configuration aligns
with warp size, making it easier to use efficiently.

3.4.4.1 Memory improvements

The memory hierarchy was modified from Kepler. Now shared memory does not share
the block with the L1 cache. Instead, the L1 caching function has been moved to be
shared with the texture caching function. The size of shared memory has increased to
96KB although this is limited to 48KB per thread block [7]. The size of the L2 cache is
2MB on GM204 GPUs.

Another improvement implemented on Maxwell is memory compression. To re-
duce DRAM bandwidth demands, Maxwell GPUs can now make use of lossless com-
pression techniques as data is written into memory. The bandwidth savings from this
compression appear when clients, such as the Texture Unit, later read the data.

PCI Express 3.0 Host Interface

Figure 3.13: GM204 architecture diagram. NVIDIA Corporation [14, pg. 6]

Computer Architecture Dept. 39 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

3.4.4.2 Atomic operations

Maxwell extends atomic operations, introducing native shared memory operations for
32-bot integers and native shared memory 32 and 64-bit compare-and-swap (CAS)
operations. The latter can be used to implement other atomic functions with reduced
overhead when compared to Fermi and Kepler atomics. These changes allow program-
mers to implement list and stack data structures shared by the threads of a block in a
much more efficient manner. [14]

Computer Architecture Dept. 40 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

NiftyReg and NifTK: Brain Image

Processing

As the last introductory note prior to presenting our work, we introduce the medical
image processing library we have worked upon. Given the nature of the platform, our
description can only be given in terms of a black box point of view and is, as such, kept
as brief as possible.

We will introduce the platform within which the library is contained, and then we
will describe the architecture of the library from the perspective of a programmer.

Computer Architecture Dept. 41 Fco. Nurudin Alvarez Gonzalez

NiftyReg is an open source image registration software, which can be used both as a
library and as a standalone application, mainly used for brain image registration. It is
composed of a series of executables and algorithms, some of which include a CUD-
A/GPU implementation, each of them with different sets of operations and variables.
NiftyReg is contained within the scope of NifTK, a platform containing a set of applica-
tions and packages related to brain image processing.

NiftyReg and its superproject, NifTK, were developed by the Translational Imag-
ing Group (TIG) at the University College London (UCL). The platform is composed
of several modules, aimed to perform image segmentation, registration, visualization
and reconstruction tasks. Some of the applications already include some degree of
GPGPU/CUDA based optimization. Within NifTK we can find:

NiftyReg: set of programs to perform rigid, affine and non- linear registration of
medical images. Some of the algorithms include CPU and a GPU based imple-
mentations.

NiftySim: a finite-element modelling package. NiftySim contains CUDA and C++
implementations of the Total Lagrangian Explicit Dynamics (TLED) algorithm and
several non-linear constitutive models.

NiftySeg: an open-source software package for image segmentation, bias field
correction and cortical thickness estimation.

NiftyRec: a package for 3D Stochastic Emission Tomographic Reconstruction.

NiftyView: a graphical user interface that serves as an entry point to the above
packages.

We will now go into details, describing NiftyReg in terms of its source code. In order
to perform our work on the library, we first had to understand (in black box terms)
how the code is structured and built. Since NiftyReg already had a set of algorithms
implemented in CUDA, an analysis on such implementation had to also be performed.

The purpose of NiftyReg as a whole is to perform medical image registration with
an algorithm created by the developers [], under foundational papers that can be found
in [17] and [16]. Readers interested in the image processing algorithms might find [21]
of use. The implementation and execution flow follows a pipe line where registration

42

steps are performed on different levels, building a resulting registered image from one
image used as the reference and another used as the floating image.

The code is built so that certain classes manage subalgorithms and data struc-
tures, with the CPU implementation making use of parallelism when possible. The GPU
implementation extends the CPU classes and is constrained by the sequentiality of the
original implementation. Since the CUDA implementation dates from the early days of
the programming model, it appears logical to have kept consistency in terms of the
steps and processes carried out. However, with the addition of streams and kernel par-
allelism, such design choices and rigid structure limits the level of achievable concur-
rency. Precision wise, the GPU implementation mostly makes use of single precision
floating point values. This is, again, a product of its time.

The algorithm as a whole can use different approximation measurement metrics
to perform the registration, and are set up either when NiftyReg is used as alibrary or
as a standalone application. Our work focus, given that no particular interest was given
to any of them in the context of the project, will be set on the initial, preset values and
modules common to the whole implementation.

43

University of Malaga School of Computer Engineering

Memory optimizations on NiftyReg’s

GPU (CUDA) implementation

5.1 Memory bound vs. compute bound code

A practical classification for code behaviour in the context of GPU programming when
performance becomes a major concern entails to distinguish between memory bound
and compute bound applications [18]. A memory-bound code places the bottleneck on
the memory system, mostly for memory operations to predominate versus arithmetic
intensity. Compute-bound codes are the other way around. The choice of the hardware
platform for the code to run and the software optimizations to be performed are both
driven by that feature.

Around 75% of scientific codes are considered memory bound, where a wise

Computer Architecture Dept. 45 Fco. Nurudin Alvarez Gonzalez

handling of the memory hierarchy has to be carried out to achieve a high performance
implementation. In general, memory accesses have to be minimized, particularly those
targeting slow memories.

Firstly, and taking into account the importance of using the memory system correctly,
the original GPU implementation of NiftyReg will be described. We must clarify that this
implementation does not cover all the functionalities from its CPU counterpart.

In the library, memory management and organization belongs to those earlier
days of the CUDA model, and as such hides a great potential to further exploit and
push the capabilities of newer hardware. The way memory is managed up as:

Global memory arrays: most common way of sharing and retrieving information
with CUDA kernels. The allocation of those arrays is structured in a way that they
can easily be updated to make use of the unified memory model.

That model is not yet implemented in hardware and, thus, will unlikely lead to
performance benefits with the current generation of GPUs. However, the library
will benefit from the upgrade in the near future, both in terms of performance and
functionality, providing a code which is more readable and easier to maintain.

1-dimensional textures: used over global memory arrays, presumably due to
better performance on older platforms. Given the current trends in GPU com-
puting regarding memory management and how caching works on the texture
memory, it does not seem sustainable in the long run.

3-dimensional textures: used to manage the different medical images to per-
form the registration. Both when performing registration over 3D voxel volumes or
2D surfaces, they are represented as 3D textures.

3D textures are used for two reasons: (1) allowing the program to interpolate val-
ues among voxels and (2) to exploit texture memory caching. The performance
benefits, however, might fade away with the further generalization of GPU archi-
tectures.

46

‘University of Malaga School of Computer Engineering

5.3 Tested changes and attempted optimizations

5.3.1 1-dimensional textures. Usage and replacements.

Following from the previous analysis and under the assumption that the use of 1D
textures does not translate itself into performance gains and knowing that the L1 and
texture caches are unified in the Maxwell architecture [15], it was chosen as the first
attempted change.

To make use of textures in CUDA, they must be assigned data. Those data
may be bound to the texture as either a cudaArray object or by the use of normal
data vectors stored in global memory. An example of this process, in the context of
NiftyReg, can be found in _reg_resampling_gpu.cu for the host source code and
_reg_resampling_kernels.cu for the device. The following excerpts (from the same
files) depict each of the different tasks described:

//Bind deformationField to texture
NR_CUDA_SAFE_CALL (cudaBindTexture (0,
deformationFieldTexture,
+rdeformationFieldImageArray_d,
activeVoxelNumberxsizeof (float4)))

//Bind voxel mask to texture

NR_CUDA_SAFE_CALL (cudaBindTexture (0,
maskTexture,
+mask_d,
activeVoxelNumberxsizeof (int)))

Initially, the data is bound. Both deformationFieldImageArray_d and mask_d
are arrays properly stored in device memory, whose types are float4 and int, respec-
tively. The textures they are bound to have been declared at compile time as follows:

texture<float4, 1, cudaReadModeElementType> deformationFieldTexture;
texture<int, 1, cudaReadModeElementType> maskTexture;

After binding the data to the different textures, kernels that rely on them for fetch-
ing data can be launched. The use of textures implies no changes on the kernel launch
whatsoever. For instance, the reg_resampleImage3D_kernel kernel is launched by
simply executing:

Computer Architecture Dept. 47 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

reg_resampleImage3D_kernel «< Gl, Bl »> (xwarpedImageArray_d);

Inside the kernel, texture data will be accessed. In the case of the NiftyReg li-
brary, data from 1D textures are accessed using the tex1Dfetch function, which does
not perform any sort of filtering. It is due to this fact that 1D textures can be converted
to global memory arrays in a simple way. Examples of data fetching from two different
textures are:

__global__ void reg_resampleImage3D_kernel (float xresultArray)
{

const int tid2 = tex1lDfetch (maskTexture, tid);
//Get the real world deformation in the floating space

float4 realdeformation = texlDfetch (deformationFieldTexture,
tid) ;

Finally, the texture may be unbound until it is required again. The process is
analogous to binding them, as shown here:

NR_CUDA_SAFE_CALL (cudaUnbindTexture (deformationFieldTexture))
NR_CUDA_SAFE_CALL (cudaUnbindTexture (maskTexture))

Given that 1D textures are understood and that they can be replaced by an iden-
tical counterpart, the steps taken to do such thing will follow.

First, we must note that texture binding and unbinding will no longer be neces-
sary, and that way, we will modify the code to replace them by pointers to the global
memory arrays passed as arguments when the kernel is launched. The host code
should resemble the following code snippet:

void reg_resampleImage _gpu (nifti_image floatingImage,
float x+~warpedImageArray_d,
cudaArray xxfloatingImageArray_d,
float4 x~xdeformationFieldImageArray_d,
int x+mask_d,
int activeVoxelNumber,
float paddingValue)

Computer Architecture Dept. 48 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

//Bind deformationField to texture
//NR_CUDA_SAFE_CALL (

// cudaBindTexture (0,

// deformationFieldTexture,

// rdeformationFieldImageArray_d,

// activeVoxelNumberxsizeof (floatd)))

//Bind voxel mask to texture
//NR_CUDA_SAFE_CALL (

// cudaBindTexture (0,

// maskTexture,

// *mask_d,

// activeVoxelNumberxsizeof (int)))

NR_CUDA_SAFE_CALL (cudaMemcpy (floatingRealToVoxel_d,
floatingRealToVoxel_h,
3xsizeof (float4),
cudaMemcpyHostToDevice))

reg_resampleImage3D_kernel «< Gl, Bl »>
(rwarpedImageArray_d,
floatingRealToVoxel_d,
~rdeformationFieldImageArray_d,
*mask_d) ;

//NR_CUDA_SAFE_CALL (cudaUnbindTexture (deformationFieldTexture))
//NR_CUDA_SAFE_CALL (cudaUnbindTexture (maskTexture))

Code that is no longer required has been commented out to allow for an eas-
ier comparison. In these terms, the texture declarations for kernels to access will no
longer be needed and they may be removed. Furthermore, the kernels using them will
need to be modified in order to add the newly added pointers to global memory as
arguments. Texture fetching will be replaced by common array accesses. The results
of these changes on device code are depicted below:

Computer Architecture Dept. 49 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

//texture<float4, 1, cudaReadModeElementType> deformationFieldTexture;
//texture<int, 1, cudaReadModeElementType> maskTexture;

__global__ void reg_resampleImage3D_kernel (float xresultArray)
{

const int tid2 = maskTexture[tid];
//const int tid2 = texlDfetch (maskTexture, tid);

//Get the real world deformation in the floating space

float4 realdeformation = deformationFieldTexture[tid];
//float4 realdeformation = texlDfetch (deformationFieldTexture,
// tid);

Our hypothesis appeared to be wrong, with the use of global memory over 1D
textures appearing about twice as slow. We then considered that it could be the result
of read-only texture memory versus memory that the compiler cannot identify as read
only. As such, we attempted to make use of pointer aliasing (via the const and restrict
keywords). The results are shown in Figure 5.1. R1, R2 and RS3 are, respectively, exe-
cutions with the original library using 1D textures, with the modified library using global
memory only and, finally, with global memory using pointer aliasing. The bars repre-
senting minimum, average and maximum execution times overlap. Standard deviation
among different executions is represented as the range line centered between aver-
age and maximum execution times. The shown kernels are just a sample as we have
removed 1D textures all across the library with similar results.

Computer Architecture Dept. 50 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Execution Time (ms)

¢ h
E R1 Maximum EEE R2 Maximum EEE R3 Maximum
K5 BN R1Average B R2Average HEE R3 Average
B R1 Minimum [R2 Minimum EZ3 R3 Minimum

Figure 5.1: Performance results for our texture conversion. Times are shown
in milliseconds for the minimum, average and maximum of the three ver-
sions R1, R2 and R3 on a complete set of kernel launches within sev-
eral NiftyReg executions. kl: reg_spline_getApproxDeformationField3D; k2:
_reg_ApplyConvolutionWindowAlongX_kernel; k3: reg_resampleImage3D_kernel;
k4: reg_spline_getApproxSecondDerivatives3D; k5: reg_splinegetApproxBending
EnergyGradient3D.

Computer Architecture Dept. 51 Fco. Nurudin Alvarez Gonzalez

University of Malaga

School of Computer Engineering

Kernel H Metric R1 R2 R3

Minimum: 0.13 0.19 0.20

Average: 0.50 0.67 0.66

li Def ionField3D

reg_spline_getDeformationField3 Maximum: 6.69 8.97 8.63
Launches: 8450 8450 7850
Minimum: 0.08 0.15 0.20
. . Average: 0.34 0.77 0.92
_reg_ApplyConvolutionWindowAlongX_kernel Maximum: 390 957 10.45
Launches: 800 800 750

Minimum: 0.07 0.07 0.07
Average: 0.31 0.31 0.30

lel 3D k 1
reg_resampleimagesh)_kerne Maximum: 3.93 5.13 4.50
Launches: 8450 8450 7850
Minimum: 0.04 0.03 0.03
Average: 0.06 0.05 0.05
li tA S dDerivatives3D

reg_spline_getApproxSecondDerivatives Maximum: 0.28 0.40 0.30
Launches: 8450 8450 7850

Minimum: 0.04 0.06 0.06
reg_spline_getApproxBendingEnergyGradient3D_kernel D?Zi:riifn 83513 85(1) (2)31
Launches: 800 800 750

Table 5.1: Summary of the obtained results of R1, R2 and R3.

Computer Architecture Dept. 52 Fco. Nurudin Alvarez Gonzalez

5.3.2 3-dimensional textures. Usage and replacements.

After obtaining those results, we decided that a similar analysis on 3D textures would
make little sense, as no significant performance gains could be expected. However,
the kernels were still studied, since we had believed that the use of 3D texturing was
due to a need to interpolate values among voxels. In the contrary, we discovered that
in most kernels the coordinates used were shifted and always placed at the center of
the voxels, yielding the value of the voxel alone. Furthermore, access to the different
voxels was linearized in most cases.

We will now proceed in a similar fashion to the one followed to describe the usage
and replacement of 1D textures in terms of their 3D counterparts. For the shake of
succintness, only tasks and sentences deemed as different enough will be described.

Following the same scheme, data must be bound to the texture. This process
(performed on the host side, in _reg_resampling_gpu. cu) is, itself, very similar to the
one described for 1D textures. However, the filtering mode, addressing and normal-
ization options are also set up. These are not specific to 3D textures (and could be
applied to any kind of textures), but in the context of NiftyReg it is only 3D textures that
use them.

// Bind the required textures
referenceTexture.normalized = true;
referenceTexture.filterMode cudaFilterModelLinear;

referenceTexture.addressMode[0] = cudaAddressModeWrap;
referenceTexture.addressMode[1] = cudaAddressModeWrap;
referenceTexture.addressMode[2] = cudaAddressModeWrap;

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
NR_CUDA_SAFE_CALL (cudaBindTextureToArray (referenceTexture, xreference_d, <
channelDesc))

Data is bound to a texture which, in this case, is declared to have 3 dimensions.
Kernel launchers, as in the previous case, do not have to be modified.

texture<float, 3, cudaReadModeElementType> referenceTexture;

The data is accessed using the coordinates of the desired voxel. In the particular
case of NiftyReg, these coordinates are integers shifted by 0.5 on all axes, returning
the exact value of the voxel. Since the coordinates have been normalized, they ought
to be relative to the length of each dimension.

53

University of Malaga School of Computer Engineering

_ _global__ void reg_getSquaredDifference3D_kernel (float *squaredDifference<«

)
{

const int z = index/ (imageSize.xximageSize.y);

const int tempIndex = index — zximageSize.xximageSize.y;
const int y tempIndex/imageSize.Xx;

const int X tempIndex — y+imageSize.Xx;

float difference = tex3D (referenceTexture,
((float)x+0.5f)/ (float) imageSize.x,
((float)y+0.5f)/ (float) imageSize.y,
((float)z+0.5f)/ (float) imageSize.z);

We believed that filtering and normalization could produce performance benefits
if removed on kernels that required neither. Upon testing, however, performance re-
mained intact. It was decided, then, to attempt to focus on the arithmetic intensity of
the kernels instead, expecting to be able to find performance improvements.s

Computer Architecture Dept. 54 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Exploiting the computing power of the

GPU in NiftyReg

6.1 GPU computing power: underlying ideas

Once memory management is reasonably handled, optimization efforts must focus on
making full use of the computing power of the GPU. In these terms, kernels must be
adjusted in order to make use of Thread Level Parallelism (TLP) and Instruction Level
Parallelism (ILP). Furthermore, the effect of load/store operations must be alleviated,
aiming to improve the amount of operations per loaded datum. Finally, specific CUDA
functions, devised to perform certain operations within less cycles, must also be used
when attempting to reach peak performance [20].

In CUDA, thread level parallelism is given by the architecture, which guarantees

Computer Architecture Dept. 55 Fco. Nurudin Alvarez Gonzalez

that threads will be independent with the exception of inter-block synchronization. The
potential of TLP has to be obtained by selecting the most appropiate block size for the
operations that are required.

Instruction level parallelism refers to available parallelism among independent
instructions. CUDA devices exploit ILP in order to both hide latencies and obtain higher
performance by interleaving operations that do not depend on one another.

The amount of ILP that can be deployed is, first and foremost, dependant on the
problem that has to be solved. However, there are several heuristics that can be tried
to exploit ILP in order to make full use of the compute capabilities of the GPU. In the
context of NiftyReg, the following were applied:

Static branch precalculation
Loop unrolling

Instruction reordering

The CUDA library contains certain functions mostly designed for graphics pro-
cessing where speed is preferred, which are performed faster at the cost of being less
precise. Furthermore, there are also CUDA intrinsics such as the family of FMA in-
structions, which allow the device to carry out a fused multiply add operation with a
single instruction and greater precision. The usage of both fast math functions and the
architecture-specific instructions improves efficiency with few changes.

6.2.1 Optimizations for the reg_tools kernels

With the intention to optimize computing bottlenecks, we profiled NiftyReg in order

to decide which kernels should be our main aim. As a result, we focused on the

_reg_ApplyConvolutionWindowAlong kernels located in reg_tools_kernels.cu. The three
of them are very similar from one another and, because of that, a successful optimiza-

tion on any of the three is relatively simple to apply to the others. Our changes and

speedups will be with respect to the original implementation of the _reg_ApplyConvo-

lutionWindowAlongX kernel, though similar results and optimization schemes apply on

the Y and Z axes. A simplified depiction of the kernels can be found below, in C-like

pseudocode:

56

University of Malaga School of Computer Engineering

__global___ void _reg_ApplyConvolution... (float4 xsmoothedImage,
int windowSize,
float4 xgradientImageTexture,
float xconvolutionKernelTexture) {
if (tid < c_VoxelNumber) {

// Index and coordinate calculations

float4 finalValue;
float3 Y, t, c;
for (int i=0; i<windowSize; i++) {
if (—1<X && Xx<imageSize.Xx) {
float4 gradientValue = texlDfetch(gradientImageTexture, <
index) ;
windowValue = texlDfetch (convolutionKernelTexture, 1i);

// Kahan summation

Y gradientValue x windowValue — c;
t finalValue + Y;

c = (t — finalValue) — Y;

finalValue = t;

}
index++; x++;
}
smoothedImage[tid] = finalValue;
}

return;

After studying the kernels and what they usually received as parameters, con-
volution windows with sizes ranging from 20 to 80 elements were observed. Because
of this, we focused on optimizing the loop. Our first approach was to precalculate the
inner if to reduce the amount of instructions within the loop and remove the cost of per-
forming the branching jumps. To do so, minimum and maximum possible values within
the structure for a given thread were computed and used as the indexes on the for loop,
as follows:

int low= max(x, O0);

int high=min (x+windowSize, imageSize.Xx);

int windowIndex=low—X;

index += windowIndex;

for (;; low < high; low++) {
float4 gradientValue = texlDfetch (gradientImageTexture, index++);
windowValue = texlDfetch (convolutionKernelTexture, windowIndex++);

Computer Architecture Dept. 57 Fco. Nurudin Alvarez Gonzalez

Branch precalculation did not result in an speedup, though we suspected it could
produce better results than the original implementation in case loop unrolling was per-
formed (by exploiting ILP). As such, it was not completely ruled out and was, rather,
left as a parallel effort.

Afterwards we studied the Kahan [6] summation being performed. Kahan sum-
mation is a standard way of performing a sum of many numbers, reducing rounding
errors in the process.

However, the sequentiality of the algorithm and dependence among instructions
partially hinders GPU performance (which is unable to exploit ILP). In an attempt to
improve performance while mantaining precision, an error-accumulative version of
the Kahan summation was implemented, known as Pichat [6] summation. This allowed
us to reorder operations as shown below, allowing for instruction interleaving in order
to exploit ILP:

float4 finalValue;

float3 Y, t, c;

for (;; low<high; Tlow++) {
float4 gradientValue = texlDfetch (gradientImageTexture, index++) ;
windowValue = texlDfetch (convolutionKernelTexture,windowIndex++) ;

// Accumulative Kahan summation
// (t and Y can be interleaved now)
t = finalValue;
Y = gradientValue * windowValue;
finalValue += Y;
c += (finalValue — t) — Y;

}

finalValue —= c;

The changes resulted in a 1.5x speedup (keeping the if) and 1.22x (removing
the if) with respect to the original implementation. A slight precision loss was empiri-
cally observed after the change. Round up error depends, however, in the data to be
processed, so given the subtle change we believe it will not be significant in the gen-
eral case. Using Pichat summation also resulted in more kernel calls, decreasing the
positive effect of the changes.

Observing the PTX code for the body of the loop, which is depicted below, hinted
us that using fused multiply add operations could be useful in this context.

58

University of Malaga School of Computer Engineering

BB2_3:

1d.global. f32 $f31, [%rdl8];

1d.global.v4.f32 $f32, %$f33, £f34, %f35}, [srdl7];
mul.f32 $f39, £f32, $f31;

mul.f32 $f40, %33, $f31;

mul.f32 $f41, <f34, $f31;

add. f32 $f63, %f6, %f39;

add. f32 $f60, %f5, $f40;

add. f32 $f57, %f4, %f4l;

setp.lt.s32 %p3, %r56, =5r8;

mov . f32 $f56, %f57;
mov . f32 %59, %$f60;
mov . f32 $f61, %f63;
mov . f32 $sf62, $f61;

@%p3 bra BB2_3;

Since the original focus of the kernels seemed to be precision over performance,
we implemented a FMA-based version of Pichat summation (v5). The code changes
are depicted below:

float4 finalValue;

float3 t, c;

for (;; low<high; low++) {
float4 gradientValue = texlDfetch (gradientImageTexture, index++);
windowValue = texlDfetch (convolutionKernelTexture,windowIndex++) ;

// Accumulative Kahan summation with FMA ops
t = finalValue;
finalValue = fmaf (gradientValue, windowValue, finalValue);
¢ —= fmaf (gradientValue, windowValue, t.x — finalValue.x);
}
finalValue —= c;

An speedup of 1.5x (keeping the if) with respect to the original implementation
was obtained. The speedup without the if was lower than its FMA-less counterpart,
being 1.15x only. The same effect as before was observed on the number of kernel
launches, which increased and hindered the performance gains from the optimization.
Finally, and going against our expectations, precision did not improve from our previous
implementation.

In order to produce a faster version without a loss in precision (observed with
Pichat summation), we implemented the original Kahan summation algorithm with FMA
as depicted below:

Computer Architecture Dept. 59 Fco. Nurudin Alvarez Gonzalez

float4 finalValue;

float3 t, c;

for (;; low<high; Tlow++) {
float4 gradientValue = texlDfetch (gradientImageTexture, index++);
windowValue = texlDfetch (convolutionKernelTexture,windowIndex++) ;

// Kahan summation

t = finalValue;

finalValue = fmaf (gradientValue, windowValue, finalValue) + c;
c = fmaf (gradientValue, windowValue, t — finalValue.Xx);

Performance with respect to the original implementation was 1.3x keeping the
if and 1.13x without it. In this case, however, kernel launches decreased (indicating a
more rapid convergence towards the result). Precision changed again, being worse in
this case when compared to the CPU but closer to the original GPU implementation
(that was to be optimized). In these terms, the hypotheses about the treated data being
the main driving factor in terms of the precision yielded on the result seemed to hold.

Finally, and in order to test all the possible combinations, we implemented the
kernel performing the sum with only FMA operations and without any error correction
algorithms. This was done under the assumption that the increased accuracy of the
FMA operations would be enough to overcome the rounding errors being carried over
through the sum. The resulting implementation is shown below:

float4 finalValue;

for (;; low<high; low++) {
float4 gradientValue = texlDfetch (gradientImageTexture, index++);
windowValue = texlDfetch (convolutionKernelTexture,windowIndex++) ;

finalValue = fmaf (gradientValue,
windowValue,
finalValue) ;

Although the speedup in terms of kernel execution times was not very high (1.21x
with if and 1.13x without), the FMA implementation resulted in a higher application
speedup due to a reduced amount of kernel executions (which was the lowest among
all the attempted changes). What is more, it was also more precise than the other
schemes, which explained the change in kernel launches. Our previous concerns about
the data-dependency in terms of the accuracy of the results still apply, and ought to be
considered when deciding which scheme to use.

60

University of Malaga School of Computer Engineering

To complete our study, we decided to apply loop unrolling over the main loop,
in an attempt to squeeze performance as much as possible. We hypothesized that
the optimal unroll factor would be 20, since all observed kernel windows seemed to
have a size of a multiple of 20 plus 1. Since unrolling is equivalent semantically to
common loops, the amount of kernel launches did not vary. However, kernel execution
times changed, with most kernels seemingly performing better with 5 unrolls over 20.
The best performing implementation pre-unrolling (FMA only with ifs) reached higher
speedups (1.36x) with 5 unrolls that, paired with the lower amount of kernel launches,
resulted in NiftyReg running 1.1x times faster globally.

Figure 6.1 and Figure 6.2 show the performance and precision changes with
respect to the original implementation. Only X-axis kernel data is shown, though similar
results were observed for Y-axis and Z-axis kernels.

Executlon T|me ms)

6
vO
312 .

Root-Mean-Square Difference
45 45.2 45.4 45.6

vi

v0
312

452112)]

vi
v2 Ms2112]]
360 v

[45.5536]

v3
[45.3961]

v3
444

=== R1Maximum [R2 Maximum B R3 Maximum —— Original GPU version RMS error with respect to CPU.
I R1Average [R2Average M R3Average

B R1Minimum =3 R2 Minimum E=3 R3 Minimum 3 V, GPU version RMS error with respect to CPU.

Figure 6.1: Performance comparison with Figure 6.2: Accuracy comparison with re-
respect to the original implementation. spect to the original implementation.

In summary, and given the obtained results, the FMA only implementation seems
preferable on all grounds. However, when the aim is accuracy, it could be the case
that either FMA-Kahan and FMA-Pichat perform better in the general case. A detailed
overview of the results can be found in Table 6.1. All speedups are relative to the orig-
inal implementation. The table identifiers refer respectively to the 4 better performing
kernels, with those being FMA-only with if (v0), FMA-only without if (v1), FMA-Kahan
with if (v2) and Pichat with if (v3).

Computer Architecture Dept. 61 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Optimization Unroll factor Kernel time Launches GPU error CPU error Kernel speedup Weighted speedup

0 0.45 1.00x 1.00x

Original 5 0.39 372 0.00 45.39 1.15x% 1.15x%

20 0.46 0.98x 0.98x

0 0.30 1.50x 1.26x

Pichat with if 5 0.27 444 20.86 45.40 1.67x 1.40x
20 0.34 1.32x 1.11x

0 0.37 1.22x 1.45x

Fma with if 5 0.33 312 20.89 45.21 1.36x 1.63x

20 0.39 1.15x% 1.38x

0 0.30 1.50x 1.26x

Pichat+fma with if b) 0.27 444 20.86 45.40 1.67x 1.40x
20 0.27 1.67x 1.40x

0 0.34 1.32x 1.37x

Kahan+fma with if 5 0.30 360 17.97 45.55 1.50x 1.55%
20 0.35 1.29x 1.33x

0 0.48 0.94x 0.94x

Original without if 5 0.40 372 0.00 45.39 1.13x 1.13x
20 0.36 1.25x% 1.25x%

0 0.37 1.22x 1.02x

Pichat without if 5 0.31 444 20.86 45.40 1.45% 1.22x
20 0.30 1.50x 1.26x

0 0.40 1.13x 1.34x

Fma without if 5 0.38 312 20.89 45.21 1.18x 1.41x
20 0.36 1.25x% 1.49x

0 0.39 1.15x 0.97x

Pichat+fma without if 5 0.30 444 20.86 45.40 1.50x 1.26x
20 0.33 1.36x 1.14x

0 0.40 1.13x 1.16x

Kahan+fma without if 5 0.34 360 17.97 45.55 1.32x 1.37x
20 0.38 1.18x 1.22x

Table 6.1: Summary table containing the RMS error of the results obtained on GPU with
the ones obtained on the original GPU and CPU implementations, average execution times
(in ms), amount of kernel launches, kernel time speedup and composite speedup (kernel
time * amount of launches) for the reg ApplyConvolutionWindowAlongX kernel.

Computer Architecture Dept. 62 Fco. Nurudin Alvarez Gonzalez

6.2.2 Optimizations for the reg _localTransformation kernels

Upon achieving reasonable speedups in the _reg_ApplyConvolutionWindowAlongAxis
family of kernels, we profiled the application again looking for other bottlenecks. Two
kernels seemed to be particularly heavy in terms of time spent on them, both reg_spline
_getDeformationField3D and reg_spline_getApproxSecondDerivatives3D on the set of
_reg_localTransformation kernels.

After a closer inspection of the _reg_localTransformation kernels, we noticed a
shared-memory filling pattern. The code, in order to atenuate the effects of accessing
data stored in global memory in older architectures, initialized shared memory with val-
ues that were preset on a few functions. Since it did not seem to produce any kind of
improvements in terms of performance, it was replaced with an equivalent implemen-
tation using constant arrays.

As performance remained unchanged, no code will be shown. It must be noted,
however, that both maintainability and readability improved, as the resulting code was
simpler and relied only on basic constructs (data typed as const __device_).

Given the size of the code, we aimed to find small performance improvements
that would apply to all kernels. Most of them made use of vector types with operators
and functions defined in NiftyReg. Because of this, and knowing that certain equivalent
operations using FMAs had a faster performance (as depicted below), we aimed to find
include fused multiply add operations where possible:

// A = B — C (not using FMA)
Y.x = gradientValue.x windowValue — c.x;
/+ Resulting PTX code (trimmed)

mul.£32 $£39, %$£31, %£38;
sub.£32 %$£40, %£39, %f51;
*/

// A * B — C (using explicit FMA)
Y.x = fmaf (gradientValue.x, windowValue, —c.Xx);
/* Resulting PTX code (trimmed)

neg.f32 $£39, %£f51;
fma.rn.£32 %$f40, %£f31, %£38, %$£39;
*/

63

University of Malaga School of Computer Engineering

Testing different possible operand combinations, we hypothesized that the com-
piler is not always able to detect the presence of an implicit FMA operation when using
vector types. Because of this, implementing FMA operations explicitly seemed like a
reasonable optimization method. An example of the changes is shown below:

// Original implementation (reg_spline_getApproxBendingEnergy3D_kernel)
float4d XX = secondDerivativesTexture[index++];

XX=XX*XX;

floatd4 YY = secondDerivativesTexture[index++];
YY=YY~*YY;

float4 ZZ = secondDerivativesTexture[index++];
272=77+1Z;

float4 XY = secondDerivativesTexture[index++];
XY=XY XY ;

float4 YZ = secondDerivativesTexture[index++];
YZ=YZ~+YZ;

float4 XZ = secondDerivativesTexture[index];
XZ=XZ+XZ;

penaltyTerm[tid]=

XX.x + XX.y + XX.z +
YY.x + YY.y + YY.z +
Z72.x + ZZ.y + ZZ.z +
2.Fx(XY.x + XY.y + XY.z +
YZ.x + YZ.y + YZ.z +
XZ.x + XZ.y + XZ.z);

// Alternate FMA based implementation (4
reg_ spllne getApproxBendingEnergy3D_kernel)
float4d XX = secondDerivativesTexture[index++];
float4 YY = secondDerivativesTexture[index++];
float4 ZZ = secondDerivativesTexture[index++];
floatd4d XY = secondDerivativesTexture[index++];
[1
[

float4 YZ = secondDerivativesTexture[index++
floatd4d XZ = secondDerivativesTexture[index];

4

penaltyTerm[tid]=

fmaf (fmaf (XY.x, XY.x, fmaf (XY.y, XY.y, fmaf (XY.z, XY.z,
fmaf (YZ.x, YZ.x, fmaf(YZ.y, YZ.y, fmaf(YZ.z, YZ.z,
fmaf (XZ.x, XZ.x, fmaf (XZ.y, XZ.y, XZ.z » XZ.z2)))))))),
2.0f,
fmaf (XX.x, XX.x, fmaf (XX.y, XX.y, fmaf (XX.z, XX.z,
fmaf (YY.x, YY.x, fmaf(YY.y, YY.y, fmaf(YY.z, YY.z,
fmaf (ZZ.x, ZZ.x, fmaf(ZZ.y, ZZ.y, ZZ.z x ZZ.z))))))))
)

Computer Architecture Dept. 64 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

We later noticed that FMA placement depended on whether compilation was
performed in debug mode or not. PTX code obtained in release mode contained both
inlined operators and FMA instructions. A comparison between the PTX produced by
the original version and ours is shown below:

// PTX code for the original implementation
// All data is loaded and then operations are performed

ld.global.v4.f32 {sfl, sf2, %f3, %f4}, [%rd6];
ld.global.v4.f32 {$f38, %f39, %f40, %f41}, [%rd6+80];
fma.rn.f32 $f45, %fl, %fl, 3f8;

fma.rn.f32 sfd6, %3, 3f3, %$f45;

fma.rn.f32 $sf47, %f9, %f9, %f46;

fma.rn.f32 $f59, $f39, %39, %$f58;

fma.rn.f32 60, %$f40, %40, %f59;

fma.rn.f32 $sf61, $f60, 0f40000000, 3f52;

st.global. f32 [$rd8], %f61;

// PTX code for the FMA based implementation
// Data loads and operations are interleaved

ld.global.v4.f32 {sfl, %f2, %f3, %f4}, [%rd6+80];
mul.f32 $f8, %f3, %f3;

fma.rn.f32 $f9, sf2, %f2, %f8;

fma.rn.f32 $f10, %fl1, sfl, %f9;

ld.global.v4.f32 $f11, %f12, f13, %fl4}, [%rd6+64];
fma.rn.f32 $f18, %fl13, $fl1l3, 3f10;

fma.rn.f32 $f19, $fl12, xfl12, %f18;

fma.rn.f32 $f20, $fll, $fll, 3f19;

st.global. f32 [$rd8], %f62;

Computer Architecture Dept. 65 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

In this case, the resulting code for our implementation did not allow for full ILP
deployment since load and arithmetic operations appear in a dependent sequence.
Since our aim was to obtain code that performed such interleaving (which was, instead,
produced by the compiler), we deemed these changes as both time consuming and not
useful.

Given the few improvements obtained, our efforts pivoted towards exploiting spa-
tial locality on kernels where it was possible. First, we studied the reg_spline_get Ap-
proxBendingEnergyGradient3D kernel. The memory access pattern appeared to be
very regular, consisting on a 3x3x3 cube being traversed per thread. Furthermore, the
basis value matrices, which weight the voxels of the cube depending on their position,
are either fully or inverse-sign symmetrical. The code, simplified for clarity, is shown
below:

// Thread, coordinate and related computations
int X,Y,z;

// Iterate over the 3D cube
for (int c=z—-1; c<z+2; ++C){
for (int b=y—1; b<y+2; ++b) {
for (int a=x—1; a<x+2; ++a) {
if(—1<a && —1<b && —1<C && a<gridSize.x && b<gridSize.y && c<¢&
gridSize.z) {
unsigned int indexXYZ = 6% ((cxgridSize.y+b)xgridSize.x+a);

gradientValue += secondDerivativesTexture[indexXYZ++]
xxBasis3D[coord]; // XX

gradientValue += secondDerivativesTexture[indexXYZ++] » <
yyBasis3D[coord]; // YY

gradientValue += secondDerivativesTexture[indexXYZ++] » <
zzBasis3D[coord]; // 7%

gradientValue += secondDerivativesTexture[indexXYZ++] » <
xyBasis3D[coord]; // XY

gradientValue += secondDerivativesTexture[indexXYZ++] » <
yzBasis3D[coord]; // YZ

gradientValue += secondDerivativesTexture[indexXYZ++] x <
xzBasis3D[coord]; // XZ

*

<_>

}
coord++;

nodeGradientArray[tid] += gradientValue;

Computer Architecture Dept. 66 Fco. Nurudin Alvarez Gonzalez

‘University of Malaga School of Computer Engineering

It seemed that shared memory could be used to avoid computing one of the 3x3
slices (located one position ahead in the x axis) by computing the first two and sharing
the third one with the thread two positions behind. An implementation for such scheme
was developed, taking into account the need for a different traversal on the basis.

The first changes (shown below) included manually unrolling the loops to work
on each X-axis slice, and storing the first slice and computing the third (taking into
account the negative symmetry on some of the basis matrices).

// Compute the first (x—1) slice
int a = x—1;
int coord = 0;
for (int c=z—1; c<z+2; ++cC){
for (int b=y—1; b<y+2; ++b) {
if(—1<a && —1<b && —1<c && a<gridSize.x && b<gridSize.y && c<¢+
gridSize.z) {
unsigned int indexXYZ = 6x ((cxgridSize.y+b)«gridSize.x+a);

gradientValue += secondDerivativesTexture[indexXYZ++] *<
xxBasis3D[coord]; // XX

gradientValue += secondDerivativesTexture[indexXYZ++] %<«
yyBasis3D[coord]; // YY

gradientValue += secondDerivativesTexture[indexXYZ++] x*<+

zzBasis3D[coord]; // 7%
gradientValueNeg += secondDerivativesTexture[indexXYZ++] ¢
xyBasis3D[coord]; // XY
gradientValue += secondDerivativesTexture[indexXYZ++] <
yzBasis3D[coord]; // YZ
gradientValueNeg += secondDerivativesTexture[indexXYZ++] *<+
xzBasis3D[coord]; // XZ
}
// Since we work over the X axis, we traverse the basis matrices <«
on Y and 7%
coord+=3;
}
}

// Store on shared memory, separating those

// that are neg—sign symmetrical so the value can be computed
shMem [threadIdx.X] = gradientValue;

shMem [threadIdx.Xx+blockDim.x] = gradientValueNeg;

// Compute our total sum
gradientValue += gradientValueNeg;

Computer Architecture Dept. 67 Fco. Nurudin Alvarez Gonzalez

Similar code to compute the center slice (a = x and coord = 9) was added. Then,
in the case that the thread was at the edge of the image or was the last thread in the
block, the last slice was computed. This had to be done due to the fact that sharing
data was not possible in this case. In the other case, and as depicted in the following
code, the slice is taken from shared memory and added to the total sum:

// Wait for the threads to send their data
__syncthreads () ;

// Add the next slice, if it has been computed (accounting for neg. ¢

symmetry)
if (X < nextX && z == nextZ && y == nextY && threadIdx.X + 2 < blockDim.X)
nextSubGradientValue=shMem[threadIdx.x+2] — shMem[threadIdx.X+2+<

blockDim.X] ;

gradientValue += nextSubGradientValue;

We expected those efforts to translate into reasonable performance gains, as we
avoided 9 global memory accesses per thread. However, after finishing our implemen-
tation and measuring performance, the results were not very noticeable. Figure 6.3
depicts the obtained results with each of the schemes and variations (loop unrolling,
shared memory constant removal) taken into account.

Although the amount of kernel launches increased slightly, the overall benefit of
the changes are clear: kernel execution times are reduced by a 2x factor. The amount of
error when comparing the result of our implementation to the CPU version of NiftyReg
also decreased. This, however, and as been echoed throughout our description of the
results obtained, does not mean that in the general case the results should be better.
The way in which data is accessed affects rounding error buildup, and different images
and implementations will differ in the amount of error on a per-case basis. A graph
comparing the amount of error with respect to v0 between v1, v2 and v3, v4 is found in
Figure 6.4.

68

University of Malaga School of Computer Engineering

Executlon Tlme ms)
-0.2 12

Vo
372 100%

vl
372

VZ _

372
v3
v4

= 2: ',;A::r';:m The percentages shown are relative to the execution
B R1 Minimum USing the original implementation (v0).

70%

80%

Figure 6.3: Performance results for the set of performed changes on the reg spline get
ApproxBendingEnergyGradient3D kernel. Each of the different versions is accompanied by
the number of kernel launches that NiftyReg performs. vO corresponds to the original im-
plementation. v1 to the original implementations with constants moved to constant memory,
with v2 being v1 after loop unrolling. v3 corresponds to our final implementation, exploiting
basis matrix symmetry and shared memory; v4 is the unrolled version of v3.

Root-Mean-Square Difference
4455 44.88 45.21 45.54

A
[45,3947]

v2
[45,3947]

v3
[44,8966] |

v4
[44.8966] |

—— Original GPU version RMS error with respect to CPU.
=3 V. GPU version RMS error with respect to CPU.

Figure 6.4: RMS error results for the set of performed changes on the reg spline get
ApproxBendingEnergyGradient3D kernel.

Computer Architecture Dept. 69 Fco. Nurudin Alvarez Gonzalez

University of Malaga School of Computer Engineering

Conclusions

The implementation of our hypetheses and changes, as we have been explaining
through the two previous chapters, impacted performance in different ways.

In regards to memory management, the results suggest that NiftyReg does not
benefit from replacing data stored as CUDA textures as global memory arrays (using
the latest iteration of the CUDA model, Maxwell). The improvement that we expected,
based on the linearized use of texture memory and the misuse of the features given by
textures, was not present. Pointer aliasing on the global memory arrays to provide the
compiler additional information indicating that data would be read-only did not result in
an improvement in performance either. We believe that it might be due to the fact that
texture caching patterns are still more advanced than their general counterparts, even
with L1 cache and texture memory being unified in the aforementioned generation.
Future iterations of the CUDA model (which diverges further and further from classical
graphics processing to GPGPU) might produce performance benefits in NiftyReg when

Computer Architecture Dept. 71 Fco. Nurudin Alvarez Gonzalez

not using textures. More work will be needed, particularly on upcoming platforms im-
plementing new memory architectures (such as the physical implementation for unified
memory using stacked RAM).

Whilst focusing on computational intensity, we obtained a wide set of results and
conclusions, related to both performance and accuracy. When working on convolu-
tion kernels, and in line with what we expected, we found that the original summation
scheme (Kahan summation) could be replaced with either Pichat summation or FMA
summation without any sort of rounding error correction. In the end, using FMA op-
erations alone proved to be the best solution as it resulted in the highest accuracy
with respect to the CPU implementation and the best performance. We noted that ac-
curacy results could be particularly dataset-dependent (although, by nature of how it
is performed, we believe that FMA-only implementations would still outperform other
schemes).

Delving further into those kernels, and against our first intuition, the optimal un-
rolling factor for the summation over the convolution window was found to be 5. This
went against our initial reasoning, which assumed higher unrolling factors (of 20 in
particular) would perform better due to the size of the windows being multiples of 20
plus 1. Similarly negative results were found with respect to if removal, which did not
improve performance despite our belief that it would allow the kernel to better deploy
instruction level parallelism.

Following from the impact of the FMA implementation in the convolution kernels,
we attempted to study if the nvec compiler did not make full use of FMA operations in
the Local Transformation kernels. We found a case in which FMA operations were not
used (that was, in fact, multiply and subtract), but in general the compiler outdid our
efforts.

Finally, we attempted to obtain performance gains by exploiting the symmetrical
nature of a problem, which allowed for data precalculation and sharing for threads
within a block. By unrolling, restructuring and breaking up a volume when calculating a
gradient taking into account the symmetry of the basis matrices, we reduced the kernel
computation time to around half of the original time.

La implementacién de nuestros cambios e hipétesis, tal y como se ha ido exponiendo
a lo largo de los dos ultimos capitulos, tuvo distintas formas de afectar al rendimiento
total.

72

En lo referido a la gestidn y organizacidén de la memoria, los resultados sugieren
que NiftyReg no se beneficia al reemplazar el uso de texturas CUDA con arrays en
memoria global (usando la ultima iteracion del modelo CUDA, Maxwell). La mejora
que esperabamos, basandonos en el uso linearizado de la memoria de texturas y el
mal uso de las caracteristicas que éstas proporcionan, no se logré. El etiquetado de
punteros a los arrays en memoria global para proporcionar informacion al compilador
sobre los datos, de solo lectura, tampoco resulté en una mejora de rendimiento. En-
tendemos que dicho resultado se puede deber a que los patrones de cacheado de tex-
turas siguen siendo mas avanzados que sus homologos de caracter general. Versiones
futuras del modelo CUDA (que diverge progresivamente desde el procesamiento tradi-
cional de graficos a un GPGPU puro) podrian producir mejoras de rendimiento en
NiftyReg cuando no se haga uso de la memoria de texturas. Sera necesario mas tra-
bajo, particularmente en futuras plataformas que implementen nuevas arquitecturas
de memoria (tales como implementaciones del modelo de memoria unificada usando
stacked RAM).

Focalizandonos en la intensidad computacional obtuvimos un amplio conjunto
de resultados y conclusiones, relacionados tanto con el rendimiento en tiempo como
con la precisién. A partir del trabajo sobre los kernels de convolucién, y siguiendo la
linea de lo esperado, encontramos que el método original de sumatorio (sumatorio
Kahan) podia ser reemplazado tanto por el método de sumatorio Pichat como por
un método sin correccion de errores usando Unicamente operadores FMA. Al final
concluimos que el uso de operaciones FMA sin ningun tipo de correccion adicional
era la mejor solucién, dado que produjo tanto una mejora en término de los tiempos
de ejecucién como un decremento del error en comparaciéon con la version original
en CPU. Remarcamos, a modo de punto a considerar, que los resultados en términos
de precision pueden ser particularmente dependientes del conjunto de datos a tratar
(aunque, por la naturaleza de como se realiza, creemos que usar FMAs Unicamente
seguiria siendo el método ganador).

Profundizando mas en estos kernels, y contra nuestra primera intuicién, encon-
tramos que el factor de desenrollado de bucle éptimo sobre la ventana de convolucién
era 5. Este resultado iba a la contra de nuestro razonamiento inicial, que asumia que
factores de desenrollado mayores (de 20 en particular) producirian un mayor beneficio
debido a que el tamafo de las ventanas era de multiplos de 20 mas 1. De forma similar
encontramos que el precalculo y la eliminacion de ifs no produjo mejoras sustanciales
pese a nuestra creencia de que permitiria al kernel desplegar de forma mas efectiva
el paralelismo a nivel de intruccion.

Debido al impacto positivo de la implementacién basada en FMAs en los ker-

73

nels de convolucién, intentamos estudiar si el compilador nvcc no las aprovechaba
completamente en los kernels de Local Transformation. Encontramos un caso en que
las operaciones FMA no eran detectadas (que era, en realidad, multiplicacion y resta)
pero en general el compilador producia cédigo superior.

Finalmente, intentamos obtener mejoras de rendimiento mediante gracias al
aprovechamiento de la simetria propia del problema, que permitia precalcular y com-
partir datos entre hilos de un bloque. Mediante desenrollado de bucles, reestruc-
turacion del cédigo y reordenacidén de un volumen a la hora de calcular un gradiente
teniendo en cuenta la simetria de las matrices de las bases, reducimos el tiempo de
computacién hasta ser alrededor de la mitad del original.

74

University of Malaga School of Computer Engineering

Bibliography

[1] Antonio Ruiz, Manuel Ujaldén. Exploiting Kepler Capabilities on Zernike Moments.
2015.

[2] Chris McClanahan. History and Evolution of GPU Architecture. 2010.

[3] Christos Kyrkou. Stream Processors and GPUs: Architectures for High Perfor-
mance Computing. .

[4] Mark Harris. Introduction to CUDA C, 2013.

[5] lan Buck. Stream Computing on Graphics Hardware. PhD thesis, September
2006.

[6] John Michael McNamee. A Comparison Of Methods For Accurate Summation.
ACM SIGSAM Bulletin, 38, March 2004.

Computer Architecture Dept. 75 Fco. Nurudin Alvarez Gonzalez

[7] Mark Harris. Maxwell: The Most Advanced CUDA GPU Ever
Made, 2014. URL

[8] Marc Modat, Zeike A. Taylor, Josephine Barnes, David J. Hawkes, Nick C. Fox,
and Sebastien Ourselin. Fast free-form deformation using the normalised mutual
information gradient and graphics processing units. Med Phys, pages 278—284,
2010.

[9] NVIDIA Corporation. NVIDIA GeForce 8800 GPU architecture overview. Technical
report, November 2006.

[10] NVIDIA Corporation. NVIDIA GeForce GTX 200 GPU architectural overview.
Technical report, May 2008.

[11] NVIDIA Corporation. NVIDIA GF100 Whitepaper. Technical report, 2010.

[12] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110/210 Whitepaper. Technical report, 2014.

[13] NVIDIA Corporation. CUDA C Programming Guide, 2015. URL

[14] NVIDIA Corporation. NVIDIA GeForce GTX 980 Whitepaper. Technical report,
2015.

[15] NVIDIA Corporation. Maxwell Tuning Guide: 1.4.2.1. Unified L1/Texture
Cache, 2015. URL

[16] Roche A. Subsol G. Pennec X. Ourselin, S. and N. Ayache. Reconstructing a 3d
structure from serial histological sections. Image and Vision Computing, 19(1-2):
25-31, 2001.

[17] Sonoda L. I. Hayes C. Hill D. L. G. Leach M. O. Rueckert, D. and D. J. Hawkes.
Nonrigid registration using free-form deformations: Application to breast mr im-
ages. IEEE Transactions on Medical Imaging, 18(8):712—721, 1999.

[18] Samuel Williams, Andrew Waterman, David Patterson. Roofline: an insightful vi-
sual performance model for multicore architectures. Communications of the ACM,
52:65-76, April 2009. doi: 10.1145/1498765.1498785.

[19] Stephan Soller. GPGPU origins and GPU hardware architecture. 2011.

76

http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache

‘University of Malaga School of Computer Engineering

[20] Vasily Volkov. Better performance at lower occupancy. UC Berkeley Lecture, 2010.
URL http://www.cs.berkeley.edu/~volkov/volkov10-GTC. pdf.

[21] Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and
Vision Computing, 21:977-1000, 2003.

Computer Architecture Dept. 77 Fco. Nurudin Alvarez Gonzalez

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

	Introduction
	Motivation
	Document structure and methodology

	The GPGPU movement
	The GPU Streaming Processor
	Advantages and drawbacks

	From graphics to general purpose
	Starting point
	Towards GPGPU: First steps
	The arrival of CUDA
	OpenCL
	Present and future of GPGPU

	GPU programming using CUDA
	CUDA (Compute Unified Device Architecture)
	Software
	Firmware
	Hardware

	Programming model
	Processing levels
	Streams
	Processing flow

	Hardware model
	Evolution of the architecture by generations
	The first generation: Tesla (G80 and GT200)
	The second generation: Fermi (GF100)
	The third generation: Kepler (GK110 and GK210)
	Dynamic Parallelism
	Hyper-Q

	The fourth generation: Maxwell (GM204)
	Memory improvements
	Atomic operations

	NiftyReg and NifTK: Brain Image Processing
	Overview
	Structure of GPU-based NiftyReg

	Memory optimizations on NiftyReg's GPU (CUDA) implementation
	Memory bound vs. compute bound code
	Memory organization in NiftyReg
	Tested changes and attempted optimizations
	1-dimensional textures. Usage and replacements.
	3-dimensional textures. Usage and replacements.

	Exploiting the computing power of the GPU in NiftyReg
	GPU computing power: underlying ideas
	Improving computation performance in NiftyReg
	Optimizations for the _reg_tools kernels
	Optimizations for the _reg_localTransformation kernels

	Conclusions
	En español.

	Bibliography

