SYNTHESIS AND PROTON CONDUCTION PROPERTIES OF LANTHANIDE AMINO-SULFOPHOSPHONATES

Aurelio Cabeza ${ }^{\text {a }}$, Montse Bazaga-García ${ }^{a}$, Rosario M.P. Colodreroa, Inés R. Salcedo ${ }^{\text {a }}$, Pascual Olivera-Pastor ${ }^{\text {a }}$ and Enrique R. Losilla ${ }^{\text {a }}$
 29071-Málaga, Spain
aurelio@uma.es

Crystalline acid-functionalized metal phosphonates are potential candidates as proton conducting electrolytes. Their frameworks can be chemically modified to contain proton carriers such as acidic groups ($\mathrm{P}-\mathrm{OH} ;-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH}, \ldots$) and guest molecules $\left(\mathrm{H}_{2} \mathrm{O}\right.$, NH_{3}, \ldots) that generates hydrogen bond networks stable in a wide range of temperature [1,2].
In this work, focus is laid on properties derived from the combination of lanthanide ions with the amino-sulfophosphonate ligand $\left(\mathrm{H}_{2} \mathrm{O}_{3} \mathrm{PCH}_{2}\right)_{2}-\mathrm{N}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{SO}_{3} \mathrm{H}$. Hightrough-put screening was followed to reach the optimal synthesis conditions under solvothermal conditions at 140 ${ }^{\circ} \mathrm{C}$. Isolated isostructural polycrystalline solids, $\mathrm{Sm}\left[\left(\mathrm{O}_{3} \mathrm{PCH}_{2}\right)_{2}-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{SO}_{3} \mathrm{H}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Ln}=$ Sm, Eu and Gd), crystallize in the orthorhombic system with unit volume of $\sim 2548 \AA^{3}$. Preliminary proton conductivity measurements for Sm derivative have been carried out between 25° and $80^{\circ} \mathrm{C}$ at relative humidity (RH) values of 70% and 95%. The sample exhibits enhanced conductivity at high RH and T (Figure 1) and constant activation energies of 0.4 eV , typical of a Grothuss mechanism of proton.

Figure 1. Arrhenius plot for Sm- KJHKJHKJHK at different relative humidity values.

References

[1] Y. Gao, R. Broersen, W. Hageman, N. Yan, M. C. Mittelmeijer-Hazeleger, G. Rothenberg, S. Tanase J. Mater. Chem. A, 2015, 3, 22347-22352.
[2] Cabeza, A.; Olivera-Pastor, P.; Colodrero, R. M. P. Tailored Organic-Inorganic Materials, Brunet, E., Colón, J.L., Clearfield, A., Eds.; John Wiley \& Sons, Inc. 2015; Ch. 4, 137-191.

