SYNTHESIS AND PROTON CONDUCTION PROPERTIES OF LANTHANIDE AMINO-SULFOPHOSPHONATES

<u>Aurelio Cabeza</u>^a, Montse Bazaga-García^a, Rosario M.P. Colodrero^a, Inés R. Salcedo^a, Pascual Olivera-Pastor^a and Enrique R. Losilla^a

^aDepartamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos s/n 29071-Málaga, Spain

aurelio@uma.es

Crystalline acid-functionalized metal phosphonates are potential candidates as proton conducting electrolytes. Their frameworks can be chemically modified to contain proton carriers such as acidic groups (P-OH; $-SO_3H$, -COOH,...) and guest molecules (H_2O , NH_3 ,...) that generates hydrogen bond networks stable in a wide range of temperature [1,2].

In this work, focus is laid on properties derived from the combination of lanthanide ions with the amino-sulfophosphonate ligand $(H_2O_3PCH_2)_2$ -N- $(CH_2)_2$ -SO₃H. Hightrough-put screening was followed to reach the optimal synthesis conditions under solvothermal conditions at 140 °C. Isolated isostructural polycrystalline solids, Sm[$(O_3PCH_2)_2$ -NH- $(CH_2)_2$ -SO₃H]-2H₂O (Ln=Sm, Eu and Gd), crystallize in the orthorhombic system with unit volume of ~2548 ų. Preliminary proton conductivity measurements for Sm derivative have been carried out between 25° and 80 °C at relative humidity (RH) values of 70 % and 95 %. The sample exhibits enhanced conductivity at high RH and T (Figure 1) and constant activation energies of 0.4 eV, typical of a Grothuss mechanism of proton.

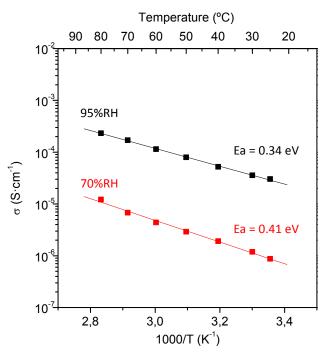


Figure 1. Arrhenius plot for Sm- KJHKJHKJHK at different relative humidity values.

References

[1] Y. Gao, R. Broersen, W. Hageman, N. Yan, M. C. Mittelmeijer-Hazeleger, G. Rothenberg, S. Tanase *J. Mater. Chem. A*, **2015**, 3, 22347–22352.
[2] Cabeza, A.; Olivera-Pastor, P.; Colodrero, R. M. P. *Tailored Organic-Inorganic Materials*, Brunet, E., Colón, J.L., Clearfield, A., Eds.; John Wiley & Sons, Inc. **2015**; Ch. 4, 137–191.