
Energy Efficiency of Software Transactional Memory

in a Heterogeneous Architecture

Emilio Villegas, Alejandro Villegas, Angeles Navarro, Rafael Asenjo,
Yash Ukidave∗, Oscar Plata

University of Malaga, Dept. Computer Architecture, Spain
∗Advanced Micro Devices

e-mail: {emilio.villegas,avillegas,magonzalez,asenjo,oplata}@uma.es, yash.ukidave@amd.com

Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability
above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of
applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features
two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy
consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some
mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional
Memory (TM) represents an optimistic approach for shared-memory synchronization.

To take full advantage of the features offered by software TM, but also benefit from the characteristics of
the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the
power/performance requirements of the application and what it is offered by the architecture. In order to under-
stand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we
have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experi-
ments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which
requires the computing performance that the big cores offer.

1 Introduction

Mobile and embedded devices, whose use is widely extended at present, should be designed to be very energy-efficient.
Most of them, and most of the time, depend on a battery for their operation. Energy-efficient components ensure
a longer duration and durability of these batteries. Furthermore, the environment they are located in and the use
we make of these devices require them to consume a low amount of energy and to keep their temperature as low
as possible. As the market for these types of devices grows, industry focuses on designing energy-efficient low-
power processors. Specifically, ARM has built an heterogeneous multi-core architecture named big.LITTLE [1]. This
architecture features a set of big cores designed for performance and a set of LITTLE cores designed for energy-
efficiency. We refer to these core sets as big cluster and little cluster, respectively. Both clusters share the same ISA
and have access to the same main memory. Thus, an application can run in any of them. Applications with high
performance requirements are intended to be attached to the big cluster, while those without these requirements are
to be processed using the little cluster.

To take full advantage of these multi-core clusters, applications should be multi-threaded. As in any other multi-
core processor, programmability challenges arise when writing a multi-threaded application, specially when coordina-
tion is needed when accessing shared data. Programmers should guarantee mutual exclusion for the portion of the
code that is accessing shared data (i.e., critical section). Transactional Memory (TM) [8] has been designed as an
optimistic model to ensure mutual exclusion, defining the concept of transaction to wrap a critical section. Many TM
systems have been proposed in the last two decades for multi-core architectures [7], implemented either in hardware
or software (or a combination). Modern processors and systems have started to include hardware TM support [14, 4].

Adapting both hardware and software TM solutions to a heterogeneous low-power architecture is an important
commitment for the incoming years. Some efforts have been done in order to understand and propose energy-aware
TM solutions [6, 11, 3, 9, 13]. However, these proposals do not take into consideration heterogeneous architectures.
Furthermore, both hardware and software TM solutions are evaluated on top of simulation platforms in order to get a
power consumption estimation. None of these works consider evaluating using real hardware for power measurements.

In this paper, we evaluate the TinySTM [5] software TM system running on the Odroid-XU3 platform [2], and
present its performance and energy consumption using a set of benchmarks from the STAMP suite [10]. This en-
ergy/performance evaluation serves as a basis to choose among the big cluster or the little cluster for execution of the
benchmark applications. The goal is to obtain enough information for future library/compiler/runtime optimization
tools in order to improve the efficiency of software TM in heterogeneous low-power architectures.



Feature Value

CPU Samsung Exynos-5422: Cortex-A15 and Cortex-A7 big.LITTLE

Main Memory 2 Gbyte LPDDR3 RAM at 933MHz

GPU Mali-T628 MP6

Storage 32GB Sandisk iNAND Extreme

Energy Monitor Separated sensors to measure the power consumption of big cluster, little cluster, GPU and DRAM

OS Linux odroid 3.10.59+

Table 1: ODROID-XU3 system setup used for evaluation

2 Energy/Performance Evaluation

2.1 Experimental setup

Our experimental evaluation was conducted in a ODROID-XU3 [2] computing device. This platform features a
Samsung Exynos 5422 processor, based in the ARM big.LITTLE architecture, containing a quad-core Cortex-A15
and a quad-core Cortex-A7. Table 1 summarizes the hardware characteristics of this device. Hardware sensors are
available for power measurements. Specifically, information can be obtained on energy consumption for the big and
little clusters individually, the Mali GPU, and the memory subsystem. We have developed a software tool that samples
power readings using the hardware sensors and integrate them through time using the real-time system clock. This
way, energy consumption can be profiled through different applications stages.

Five applications from the STAMP benchmark suite were selected for evaluation: Intruder, Kmeans, Labyrinth,
SCAA2, and Vacation. All of them used the ++ input parameters, as described in [10]. The high contention inputs
were used for Kmeans and Vacation. Bayes was not considered as it shows unexpected behavior (this issue is also
documented in [12]). In Genome, some synchronization errors were found when running multi-threaded experiments,
and Yada execution usually resulted in out-of-memory errors. We are currently investigating these issues.

With respect to the TinySTM library, among the transaction management options available, the write-back policy
and not commit-time locking (i.e., encounter-time locking) were selected.

By default, the STAMP codes have some instrumentation for performance evaluation. We replaced this instru-
mentation with calls to our own instrumentation library. This library provides access to the ODROID-XU3 energy
sensors: the big and little clusters, GPU, and main memory. Additionally, a time counter was included. Tests showed
negligible differences with the original timing instrumentation. As we plan to measure the impact of using TinySTM
on the complete chip, the power consumption of clusters, GPU, and memory was considered.

2.2 Experimental evaluation results

Two evaluation metrics were considered: the normalized execution time with respect to a single-threaded execution,
and the energy consumption, again, normalized to the energy consumption of a single-threaded execution. These two
metrics were combined to obtain the Energy-Delay Product (EDP). All the experiments were carried out comparing
their results with respect to a single thread running TinySTM. For each application, 10 tests were run, taking as the
result the average value. The experiments showed consistent results for every execution. A sequential version of the
codes were not used as the intention was to provide scalability metrics for TinySTM instead of comparing TinySTM
against other implementations.

2.2.1 Little and big clusters evaluation

Fig. 1 shows the results of the evaluation of the little cluster. TinySTM achieves good scalability for the three
parameters (execution time, energy consumption and EDP). The performance scalability of TinySTM together with
the power efficiency of the Cortex-A7 processor permits to observe a reduction in EDP between 80% to 90% when
using 4 threads.

Fig. 2 shows the evaluation of the big cluster. The picture is different as compared to the little cluster. In this
case, we observe scalable results for the execution time, but not as scalable as in the little cluster. In addition, as the
Cortex-A15 processor is not as power efficient as the Cortex-A7, we observe that the energy consumption is higher
when using 4 threads in Intruder, Kmeans, and Vacation. Despite TinySTM shows to be scalable in terms of execution
time, this is not the case for energy when running in the big cluster. The scalability obtained in terms of execution
time is not enough to compensate the energy increment when using 4 threads. As a result, the EDP is not always
optimal for 4 threads.



1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

a. Normalized execution time w.r.t single-thread running TinySTM

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

b. Normalized energy consumption w.r.t single-thread running TinySTM

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

c. Normalized EDP w.r.t single-thread running TinySTM

Figure 1: Little cluster evaluation

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

a. Normalized execution time w.r.t single-thread running TinySTM

1 2 4
Number of threads

0.00
0.28
0.56
0.84
1.12
1.40 intruder++

1 2 4
Number of threads

0.00
0.32
0.64
0.96
1.28
1.60 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.00
0.32
0.64
0.96
1.28
1.60 vacation++

b. Normalized energy consumption w.r.t single-thread running TinySTM

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

c. Normalized EDP w.r.t single-thread running TinySTM

Figure 2: Big cluster evaluation

2.2.2 Full system evaluation

Fig. 3 shows the evaluation for the full system. Before running these experiments, we observed that the OS scheduler
tries to use the big cluster as soon as it detects any overload. We decided to keep the default behavior of the OS
scheduler in order to analyze if some changes should be required for an optimal scheduling. Results show that, using
up to 4 threads, they are scheduled on the big cluster and the performance and energy results are similar. When
adding 4 more threads, they are scheduled on the little cluster. The applications achieve good performance scalability
when adding the LITTLE cores. In addition, its power-efficiency results in a reduction of the energy consumed by the
applications when using 8 cores. The only exception is Kmeans. However, despite the small increment of the energy
consumption as compared to the single-thread version, it is balanced by the execution time reduction achieved when
using the little cluster. This results in an improvement of the EDP in all the cases.

2.2.3 Comparing little cluster with big cluster results

Fig. 4 shows the performance obtained in the little cluster as compared to the big cluster. Regarding execution time
(Fig. 4.a), values higher than one reveal that the big cluster performs better than the little cluster. Running the
applications with a single thread results in better performance for the big cluster. However, we observe that (with the
exception of Labyrinth), as we keep adding more threads, more memory conflicts appear increasing the transaction
abort rate, so as the big cluster is less efficient than the little cluster. Labyrinth, which features long transactions with



1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

a. Normalized execution time w.r.t single-thread running TinySTM

1 2 4 8
Number of threads

0.00
0.28
0.56
0.84
1.12
1.40 intruder++

1 2 4 8
Number of threads

0.00
0.32
0.64
0.96
1.28
1.60 kmeans++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4 8
Number of threads

0.00
0.32
0.64
0.96
1.28
1.60 vacation++

b. Normalized energy consumption w.r.t single-thread running TinySTM

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 labyrinth++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4 8
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

c. Normalized EDP w.r.t single-thread running TinySTM

Figure 3: Full system evaluation

1 2 4
Number of threads

0.00
0.24
0.48
0.72
0.96
1.20 intruder++

1 2 4
Number of threads

0.00
0.28
0.56
0.84
1.12
1.40 kmeans++

1 2 4
Number of threads

0.0
0.6
1.2
1.8
2.4
3.0 labyrinth++

1 2 4
Number of threads

0.00
0.24
0.48
0.72
0.96
1.20 ssca2++

1 2 4
Number of threads

0.00
0.24
0.48
0.72
0.96
1.20 vacation++

a. ExTimelittle/ExTimebig

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.00
0.24
0.48
0.72
0.96
1.20 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

b. Energylittle/Energybig

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 intruder++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 kmeans++

1 2 4
Number of threads

0.0
0.6
1.2
1.8
2.4
3.0 labyrinth++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 ssca2++

1 2 4
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0 vacation++

c. EDPlittle/EDPbig

Figure 4: Big cluster vs little cluster evaluation

many accesses to memory and where most of the code in inside a critical section, requires of a performance-oriented
multi-core processor and thus is able to get full advantage of the big cluster. A similar comparison was performed for
the energy consumption (Fig. 4.b). In this case, the low-power Cortex-A7 cores perform better than the Cortex-A15
cores in terms of energy consumed. The same applies for the EDP, except for Labyrinth. For this application, as the
big cluster performed (in terms of execution time) much better than the little cluster, the EDP shows improvements
between 1.5X and 2.5X despite the higher energy requirements.

3 Conclusions and Current Work

In this work we present an empirical evaluation of a state-of-the-art software TM library running on an platform
based on the ARM big.LITTLE architecture. Our results show that there is no an easy answer on how to schedule
transactions on the cores to obtain the best combined energy-performance value (EDP), as it depends on the workload
characteristics (see, for instance, Labyrinth versus rest of codes).

Current research involves using this type of experiments to build an energy-aware runtime scheduler for TM
aimed at exploiting the benefits of heterogeneous architectures, considering the flexible HMP (heterogeneous multi-
processing) use model, that enables all physical cores at the same time.



References

[1] Advances in big.little technology for power and energy savings. http://www.thinkbiglittle.com.

[2] ODROID — Hardkernel. http://www.hardkernel.com/main/products/prdt_info.php?g_code=

G140448267127.

[3] A. Baldassin, J. P. L. de Carvalho, L. A. G. Garcia, and R. Azevedo. Energy-performance tradeoffs in software
transactional memory. In IEEE 24th Int’l. Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD’12), pages 147–154, Oct 2012.

[4] H.W. Cain, M.M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust architectural support for transactional
memory in the power architecture. In 40th Ann. Int’l. Symp. on Computer Architecture (ISCA’13), pages 225–236,
Jun 2013.

[5] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software transactional memory. IEEE Trans. on
Parallel and Distributed Systems, 21(12):1793–1807, 2010.

[6] E. Gaona, R. Titos-Gil, M.E. Acacio, and J. Fernandez. Dynamic serialization: Improving energy consumption in
eager-eager hardware transactional memory systems. In 2012 20th Euromicro Int’l. Conf. on Parallel, Distributed
and Network-based Processing (PDP’12), pages 221–228, Feb 2012.

[7] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Ed. Morgan & Claypool Publishers, USA, 2010.

[8] M. Herlihy and J.E.B. Moss. Transactional memory: Architectural support for lock-free data structures. In 20th
Ann. Int’l. Symp. on Computer Architecture (ISCA’93), pages 289–300, Jun 1993.

[9] F. Klein, A. Baldassin, G. Araujo, P. Centoducatte, and R. Azevedo. On the energy-efficiency of software
transactional memory. In 22nd Ann. Symp. on Integrated Circuits and System Design: Chip on the Dunes
(SBCCI’09), pages 33:1–33:6, Sep 2009.

[10] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IEEE Int’l. Symp. on Workload Characterization (IISWC’08), pages 35–46, Sep 2008.

[11] T. Moreshet, R.I. Bahar, and M. Herlihy. Energy-aware microprocessor synchronization: Transactional memory
vs. locks. 4th Ann. Boston-Area Architecture Workshop (BARC’06), page 21, Feb 2006.

[12] W. Ruan, Y. Liu, and M. Spear. STAMP need not be considered harmful. In 9th ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT’14), Mar 2014.

[13] S. Sanyal, S. Roy, A. Cristal, O.S. Unsal, and M. Valero. Clock gate on abort: Towards energy-efficient hardware
transactional memory. In IEEE Int’l. Symp. on Parallel Distributed Processing (IPDPS’09), pages 1–8, May
2009.

[14] R.M. Yoo, C.J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of intel transactional synchronization
extensions for high-performance computing. In Int’l Conf. on High Performance Computing, Networking, Storage
and Analysis (SC’13), pages 19:1–19:11, Nov 2013.


