
Efficient Hill Climber for Constrained Pseudo-Boolean
Optimization Problems

Francisco Chicano
University of Málaga

Andalucía Tech, Spain
chicano@lcc.uma.es

Darrell Whitley
Colorado State University

Fort Collins, CO, USA
whitley@cs.colostate.edu

Renato Tinós
University of São Paulo

Riberão Preto, SP, Brazil
rtinos@uspl.br

ABSTRACT
Efficient hill climbers have been recently proposed for single-
and multi-objective pseudo-Boolean optimization problems.
For k-bounded pseudo-Boolean functions where each vari-
able appears in at most a constant number of subfunctions, it
has been theoretically proven that the neighborhood of a so-
lution can be explored in constant time. These hill climbers,
combined with a high-level exploration strategy, have shown
to improve state of the art methods in experimental stud-
ies and open the door to the so-called Gray Box Optimiza-
tion, where part, but not all, of the details of the objective
functions are used to better explore the search space. One
important limitation of all the previous proposals is that
they can only be applied to unconstrained pseudo-Boolean
optimization problems. In this work, we address the con-
strained case for multi-objective k-bounded pseudo-Boolean
optimization problems. We find that adding constraints to
the pseudo-Boolean problem has a linear computational cost
in the hill climber.

Keywords
Hamming Ball Hill Climber; Local Search; Constraint Han-
dling; Vector Mk Landscapes; Multi-Objective Optimization

1. INTRODUCTION
Hill climbing is one base technique used as a component of

higher-level search algorithms like Iterated Local Search or
Variable Neighborhood Search [7]. A hill climber starts at
an initial solution and then searches for an improving move
based on a notion of a neighborhood of solutions that are
adjacent to the current solution.

We focus in this work on Mk landscapes. Mk landscapes,
introduced by Whitley [12], are k-bounded pseudo-Boolean
optimization problems composed of a linear combination
of M subfunctions, where each subfunction is a pseudo-
Boolean optimization problem defined over k variables. This
definition is general enough to include NK landscapes, MAX-
kSAT, as well as spin glass problems. For Mk landscapes,

To appear in Genetic and Evolutionary Computation Conference 2016

Whitley and Chen [13] proved that the location of improving
moves can be determined in constant time for the Hamming
distance 1 neighborhood. Two solutions are neighboring in
this neighborhood if they differ in one bit. This result was
later generalized by Chicano et al. [3], who proposed a hill
climber that explores the solutions contained in a Hamming
ball of radius r around a solution in constant time. Gold-
man et al. [6] combined this so-called Hamming Ball Hill
Climber with recombination to achieve globally optimal re-
sults on relatively large Adjacent NK Landscape problems
(e.g. 10,000 variables). The work of Goldman et al. shows
that evolutionary algorithms do not need mutation to find
improving moves, although mutation could probably be used
to enable a form of restart. In a recent paper [4], the Ham-
ming Ball Hill Climber proposed in [3] was extended to deal
with multi-objective problems, where the objective function
is given by the so-called vector Mk landscapes.

One aspect that is missing in all the previous work related
to efficient hill climbers is the constraint handling. None of
the previous hill climbers can be applied to constrained op-
timization problems. However, many optimization problems
have constraints. One example that will be revisited later is
the knapsack problem [8], whose objective function is an Mk
landscape, since it is a linear pseudo-Boolean function in the
form

∑n
i=1 vixi, and its constraint is also based on an Mk

landscape (in the form
∑n

i=1 wixi ≤ W). It can be argued
that constraints can be handled using penalties in the objec-
tive function. In the case of (vector) Mk landscapes, how-
ever, the non-linearities introduced by the penalties could
increase the epistasis degree and the number of variables of
the problem, making hill climbers less efficient.

In this work, we provide some theoretical results that limit
the performance of efficient hill climbers over constrained
problems. In particular, it is found that the constant time
per move of the previous hill climbers cannot be achieved
when constraints are added to the problem. Instead, a lin-
ear time per move is possible. We use these theoretical re-
sults to propose an efficient hill climber for multi-objective
constrained pseudo-Boolean problems.

The rest of the paper is organized as follows. In the next
section we introduce some background and review the pre-
vious results. Section 3 provides the new theoretical results
regarding hill climbing in constrained pseudo-Boolean pro-
blems and Section 4 proposes a hill climber based on these
results. We also analyze the hill climber using some exper-
iments whose results are presented in Section 5. Finally,
Section 6 outlines some conclusions and future work.

2. BACKGROUND
In constrained multi-objective optimization, there is a vec-

tor function f : Bn → Rd to optimize, called the objective
function. We will assume, without loss of generality, that
all the objectives (components of the vector function) are
to be maximized. The constraints of the problem will be
given in the form1 g(x) ≥ 0, where g : Bn → Rb is a vec-
tor function, that will be called constraint function2. That
is, a solution is feasible if all the components of the vector
function g are nonnegative when evaluated in that solution.
This type of constraints does not represent a limitation. Any
other equality or inequality constraint can be expressed in
the form gi(x) ≥ 0, including those that use strict inequality
constraints (> and <)3. The set of feasible solutions of a
problem will be denoted by Xg = {x ∈ Bn|g(x) ≥ 0}.

Given a vector function f : Bn → Rd, we say that solution
x ∈ Bn dominates solution y ∈ Bn, denoted with x �f y, if
and only if f(x) ≥ f(y) and there exists j ∈ {1, 2, . . . , d} such
that fj(x) > fj(y). When the vector function is clear from
the context, we will use � instead of �f . Observe that we do
not restrict the definition of dominance to feasible solutions
of a problem, since we will need to consider dominance also
between feasible and non-feasible solutions. Furthermore,
we will use the concept of dominance using as vector function
the constraint function.

The Pareto Optimal Set is the set of feasible solutions P
that are not dominated by any other feasible solution in Xg:

P = {x ∈ Xg|@y ∈ Xg, y � x} . (1)

The Pareto Front is the image by f of the Pareto Optimal
Set: PF = f(P).

Definition 1 (Local Optimum [10]). Given a vector
function f : Bn → Rd, a constraint function g : Bn → Rb,
and a neighborhood function N : Bn → 2B

n

, we say that
solution x ∈ Xg is a local optimum if it is not dominated by
any other feasible solution in its neighborhood: @y ∈ N(x)∩
Xg, y � x.

In this work we focus our attention to problems where the
objective and constraint functions have k-bounded epistasis,
that is, their components are Mk Landscapes [12]. These vec-
tor functions have been recently called vector Mk landscapes
and are defined as follows.

Definition 2 (Vector Mk Landscape [4]). Given
two constants k and d, a vector Mk Landscape f : Bn → Rd

is a d-dimensional vector pseudo-Boolean function defined
over Bn whose components are Mk Landscapes. That is,
each component fi can be written as a sum of mi subfunc-
tions, each one depending at most on k input variables:

fi(x) =

mi∑
l=1

f
(l)
i (x) for 1 ≤ i ≤ d, (2)

where the subfunctions f
(l)
i depend on k components of x.

Figure 1(a) shows a multi-objective constraint pseudo-
Boolean problem with d = 2 objective functions and b = 1

1The relational operators applied to vectors will mean that
each component must fulfill the inequality.
2We will use boldface to denote vectors in Rd or Rb, such
as f , but we will use normal weight for vectors in Bn, like x.
3This is a consequence of the finite search space.

x1 x2 x3 x4 x5

f
(1)
1 f

(1)
2 f

(2)
1 f

(2)
2 f

(3)
1

g
(1)
1 g

(2)
1 g

(3)
1

(a) Vector Mk Landscape

x1 x2

x3x4x5

(b) Co-occurrence graph

Figure 1: A multi-objective constrained pseudo-
Boolean problem with k = 2, n = 5 variables, d = 2
objectives and b = 1 constraint (top) and its corre-
sponding co-occurrence graph (bottom).

constraint function. The first objective function, f1, can be

written as the sum of 3 subfunctions, f
(1)
1 to f

(3)
1 , shown

with white rectangles. The second component function, f2,

can be written as the sum of 2 subfunctions, f
(1)
2 and f

(2)
2 ,

shown with blue (grey) rectangles. Finally, the constraint

g1 can be written as the sum of 3 subfunctions, g
(1)
1 to g

(3)
1 ,

and is shown with circles in the figure. All the subfunctions
depend at most on k = 2 variables.

Considering only vector Mk landscapes for the objective
and constraint functions is not a limitation, since every pseu-
do-Boolean function that can be expressed in algebraic form
using polynomial space can be transformed in polynomial
time into a quadratic (k = 2) pseudo-Boolean function [11].

An important tool for the forthcoming analysis is the co-
ocurrence graph.

Definition 3 (Co-ocurrence Graph [5]). Given an
objective function f : Bn → Rd and a constraint function
g : Bn → Rb, the co-occurrence graph is G = (V,E), where
V is the set of Boolean variables and E contains all the
pairs of variables (xj1 , xj2) that co-occur (both variables are
arguments) in a subfunction of the objective or the constraint
function.

In Figure 1(b) we show the variable co-occurrence graph
of the vector Mk Landscape of Figure 1(a).

A move in Bn can be characterized by a binary string
v ∈ Bn having 1 in all the bits that change in the solution.
The Score of a move, has been previously defined as the
increment in the objective function when that move is taken.

Definition 4 (Score). For v, x ∈ Bn, and a vector
function f : Bn → Rd, we denote the Score of x with respect

to move v for function f as S
(f)
v (x), defined as follows:

S(f)
v (x) = f(x⊕ v)− f(x), (3)

where ⊕ is the exclusive OR bitwise operation.

When constraints are considered, we also need to track
where feasible solutions are, and Scores of the contraint

function will also be useful to efficiently track them. For
this reason we decorate the notation for a Score with the
function the Score is referred to (see Definition 4) and we

distinguish between the objective Score, S(f), and the con-
straint Score, S(g). If a result holds for both we will omit
the vector function.

2.1 Previous Results
There are some previous results for Multi-Objective pseudo-

Boolean problems that can be easily adapted to the case of
constrained multi-objective problems without providing a
proof. We review these results in this subsection. In [4] it
was found that some Scores can be written as a sum of other
Scores.

Proposition 1 (from [4]). Let v1, v2 ∈ Bn be two mo-
ves such that4 v1∩v2 = ∅ and variables in v1 do not co-occur
with variables in v2, that is, the subfunctions where variables
in v1 appear and the ones where variables in v2 appear are
disjoint. Then, the Score function Sv1∪v2(x) can be written
as:

Sv1∪v2(x) = Sv1(x) + Sv2(x). (4)

When v1, v2 ∈ Bn are two moves fulfilling the previous
proposition, we will say that v1 and v2 do not interact. If
such a decomposition is not possible we will say that v1 and
v2 interact. For example, in the vector Mk Landscape of
Figure 1 the Score S1,3,4 can be written as the sum of the
Score S1 and S3,4, where we used i1, i2, ... to denote the
binary string having 1 in positions i1, i2, . . ., and the rest set
to 0. That is, 3, 4 and 1 do not interact.

One important consequence of this result is that there is
no need to store all the Scores in memory to have complete
information of the influence that the moves in a Hamming
ball of radius r have. Only the Scores defined as

Mr = {v ∈ Bn|1 ≤ |v| ≤ r and G[v] is connected} , (5)

need to be stored. In the previous expression, G is the co-
occurrence graph of the problem and G[v] is the subgraph
of G induced by the set of vertices v. If all the variables
appear in at most a constant number of subfunctions c,
the number of Scores to store in memory was proven to
be Θ(n(3ck)r). Although the original proof is for uncon-
strained multi-objective problems, it is still true if we add
constraints, since the only difference with the unconstrained
case is that the variables could appear in more subfunctions
(the ones of the constraint function). Another consequence
of Proposition 1 is the constant time required to update the
Scores in one move. This time is O(b(k)|t|(3ck)r+1), where
b(k) is a bound on the time required to evaluate any sub-
function and |t| is the number of bits flipped in the move.

The efficient hill climbers in the previous work [13, 14,
3, 4] only explore the moves in Mr to identify improving
moves. In the multi-objective case it was found that it is
not always possible to deduce the presence or absence of
a move in the Hamming ball of radius r dominating the
current solution, unless one exists in Mr. These type of
moves were called strong improving moves. The fact that
the objective function is a vector and not a scalar has to do
with this. Under some conditions, however, it is possible to

4Abuse of notation: we will interpret moves as binary strings
and sets of variables to flip.

certify that no strong improving move exists in the ball. In
particular:

Proposition 2 (from [4]). Let f : Bn → Rd be a vec-
tor Mk Landscape, and w ∈ Rd a d-dimensional weight vec-
tor with w > 0. If there exists a strong improving move in a
ball of radius r around solution x, then there exists v ∈Mr

such that w · Sv(x) > 0.

The moves where w · Sv(x) > 0 is true are called w-
improving moves. The previous result was the basis of a hill
climber that first takes all the strong improving moves in Mr

and, if none exists, it takes the w-improving moves. If no
w-improving move exists the algorithm stops, since there is
no strong improving move in the Hamming ball. Taking w-
improving moves does not guarantee that a strong improving
move in the Hamming ball of the original solution will be
reached. But probably it is the best strategy a hill climber
can use to reach a strong improving move (if it exists) in
constant time per move.

We will see in Section 3 that something similar occurs with
the feasible moves. And we will need to define the concept
of w-feasible move.

3. CONSTRAINED PROBLEMS
We have seen in the previous section that when the num-

ber of subfunctions each variable appears in is bounded by a
constant, all the Scores (either objective or constraint) can
be updated in constant time. The strong improving and
w-improving moves can also be identified in constant time,
since the value of an objective Score is enough to determine
its category.

However, the classification of the moves as feasible or un-
feasible, requires more than constant time. The feasibility
of a move v does not only depend on the contraint Score

S
(g)
v (x), but also on g(x). A move v is feasible in a solu-

tion x when g(x) + S
(g)
v (x) ≥ 0. The value of g(x) could

change, in general, after every move. Thus, even if the con-

traint Score S
(g)
v (x) does not change for move v, the fea-

sibility of move v could change. This means that we need
to re-evaluate the feasibility of each move every time g(x)
changes. Since the number of moves whose Scores are stored
in memory is Θ(n), this is also the worst case time required
to re-classify the moves as feasible or unfeasible. We could
use a complex data structure to keep track of which moves
need to be re-classified and which not5. However, the next
Theorem proves that, in the worst case, the time required
to re-classify moves is Θ(n).

Theorem 1. Let x, y ∈ Bn be two neighboring solutions
of a multi-objective constrained Pseudo-Boolean problem and
Mr the set of moves whose Scores are stored in memory. Let
us assume that |Mr| = Θ(n). The number of moves feasible
in x that are unfeasible in y could be Θ(n) in the worst case.

Proof. In order to prove this, we only need to find a con-
strained pseudo-Boolean problem with |Mr| = Θ(n) where
this could happen. Let’s use the knapsack problem [8], which
consists in maximizing the sum of the value of a set of items
with the constraint that the sum of the weights of the items

5For example, if g(x) has increased in all the components,

then the constraint Scores with S
(g)
v (x) ≥ 0 stay in the same

class.

does not exceed a maximum capacity (of the knapsack). Let
us consider only the case when r = 1. In this case all the n
moves have their Scores stored in memory. Let us assume
that the weight of the heaviest item is the maximum capac-
ity of the knapsack. Let solution x = 0 represent an empty
knapsack. In x all the order-1 moves are feasible, since any
item can be introduced in the knapsack without exceeding
the capacity. Let us say that solution y is the one where
the heaviest item is introduced in the knapsack. It is clear
that y is a neighbor of x and the Hamming distance be-
tween both solutions is 1. In solution y, however, all moves
are unfeasible, except the one that leads to solution x = 0
(empty knapsack). Thus, the number of moves feasible in x
and unfeasible in the neighboring solution y is n− 1.

The previous result implies that hill climbers considering
constraints require O(n) time per move, in contrast to the
O(1) time per move when there is no constraint. Now we
address the identification of feasible moves in the ball. The
next theorem proves that an analysis of the moves in Mr

provides some information about the existence of feasible
moves in the ball.

Theorem 2. Let x ∈ Bn be a feasible solution of a multi-
objective constrained pseudo-Boolean problem, that is, x ∈
Xg. If there is a feasible move in the Hamming ball of radius
r around x, then, there must exist a move v in Mr for which
w · g(x⊕ v) ≥ 0, for any w > 0.

Proof. Let us say that v is a feasible move in the Ham-
ming ball of radius r. Then, by Proposition 1, there exist

moves v1, v2, . . . vj ∈Mr such that S
(g)
v (x) =

∑j
l=1 S

(g)
vl (x).

Since v is feasible and all w > 0, we have:

w · (g(x) + S(g)
v (x)) = w · g(x) +

j∑
l=1

w · S(g)
vl (x) ≥ 0. (6)

Due to the feasibility of x we have w · g(x) ≥ 0, and adding
j − 1 times this value to (6) we obtain:

j∑
l=1

w ·
(
g(x) + S(g)

vl (x)
)
≥ 0. (7)

For the previous expression to be nonnegative, there must

be a vl with 1 ≤ l ≤ j such that w ·(g(x)+S
(g)
vl (x)) ≥ 0.

A move v with w · g(x⊕ v) ≥ 0 will be called w-feasible.
The previous result allows us to efficiently identify the case
in which no feasible solution exists around the current so-
lution. In that case, none of the stored moves will be w-
feasible. However, if there is a w-feasible move in Mr that
is not feasible, we cannot ensure that a feasible move ex-
ists in the Hamming ball of radius r. In that case, the only
computationally efficient decision a hill climber can take is
to enter the unfeasible region taking an unfeasible, but w-
feasible, move.

Unfortunately, when the current solution is unfeasible,
identifying a feasible move or prove that none exists in the
Hamming ball of radius r seems to be not much more effi-
cient than an exhaustive exploration of the Hamming ball.

Conjecture 1. Given a multi-objective constrained pseu-
do-Boolean optimization problem, and x ∈ Bn an unfeasible
solution to the problem (x /∈ Xg), any algorithm to identify a
feasible move in the Hamming ball of radius r around x or to

confirm that such a move does not exist runs in Ω(nr) time
in the worst case, which is the time required to enumerate
the Hamming ball.

In order to support this conjecture, let us first introduce
the Move Interaction Graph.

Definition 5 (Move Interaction Graph). Given a
multi-objective constrained pseudo-Boolean optimization pro-
blem and a set of moves M , the Move Interaction Graph is
defined as GM = (M,EM), where the vertices are the moves
in M and an edge exists between v1 and v2 if the moves v1
and v2 interact with each other, that is, they share a vari-
able, or they have variables that interact.

45

12

23
2

35
4

1

2434

Figure 2: Move Interaction Graph of M2 for the
multi-objective constrained pseudo-Boolean prob-
lem of Figure 1.

.

Figure 2 shows the Move Interaction Graph for the set
M2 associated to the multi-objective constrained pseudo-
Boolean problem of Figure 1. The numbers in the nodes are
the bits flipped in each move. Observe that the five second
order moves of M2 form a complete graph (joined by dotted
lines). The subgraph containing only the order-1 moves co-
incides with the variable co-occurence graph of Figure 1(b)
(joined by solid lines in Figure 2). The rest of edges (dashed
lines) correspond to interactions between order-1 and order-
2 moves.

According to Proposition 1, the Score of a move can be
decomposed if and only if the move can be described as the
union of two moves that do not interact. We can apply the
argument the other way around. Joining a set of moves that
do not interact with each other, it is possible to create a
higher-order move whose Score can be computed as the sum
of the Scores of the component moves. Sets of moves that
do not interact are independent sets6 of a Move Interaction
Graph.

By definition of Mr, the independent sets of GMr cover
all the moves in the Hamming ball of radius r. In other
words, any move in the Hamming ball can be expressed as
an independent set of GMr . But there are also independent
sets in GMr that correspond to moves outside the ball.

6In a graph, an independent set is a subset of vertices where
no pair is adjacent.

Let us consider the case in which the constraint function g
is 1-dimensional. Let us weigh each move v in GMr with its

corresponding constraint Score S
(g)
v (x). If x is unfeasible,

g(x) < 0. A feasible move, v, in the Hamming ball must

fulfill g(x) + S
(g)
v (x) ≥ 0, or equivalently, S

(g)
v (x) ≥ −g(x).

Observe that −g(x) > 0. Finding such a move is equivalent
to finding an independent set in GMr such that the sum of
weights is greater than or equal to −g(x). Since an indepen-
dent set of a graph is a clique in the complementary graph,
the problem we are trying to solve is the decision problem
related to the maximum weighted clique problem, which is
NP-hard. If we assume that g can only take integer values
and the constraint Score of all the moves are, by chance, 1,
the problem is an instance of the k-clique problem, which is
also NP-hard.

We know, however, that finding a feasible move can be
solved in Θ(nr) by exploring the Hamming ball. Thus, the
particular instances of the maximum weighted clique prob-
lem we are solving are easier to solve than a general instance.
An important question arises. Could we exploit some par-
ticular feature of the Move Interaction Graph to reduce the
computation time below Θ(nr)? We have no answer to this
question yet and we defer an answer to future work. But
the previous argument makes us pessimistic.

4. A HILL CLIMBER FOR CONSTRAINED
PROBLEMS

We have now all the theoretical ingredients to build an
efficient hill climber for multi-objective constrained pseudo-
Boolean problems. We assume that there is a high-level
algorithm that runs the hill climber and provides the weight
vector w, which determines the direction of exploration in
the objective space. We defer to future work the problem
of finding an appropriate weight vector. We would like our
hill climber to be able to identify feasible improving moves in
the Hamming ball and stop only when no feasible improving
move exists. Conjecture 1, however, prevents us from doing
this efficiently. We will preserve efficiency and relax the
identification requirement.

The hill climber is shown in Algorithm 1. Let us assume
that the hill climber starts in a feasible solution. Then, it
first explores the feasible region taking w-improving moves
while it is possible. This is the role of exploreFeasibleRe-
gion, which is detailed in Algorithm 2. This procedure first
takes a feasible strong improving move if one exist (Line 3)
or a feasible w-improving (and not strong improving) move
otherwise (Line 5). In this case, it reports the solution to
the high-level algorithm using the report procedure, since it
could be one of the non-dominated solutions provided by the
hill climber7. The procedure report should add the reported
solution to an external set of non-dominated solutions. This
set should be managed by the high-level algorithm invoking
the hill climber.

The exploreFeasibleRegion procedure finishes when the-
re is no feasible w-improving move in Mr. We can distin-
guish three possible scenarios here. It could happen that
there is no w-improving move (either feasible or unfeasible)
in Mr. Then, by Proposition 2 we can certify that no im-
proving solution exists in the Hamming ball, and, in particu-
lar, no feasible improving move. In that case, the hill climber

7If a strong improving move is taken, the starting solution
is clearly a dominated solution.

stops in Line 5 of Algorithm 1. It can also happen that there
is no feasible move in Mr. Since we are in a feasible solution,
we can randomly select a w∗ vector and apply Theorem 2 to
check if we can discard the existence of feasible solutions in
the Hamming ball. This is the goal of Line 8. Observe that
it is very unlikely that this check is true, since it requires a
solution to be feasible in the middle of a ball of unfeasible
solutions. Anyway, with an appropriate structure this check
requires only constant time. The third scenario is a mix of
unfeasible and feasible but not w-improving moves in Mr.
In this case, feasible improving moves of higher order could
exist in the ball and could be found joining several moves in
Mr. Thus, we should continue with the exploration.

This exploration can be done in two ways: we could take
feasible disimproving moves or unfeasible moves in Mr. We
decided to explore the unfeasible moves. Two main reasons
support our decision. First, it could happen that only un-
feasible moves exist in Mr while feasible moves exist in the
Hamming ball. Thus, exploring unfeasible moves is some-
thing the hill climber should be prepared for, anyway. Sec-
ond, we do not want the hill climber to cycle (return to a
previously explored solution). During the exploration of the
feasible region, cycling is avoided because only strong im-
proving or w-improving moves are considered (notice the >
operator in Lines 3 and 5). If we allow the hill climber to take
disimproving moves, there is no easy way to avoid cycling.
Thus, if the hill climber finds that w∗-feasible moves exist
in Mr it selects one of such moves in Line 12. Otherwise, it
selects an unfeasible (and not w∗-feasible) move in Line 14
(at least one unfeasible w-improving move must exist if the
flow reaches this line). Then, it stores the last visited feasi-
ble move in variable y (Line 16) and continues the search in
the unfeasible region calling the exploreUnfeasibleRegion

procedure, which is detailed in Algorithm 3.
According to Conjecture 1, we cannot efficiently deter-

mine the presence or absence of feasible moves while the
hill climber is exploring the unfeasible region. One efficient
option, however, is to direct the search to find a feasible so-
lution. This is what Algorithm 3 does. It tries to maximize
the constraint function g in the direction of w∗ with the
hope that it will enter again the feasible region. This explo-
ration is done taking first the strong improving moves for g
(Line 6) and the w∗-improving moves if no strong improv-
ing move exists (Line 8). When feasible moves appear in Mr

during this exploration, only those that w-improve the last
feasible solution, y, are taken. The reason is to avoid cycling.
Here again, the algorithm selects first a feasible move strong
improving y (Line 13) if one exists, or a feasible move w-
improving y in second place (Line 15). Then, the algorithm
enters the feasible region and runs again the exploreFea-

sibleRegion procedure. If no improving move exists for g
in the Hamming ball of radius r around an unfeasible solu-
tion, the algorithm stops in Line 2. Observe that, in this
case, a feasible move could exist in the Hamming ball. This
solution, if it exists, does not w∗-improves the current one
and must be the union of several moves in Mr. This is the
only scenario in which the hill climber could stop without
identifying a feasible improving move in Hamming ball of
radius r. But, as we announced above, we traded accuracy
by efficiency in this case.

Although we assumed that a feasible solution is provided
to the hill climber, it is not difficult to modify it to start in an
unfeasible solution. The only thing to do is to run explore-

Algorithm 1 Hill Climber.

Input: Scores vector S, weight vector w, initial feasible so-
lution x

1: S← computeScores(x);
2: while true do
3: exploreFeasibleRegion(S, w, x)

4: if ∀v ∈Mr, w · S(f)
v (x) ≤ 0 then

5: stop algorithm
6: end if
7: chose a weight vector w∗ > 0 randomly
8: if ∀v ∈Mr, w∗ · g(x⊕ v) < 0 then
9: stop algorithm

10: end if
11: if ∃v ∈Mr, w∗ · g(x⊕ v) ≥ 0, x⊕ v /∈ Xg then
12: t← pick({v ∈Mr|w∗ · g(x⊕ v) ≥ 0, x⊕ v /∈ Xg})
13: else
14: t← pick({v ∈Mr|x⊕ v /∈ Xg})
15: end if
16: y ← x
17: move(S, x, t)
18: exploreUnfeasibleRegion(S, w, w∗, x, y)
19: end while

Algorithm 2 Procedure exploreFeasibleRegion.

Input: Scores vector S, weight vector w, initial solution x

1: while ∃v ∈Mr, w · S(f)
v (x) > 0, x⊕ v ∈ Xg do

2: if ∃v ∈Mr, S
(f)
v (x) > 0, x⊕ v ∈ Xg then

3: t← pick({v ∈Mr|S(f)
v (x) > 0, x⊕ v ∈ Xg})

4: else
5: t← pick({v ∈Mr|w · S(f)

v (x) > 0, x⊕ v ∈ Xg})
6: report(x);
7: end if
8: move(S, x, t)
9: end while

10: report(x);

Algorithm 3 Procedure exploreUnfeasibleRegion.

Input: Scores vector S, weight vector w, weight vector w∗,
initial solution x, last feasible solution y

1: while ∀v ∈Mr, x⊕ v /∈ Xg ∨w · f(x⊕ v) ≤ w · f(y) do

2: if ∀v ∈Mr, w∗ · S(g)
v (x) ≤ 0 then

3: stop algorithm
4: end if
5: if ∃v ∈Mr, S

(g)
v (x) > 0 then

6: t← pick({v ∈Mr|S(g)
v (x) > 0})

7: else
8: t← pick({v ∈Mr|w∗ · S(g)

v (x) > 0})
9: end if

10: move(S, x, t)
11: end while
12: if ∃v ∈Mr, x⊕ v ∈ Xg, f(x⊕ v) > f(y) then
13: t← pick({v ∈Mr|f(x⊕ v) > f(y), x⊕ v ∈ Xg})
14: else
15: t← pick({v ∈Mr|w ·f(x⊕v) > w ·f(y), x⊕v ∈ Xg})
16: end if
17: move(S, x, t)

UnfeasibleRegion first with no previous feasible solution y.
This procedure should try to enter the feasible region and,

once a feasible solution is found, the hill climber runs in the
way described above.

5. EXPERIMENTAL RESULTS
In order to check the performance of the proposed hill

climber, we implemented a simple Multi-Start Hill Climber
algorithm that generates a feasible random solution, a weight
vector w and, then, runs Algorithm 1. These three steps are
iterated until a time limit of 1 minute is reached. Our imple-
mentation tries to avoid the re-evaluation of the feasibility
of moves when all of them are in the feasible region. In
order to do this, it keeps the minimum value of the con-
straint Scores and updates it when the Scores are changed
(in constant time). It then checks if the minimum plus the
current constraint value is nonnegative. If this is the case, it
can certify in constant time that all moves stay in the feasi-
ble region and no re-classification of moves occurs (which is
computationally costly). Thus, for unconstrained or slightly
constrained problems, it recovers the constant time per move
that previous work achieved.

The machine used in all the experiments has an Intel
Core 2 Quad CPU (Q9400) at 2.7 GHz, 3GB of memory
and Ubuntu 14.04 LTS. Only one core of the Processor is
used. The algorithm was implemented in Java 1.6 and the
source code is publicly available in Github8.

We used a constrained version of MNK Landscapes [1] as
benchmark functions. An MNK Landscape is a vector Mk
Landscape where all mi = N for all 1 ≤ i ≤ d and each

subfunction f
(l)
i depends on xi and other K more variables

(thus, k = K + 1). In our experiments K = 3. The subfunc-

tions f
(l)
i and g

(l)
i were randomly generated using integer

numbers in the ranges [-49, 50] and [-50, 49]. The sum of
subfunctions was not divided by N9. The ranges of values
used for the subfunctions codomain were chosen in such a
way that the fraction of unfeasible solutions is small in one
case (for range [-49, 50]) and large in the other. This way
we can compare what happens in slightly and highly con-
strained problems.

Each component fi and gi can be considered a shifted
NKq Landscape [2]. We also focused on the adjacent model
of NKq Landscape, where the variables each subfunction
depends on are consecutive, that is, xi, xi+1, . . . , xi+K . This
ensures that the number of subfunctions a given variable
appears in is bounded by a constant and the theoretical
results of Sections 2 and 3 apply.

5.1 Runtime
In this first experiment we measure the time per move

of our hill climber. This experiment will provide a con-
crete value for the wall clock time the hill climber requires,
although this value depends on the hardware and the pro-
gramming skills of the developer. Before running the hill
climber, it is necessary to run a problem-dependent initial-
ization procedure, where the Scores to be stored in memory
are determined. This procedure is run only once per prob-
lem instance and, for this reason, we did not take it into

8https://github.com/jfrchicanog/EfficientHillClimbers in
branch constrained-multiobjective
9This is different from the original MNK Landscapes, where
real values between 0 and 1 are used and the sum of sub-
functions is normalized dividing it by N . However, we want
to avoid floating-point inaccuracy problems.

account to compute the time per move. In our experiments
this initialization procedure required between 138 and 6,308
milliseconds. The rest of the time required by the multi-
start hill climber is divided by the number of moves taken
and reported as average time per move.

Figure 3 shows the average time per move in microseconds
for the multi-start hill climber solving constrained MNK
Landscapes, where N varies from 10, 000 to 100, 000, the
range of values for the subfunctions codomain is [−49, 50],
the number of objectives is d = 1 and d = 2, the number of
constraints is b = 1 and b = 2, and the exploration radius r
varies from 1 to 3. These instances are slightly constrained
with around 2% of the search space being unfeasible10. We
performed 30 independent runs of the algorithm for each
configuration, and the results are the average of these 30
runs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 20 30 40 50 60 70 80 90 100A
ve

ra
ge

 ti
m

e
pe

r
m

ov
e

(m
ic

ro
se

co
nd

s)

N (number of variables in thousands)

r=1, d=1, b=1
r=1, d=2, b=1
r=1, d=1, b=2
r=1, d=2, b=2
r=2, d=1, b=1
r=2, d=2, b=1

r=2, d=1, b=2
r=2, d=2, b=2
r=3, d=1, b=1
r=3, d=2, b=1
r=3, d=1, b=2
r=3, d=2, b=2

Figure 3: Average time per move in microsec-
onds for the Multi-Start Hill Climber based on Al-
gorithm 1 for constrained MNK Landscapes with
d = 1, 2, b = 1, 2, N = 10, 000 to 100, 000, subfunctions
codomain [−49, 50], and r = 1 to 3.

We can observe an almost constant time per move as N in-
creases. Since this is a slightly constrained instance, the hill
climber explores the feasible region most of the time, where
the implementation trick mentioned above prevents the re-
classification of all the moves, which takes linear time. We
also observe that the radius of exploration has the high-
est influence on the time. This time is proportional to
(3ck)r (see Section 2.1), but k is fixed in this experiment
(k = K+1 = 4). Thus, only the number of objectives d, the
number of constraints b, and the radius r externally affect
the time. The objectives and constraints affect the value of
c, in particular, c = (K + 1)(d+ b). This expression appears
in the base of (3ck)r, but r is in the exponent. This explains
why r has the highest influence. On the other hand, since
the sum d+b influences c, the difference between d = 1, c = 2
and d = 2, c = 1 is small in Figure 3.

In Figure 4 we show the average time per move (in mi-
croseconds) obtained by the multi-start hill climber solv-
ing a highly constrained MNK Landscape. The subfunc-
tions codomain here is [−50, 49] and N varies from 1, 000
to 10, 000. There is only one constraint and two objectives
(b = 1, d = 2). The fraction of unfeasible solutions in this
case is around 80%.

10This is an estimation computed as the fraction of unfeasible
solutions obtained after generating random solutions.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 ti
m

e
pe

r
m

ov
e

(m
ic

ro
se

co
nd

s)

N (number of variables in thousands)

r=1 r=2 r=3

Figure 4: Average time per move in microseconds
for the Multi-Start Hill Climber based on Algo-
rithm 1 for constrained MNK Landscapes with d = 2,
b = 1, N = 1, 000 to 10, 000, subfunctions codomain
[−50, 49], and r = 1 to 3.

In this case, we can appreciate a clear linear increase in
the time per move as N increases. Observe that the time
per move in this figure is higher than the time per move in
Figure 3, even when the search space is smaller (N is 10
times smaller). The reason is that the hill climber enters
the unfeasible region very often and it needs to re-classify
all the moves almost after every move, which takes linear
time.

5.2 Quality of the Solutions
Exploring larger neighborhoods allows the hill climber to

jump to better solutions but it also requires more time per
move. Thus, increasing r does not necessarily improve the
quality of the solutions when time is the stopping criterion.
For each problem instance, there is a value of r for which
the quality of the solutions is maximum. We will investigate
here this maximum for the problems we are solving.

In Figure 5 we show the average value of the best solution
found for the single-objective slightly constrained instances
(d = 1). We can observe that the quality of the solutions
increases as r does. This means that the optimum value for
r is 3 or higher in this case. We can also observe how the
number of constraints seems not to affect the quality of the
solutions in this case and the two lines are overlapped. The
number of constraints must certainly have an influence in
the quality of the solutions found by the hill climber. But
this influence is negligible in slightly constrained problems
like these ones.

We now repeat the analysis for the bi-objective instances
(d = 2) using the 50%-empirical attainment surfaces11 to
compare the fronts obtained when r is changed. In Fig-
ures 6(a) and 6(b) we show 50%-EAS for instances with
N = 10, 000 and N = 50, 000, constrained by b = 1 and
b = 2 functions, respectively. In this case we notice that
the 50%-EAS obtained with r = 2 always dominates the
one obtained with r = 1 (this happens also in the instances
that are not shown). However, the 50%-EAS obtained for

11The 50%-empirical attainment surface (50%-EAS) limits
the region in the objective space that is dominated by half
the runs of the algorithm. It generalizes the concept of me-
dian to the multi-objective case (see [9] for more details).

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 q
ua

lit
y

of
 b

es
t f

ou
nd

 s
ol

ut
io

n

N (number of variables in thousands)

r=1, b=1
r=1, b=2
r=2, b=1
r=2, b=2
r=3, b=1
r=3, b=2

Figure 5: Average (over 30 runs) solution quality
of the best solution found by the Multi-Start Hill
Climber based on Algorithm 1 for a MNK Land-
scape with d = 1, b = 1, 2, subfunctions codomain
[−49, 50], N = 10, 000 to 100, 000, and r = 1 to 3.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50000 100000 150000 200000 250000 300000

f 2

f1

r=1
r=2
r=3

(a) N = 10, 000, b = 1

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

f 2

f1

r=1
r=2
r=3

(b) N = 50, 000, b = 2

Figure 6: 50%-empirical attainment surfaces of the
30 runs of the Multi-Start Hill Climber based on
Algorithm 1 for a MNK Landscape with d = 2, sub-
functions codomain [−49, 50], and r = 1 to 3.

r = 3 does not always dominate the one with r = 2. As
N increases, the 50%-EAS obtained with r = 3 shrinks and
is usually dominated by the 50%-EAS obtained with r = 2.
Thus, we can say that r = 2 is the optimal value for these
instances.

6. CONCLUSIONS AND FUTURE WORK
The use of problem knowledge is always beneficial to de-

sign more effective search procedures and operators. In the
case of pseudo-Boolean optimization the formal structure
of Mk Landscapes has been previously used to develop ef-
ficient hill climbers that explore a Hamming ball of radius
r in constant time if the number of subfunctions each vari-
able appears in is bounded by a constant. We conclude in
this work that this O(1) time cannot be guaranteed if we
want to solve constrained problems and we proposed a new
hill climber for multi-objective constrained problems whose
worst case runtime is O(n), which is still low compared to
the complete exploration of the Hamming ball when r > 1.

Combining the proposed hill climber with high-level search
algorithms seems a promising line of work that could pro-
duce new very efficient optimization algorithms. Another
future line of research is the adaptaion of the key ingredients
of this hill climber to other search spaces, like permutations
or integer vectors.

Acknowledgements
This research was partially funded by the Fulbright pro-
gram, the Spanish Ministry of Education, Culture and Sport
(CAS12/00274), the Spanish Ministry of Economy and Com-
petitiveness and FEDER (TIN2014-57341-R), the Univer-
sity of Málaga, Andalućıa Tech, the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF
(FA9550-11-1-0088), the FAPESP (2015/06462-1) and CNPq.

7. REFERENCES
[1] Hernan E. Aguirre and Kiyoshi Tanaka. Insights on

properties of multiobjective MNK-landscapes. In
Proceedings of CEC, volume 1, pages 196–203, 2004.

[2] Wenxiang Chen, Darrell Whitley, Doug Hains, and
Adele Howe. Second order partial derivatives for
NK-landscapes. In Proceeding of GECCO, pages
503–510, New York, NY, USA, 2013. ACM.

[3] Francisco Chicano, Darrell Whitley, and Andrew M.
Sutton. Efficient identification of improving moves in a
ball for pseudo-boolean problems. In Proceedings of
GECCO, pages 437–444. ACM, 2014.

[4] Francisco Chicano, Darrell Whitley, and Renato
Tinós. Efficient hill climber for multi-objective
pseudo-boolean optimization. In Proceedings of
EvoCOP, pages 88–103, 2016.

[5] Yves Crama, Pierre Hansen, and Brigitte Jaumard.
The basic algorithm for pseudo-boolean programming
revisited. Discrete Applied Mathematics,
29(2-3):171–185, 1990.

[6] Brian W. Goldman and William F. Punch. Gray-box
optimization using the parameter-less population
pyramid. In Proceedings of GECCO, pages 855–862,
New York, NY, USA, 2015. ACM.

[7] Holger H. Hoos and Thomas Stützle. Stochastic Local
Search: Foundations and Applications. Morgan
Kaufman, 2004.

[8] Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Knapsack Problems. Springer-Verlag, 2004.

[9] J. Knowles. A summary-attainment-surface plotting
method for visualizing the performance of stochastic
multiobjective optimizers. In Proceedings of ISDA,
pages 552–557, 2005.

[10] Luis Paquete, Tommaso Schiavinotto, and Thomas
Stützle. On local optima in multiobjective
combinatorial optimization problems. Annals of
Operations Research, 156(1):83–97, 2007.

[11] Ivo G. Rosenberg. Reduction of bivalent maximization
to the quadratic case. Cahiers Centre Etudes Rech.
Oper., 17:71–74, 1975.

[12] Darrell Whitley. Mk landscapes, NK landscapes,
MAX-kSAT: A proof that the only challenging
problems are deceptive. In Proceedings of GECCO,
pages 927–934, New York, NY, USA, 2015. ACM.

[13] Darrell Whitley and Wenxiang Chen. Constant time
steepest descent local search with lookahead for
NK-landscapes and MAX-kSAT. In Proceedings of
GECCO, pages 1357–1364, 2012.

[14] Darrell Whitley, Wenxiang Chen, and Adele E. Howe.
An empirical evaluation of O(1) steepest descent for
NK-landscapes. In Proceedings of PPSN, pages
92–101, 2012.

