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The estimation of human global population from the United Nations indicates 

that the world total population could rich 9.15 billion in 2050 (Nikos Alexandratos and 

Bruinsma, 2012). This increase on the world population must be accompanied by an 

increase on food production. A major restriction to food production is crop losses due to 

plant diseases. Plant pathogens, including fungi, oomycetes, bacteria and viruses, are a 

major constraint to production with a strong economic impact. Understanding plant-

pathogen interactions is therefore paramount for the development of robust and 

sustainable strategies to control disease and improve crop production. 

This thesis focuses on the interaction between the plant-pathogenic bacteria 

Pseudomonas syringae and its hosts. It includes molecular and cellular studies at both 

sides of this interaction, canvasing from the bacterial virulence mechanisms to the plant 

defense response pathways. 

 

Pseudomonas syringae: an archetypal plant pathogen  

Pseudomonas syringae is a bacterial plant pathogen that has been extensively 

researched from the 1980s. P. syringae strains have been ranked as number 1 of plant-

pathogenic bacteria based on its scientific and economic importance (Mansfield et al., 

2012). P. syringae is a gram-negative bacterial pathogen that colonizes the aerial part of 

the plant, including leaves and fruits. It has a dual lifestyle, with an initial epiphytic 

phase on the surface of the plant, and an endophytic phase inside the plant apoplast, 

where the bacterial population survives and proliferates establishing a hemibiotrophic 

interaction with the host plant. The apoplast (the intercellular space between the cells of 

the parenchima) is the environment where the bacterial population grows better and this 

growth does not require killing of the plant cells for nutrients, as necrotrophs do. 

However, the interaction cannot be classified as fully biotrophic since it involves host 

cell death at later stages of the infection process, either due to the virulence action of the 

bacteria or to the defenses triggered by the plant in response to the attack.  

 

1. Pseudomonas syringae classification 

Pseudomonas syringae is a complex of strains that possess a wide host range, 

including many economically important crops, woody plants and weeds, such as the 

model plant Arabidopsis thaliana. Plants are generally resistant to most strains, and the 
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ability of a given strain to cause disease in a given host is considered the exception 

rather than the rule. On the basis of this more limited host range of the different isolates, 

the P. syringae complex is divided into more than 50 pathovars (Young, 2010). 

Furthermore, strains belonging to the same pathovar can still differ on their interactions 

with different cultivars or ecotypes of the same plant species, giving raise to an 

additional subdivision into races.  The sequencing annotation of the whole genomes 

three model strains belonging to different pathovars of the P. syringae complex: 

pathovar tomato, Pto DC3000 (Buell et al., 2003), pv. phaseolicola, Pph 1448A (Joardar 

et al., 2005), and pv. syringae, Psy B728a (Feil et al., 2005) provided a large amount of 

information and tools and determined an qualitative leap for the field. 

 

2. Pseudomonas syringae pv. tomato, phaseolicola and syringae 

Pseudomonas syringae pv. tomato is the causal agent of bacterial speck in 

tomato plants. In (1986), Cuppels generated the strain DC3000, a rifampicin resistant 

derivative of a wild-type strain, which was used for auxotrophy and pathogenicity 

studies. Some years later, Whalen et al. (1991) showed the ability of DC3000 to 

produce disease in the model plant Arabidopsis thaliana. The ability of DC3000 to 

infect both tomato and Arabidopsis plants made this strain of great interest for the plant 

pathogen interactions field. DC3000 is a weak epiphyte (Boller and Felix, 2009) 

compared with other strains such as B728a; while B728a can maintain a high epiphytic 

population for several days, most of the epyphitic population of DC3000 dies in less 

than 48h. Thus, DC3000 needs to enter into the apoplast in order to survive.  One of the 

mechanisms that DC3000 uses to effectively enter into the host tissue is mediated by the 

production of a polyketide toxin called coronatine, a molecular mimic of the plant-

hormone methyl-jasomate (Weiler et al., 1994). Upon perception of bacteria entering 

the plant apoplast, the plant induces closure of stomata in order to prevent further 

bacterial entry. Coronatine activates cellular pathways that result in the reopening of 

stomata, thus allowing high numbers of bacteria to invade the apoplast (Melotto et al., 

2008).  

Pseudomonas syringae pv. phaseolicola is the etiological agent of halo blight 

disease in common bean (Phaseolus vulgaris). This disease is characterized by the 

appearance of water-soaked lesions in leaves and pods, often surrounded by a chlorotic 

halo (W.H., 1926), and it is prevalent worldwide. Since bacteria can colonize and 
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survive into the dry seeds, fields infected by P. syringae pv. phaseolicola are usually 

destroyed to prevent dissemination. One of the control strategies to prevent halo blight 

is the rotation of resistant cultivars. Based on the resistance/susceptibility interactions 

between eight bean cultivars and 175 different strains of P. syringae pv. phaseolicola, 

the pathovar was divided in nine races (Taylor et al., 1996). The strains belonging the 

race 6, including 1448A, are able to produce disease in all cultivars tested.  

Pseudomonas syringae pv. syringae is the most heterogeneous group among the 

P. syringae pathovars. It includes strains that produce from brown spot in bean, to 

blossom blight in pear, or apical necrosis in mango trees, among other diseases. One of 

the characteristics of many of the strains of this group, including B728a, is the 

production of the phytotoxin Syringolin A (Ramel et al., 2009). This toxin acts inside 

the plant cell as a proteasome inhibitor, suppressing defense responses and promoting 

bacterial proliferation (Schellenberg et al., 2010). Furthermore, Syringolin A allows 

bacteria to move from the primary infection site through the xylem (Misas-Villamil et 

al., 2011). 

 
 Figure 1. Diseases caused by different P. syringae strains. (A) Bacterial speck of tomato 

produced by P. syringae pv. tomato. (B) Halo blight of bean produced by P. syringae pv. 
phaseolicola. (C) Bacterial brown spot of lima (top panel) and apical necrosis of mango, 
produced by P. syringae pv. syringae. Fotograph authorship: A, Top panel: A. Collmer. 
Lower panel: C. Smart. B, Top panel: H. Schwartz. C, Top panel: R. Mulrooney. 
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The Type III Secretion System: a molecular weapon of gram-negative bacteria. 

1. Structural and regulatory components of the T3SS 

Many P. syringae strains possess toxins that contribute to bacterial virulence. 

However, all strains require a Type Three Secretion System (T3SS) to be pathogenic. 

The T3SS is a complex nanomachine that exports proteins across the bacterial inner and 

outer membrane into the host cell cytosol. The components of the T3SS are very 

conserved among gram-negative bacteria. The genes encoding such conserved proteins 

are named as hrc (hrp conserved). The hrp/hrc genes are clustered in pathogenicity 

islands located in the chromosome within a single gene cluster called the hrp locus 

(hypersensitive response and pathogenicity). The T3SS is not constitutively expressed 

in the bacteria, but induced under certain conditions, such as in some minimal-

laboratory medium, or the plant apoplast. The central regulatory element of the hrp/hrc 

genes is HrpL, a member of the ECF family of alternative sigma factors that activates 

the expression of genes containing a consensus sequence, the hrp box, within their 

promoters (Xiao and Hutcheson, 1994; Fouts et al., 2002).  

The expression and assembly of the T3SS is an intricate process regulated by 

positive and negative feedbacks (Ortiz-Martin et al., 2010a; Ortiz-Martin et al., 2010b) 

in which structural proteins can also play a role in regulation, e.g. HrpA, the main 

component of the T3SS pillus, which positively regulates expression of hrpL (Preston et 

al., 1998). The structural proteins of the T3SS form a needle composed of an inner-

membrane ring, an outer membrane ring and a pillus, through which the proteins are 

secreted. In addition to regulatory and structural proteins, T3SS also include harpins or 

helper proteins, chaperones, and effectors. Harpins are secreted but not translocated into 

the host cell and play an auxiliary role in the penetration of the pillus into the plant cell 

wall, and in effector delivery (Kvitko et al., 2007). Chaperons are small proteins 

essential for the appropriated folding of the proteins of the system. These proteins are 

bound to the corresponding effector within the bacterial cytoplasm, protect them from 

aggregation or degradation, and may direct them to the needle complex when required. 

Finally, effectors are the only proteins translocated into the plant cell cytoplasm, where 

they collectively contribute to virulence by modifying host cellular processes to allow 

bacterial survival and proliferation 
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2. Type Three Effectors 

Type Three Effectors (T3Es) are the proteins translocated through the T3SS 

needle complex into the host cell. T3Es are essential for pathogenesis, since bacterial 

strains carrying a mutation in a T3SS structural gene, such as to be unable to translocate 

effectors, are non pathogenic (Alfano and Collmer, 1997). Furthermore, strains carrying 

mutations in one or more effector gene can display virulence attenuation (Cunnac et al., 

2004; Macho et al., 2012). More than 60 effector families have been validated in P. 

syringae to date, and this number is still increasing thanks to the complete sequencing 

of new pathovars (Baltrus et al., 2011; Matas et al., 2014). Historically, effectors were 

named as virulent (Vir) or avirulent (Avr) proteins based on whether they were 

identified through their virulence function (Vir) or for triggering the hypersensitive 

response in a host plant (Avr). However, some of these virulent effectors can be 

considered avirulent in different plant genotypes and vice versa. After identification of 

the T3SS from P. syringae, newly identified effectors started to be named as hop (hrp-

outer protein) followed by a letter and number. In (2005), Linderberg and 

collaborators proposed unified nomenclature and a set of guidelines to classify a newly 

identified protein as a T3SS effector. Thus, a new T3E must fulfill the following 

criteria: (i) a hrp box within the promoter of the effector gene, and a N-terminal 

sequence in the effector protein to target the protein for translocation through the T3SS, 

(ii) HrpL-dependent expression, and (iii) evidences of expression and translocation into 

the plant cell. The main function of the effectors is the manipulation of the plant cell in 

order to promote bacterial proliferation. To do so, T3Es can hijack plant nutrients and 

metabolites to support bacterial needs, change the hormone balance or modify the 

physical conditions of the apoplast (Macho, 2015). However, the most common 

function of T3Es is the suppression of the plant defense responses (Block and Alfano, 

2011; Feng and Zhou, 2012; Macho and Zipfel, 2015) 

 

The plant immune system: an unspecialized specific system. 

1. PTI: Pattern-Triggered Immunity 

Plants, as sessile organisms, are constantly exposed to a variety of biotic and 

abiotic stresses. Thus, perception of environmental signals is essential to raise alert and 

trigger a convenient response. Initial alerts are raised through surface-localized Pattern 
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Recognition Receptors (PRRs). PRRs are proteins with an extracellular receptor 

domain, and an intracellular domain to activate a signaling cascade. The signals 

recognized by the PRRs are conserved molecules known as Damage-, Microbe- or 

Pathogen-Associated Molecular Patterns (DAMPs, MAMPs, or PAMPs, respectively). 

Examples of MAMPs or PAMPS are bacterial flagellin, the elongation factor Tu, or 

chitin. Activation of PRRs leads to the onset of a defense response capable of protecting 

the plant from the attack of non-specialized pathogens, and known as Pattern-Triggered 

Immunity (PTI) (Henry et al., 2013). The best-characterized PAMP-PRR complex is the 

flagellin-Flagellin Sensing 2 (FLS2) complex (Gómez-Gómez and Boller, 2000). FLS2 

is a Receptor-Like Kinase (RLK) that contains an extracellular Leucine-Rich Repeat 

(LRR) domain, which recognizes the conserved 22-amino acid flagellin epitope flg22, 

and an intracellular kinase domain. Upon perception of flagellin, FLS2 forms a 

heterodimer with its co-receptor BAK1 (BRI1-Associated Kinase 1). BAK1 acts as co-

receptor with many others PRRs, activating downstream signals by trans 

phosphorylation (Segonzac and Zipfel, 2011). The FLS2-BAK1 complex 

phosphorylates BIK1 (Botrytis Induced Kinase 1), a receptor-like cytoplasmic kinase 

(RLCK) that acts as a substrate for many PRR complexes. BIK1 activation, along with 

other RLCKs, positively regulates the Calcium influx from the apoplast into the cytosol, 

and phosphorylates the NADPH oxidase RBOHD, leading to the production of a burst 

of Reactive Oxygen Species (ROS) and to stomatal closure, restricting bacterial 

infection (Zhang et al., 2010; Liu et al., 2013). The FLS2-BAK1 complex also activates 

signal transduction pathways through mitogen-activated protein kinases (MAPK) and 

calcium-dependent protein kinases (CDPK) cascades, which results in transcriptional 

activation of defense-related genes. Finally, as a late PTI response, the plant cell wall is 

reinforced by callose deposition that creates a physical barrier against pathogen 

invasion. 
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2. ETI: Effector-Triggered Immunity 

P. syringae can overtake PTI host response and produce infection through T3E-

mediated-suppression. However, plants possess a second layer of defense response 

called effector-triggered immunity (ETI). This response is mediated by resistance or R 

proteins, intracellular immune receptor proteins also known as NLRs (Nucleotide-

binding and Leucine Rich repeat). NLRs are subdivided into two groups based on the 

structure of their N-terminus, which can be a coiled-coil (CC) domain, or a Toll and 

Interleukin-1-like receptor domain (TIR). NLRs can recognize effectors directly, or 

indirectly through the activity of the effector on its target. This indirect recognition 

model is known as the guard model. A variation on this theme has been found where the 

effector target being watched by the NLR does not have an actual function on the cell 

other than mimic the real virulence target protein, in such a case the watched target is 

known as the decoy. Decoys are thought to have arisen through gene duplications or 

splice variants of T3E targets. The molecular events upon ETI response are similar to 

the ones occuring during PTI, and include ROS burst and transcriptional activation of 

defense genes, but displays major differences in the timing of activation, duration, and 

Figure 2. Events occurring during PTI activation by flg22. Adapted from Henry et al., 2013. 
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intensity (Thomma et al., 2011). The result of these events is the activation of a 

programmed cell death process known as the hypersensitive response (HR). The HR is a 

trademark of ETI. 

 

3. SAR: Systemic Acquired Resistance 

Plants do not have a specialized secondary immune system to prevent the 

infection by incoming pathogens. However, activation of either PTI or ETI induces a 

faster and stronger defense response in distal leaves than occurs in naïve plants. This is 

known as systemic acquired resistance or SAR. SAR is a mechanism of induced defense 

that confers long-lasting resistance against a broad spectrum of microorganisms. This 

response is characterized by the activation of the expression of the defense-related 

hormone Salicylic Acid (SA) and the accumulation of Pathogenesis-Related (PR) 

proteins in distal tissues. Although the nature of the pathogen-induced mobile signal 

remains unknown, there are a variety of compounds that have been linked to the spread 

of SAR. SA and Methyl-SA (Mesa et al., 2009) accumulate in distal tissues during 

activation of SAR, and were thus proposed to act as SAR signal. However, grafting 

experiments demonstrated that those compounds are dispensable for the spread of the 

systemic signal (Spoel and Dong, 2012). Another compounds that have been associated 

to SAR are glycerol-3-phosphate (G3P), azelaic acid (AzA, (Cecchini et al., 2015)), 

Nitric Oxid (NO) and ROS (El-Shetehy et al., 2015). 

 

The Plant-P. syringae interaction: a molecular battle between effectors, their 

targets and the NLRs proteins. 

Plants are capable of detecting bacterial conserved patterns upon contact to trigger PTI. 

Thus, in order to survive and proliferate within a plant host, bacteria must be able to 

suppress PTI, and this role is mostly assumed by T3Es in P. syringae. Many effectors 

can suppress PTI at different levels. For example, AvrPtoB ubiquitinates PRRs to 

promote their degradation by the proteasome (Gohre et al., 2008), AvrPto and HopAO1 

block PRR kinase activity and their downstream function (Ding et al., 2007; Macho et 

al., 2014), HopF2 and HopAI1 modify MAP kinases, inactivating their function (Zhang 

et al., 2007a; Wang et al., 2010), and several effectors target and modify RIN4, an 

important regulator of plant immunity (Kim et al., 2005; Shang et al., 2006). However, 

modification of plant targets may unleash the ETI response. For example, the above-
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mentioned inactivation of MPK4 by HopAI1 activates the NLR SUMM2 (Zhang et al., 

2012). Similarly, cleavage of RIN 4 by AvrRpt2 switches on the specific NLR RPS2 

(Axtell and Staskawicz, 2003). However, activation of other NLRs can follow a more 

complex pattern, as it is the case for activation of the NLR ZAR1. ZAR1 triggers ETI 

by detecting acetylation of the pseudokinase ZED1 by the effector HopZ1a (Lewis et 

al., 2013). In addition, ZAR1 can also activate ETI through detection of uridylylation of 

another pseudokinase, RKS1, by Xanthomonas effector AvrAC (Wang et al., 2015). 

Interestingly, ZED1 nor RKS1 are necessary for effector virulence activities, therefore, 

these proteins are believed to act as decoys leading to the activation of ETI. Since the 

ETI response and the ensuing HR severely restrict pathogen growth, pathogens need to 

suppress or avoid this defense response in order to survive and proliferate. Avoidance 

could be achieved by an evolutionary strategy called pathoadaptation (Ma et al., 2006): 

small changes on the effector protein sequence leading to a loss of recognition by the 

NLR, and to a new effector that could conserve its virulence function. Suppression 

could be achieved by the acquisition by the pathogen of another effector(s) capable of 

suppressing the ETI. This gain can be mediated by horizontal transfer events (Deng et 

al., 2003). In the latter case, the ETI-suppressing activity of the new effector(s) would 

allow bacteria to overtake the defense response.  

  

 



 

  



 

 
 
 
 
 
 
 
 
 
 

Objectives 
 
1. To characterize the impact and source of diversity within pathogen populations 
during the interaction with the plant host, using single-cell technology and the model 
bacterial pathogen Pseudomonas syringae. 
 

1.1 To analyze how strains of P. syringae differing in their virulence relate or 
interfere with each other during colonization of the host. 

 
1.2 To look for a mechanistic explanation for the phenotypic heterogeneity 
observed in the development of P. syringae populations during colonization of 
the plant apoplast. 

 
2. To characterize new molecular mechanism of plant defense suppression, through the 
analysis of how P. syringae effector HopZ1a suppresses plant defenses. 
 

2.1 To evaluate and characterize the role of lysine 289 on HopZ1a function. 
 

2.2 To evaluate plant MAP Kinase Kinase 7 as putative virulence target of 
HopZ1a. 
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Bacterial strains and growth conditions 

Bacterial strains used in this work are listed in the Table 1 of each chapter. All bacterial 

strains were grown in Lennox Broth (LB, Lennox (1955)), unless otherwise stated. 

Escherichia coli DH5α  (Hanahan, 1983) derivatives were grown at 37ºC. Pseudomonas 

syringae strains and Agrobacterium tumefaciens C58C1 (Deblaere et al., 1985), 

derivatives were grown at 28°C. Antibiotics were used at the following concentrations: 

for E. coli DH5a, ampicillin (Amp), 100 mg/ml, kanamycin (Km), 50 mg/ml; 

gentamycin (Gm), 10 mg/ml and chloramphenicol (Cm), 6 mg/ml. For P. syringae and 

P. fluorescens strains, Km 15 mg/ml, Gm 10 mg/ml and nitrofurantoin (Nf), 50 µg/ml. 

For A. tumefaciens, Km 50 mg/ml, tetracycline (Tc) 5 µg/ml and rifampicin (Rf) 50 

µg/ml. All plates used to grow plant-extracted bacteria contained cycloheximide (2 

µg/ml) to prevent fungal contamination. 

 

Plant material 

Phaseolus vulgaris bean cultivar Canadian Wonder plants were grown at 23°C, 95% 

humidity, with a controlled photoperiod of 16h light/ 8h dark with a light intensity of 

200 µmol/m2/s. Arabidopsis thaliana Col-0 and derivatives were grown in soil, or for 

disease development assays, in jiffy-7 (Jiffy Products Ltd, Norway). In either case, they 

were grown in temperature-controlled chambers, at 21ºC with a controlled photoperiod 

of 8h light/ 16h dark with a light intensity of 200 µmol/m2/s. Nicotiana benthamiana 

was grown in soil in temperature-controlled chambers, at 21ºC with a controlled 

photoperiod of 16h light/ 8h dark with a light intensity of 200 µmol/m2/s.  

Arabidopsis zar1-1 (Lewis et al., 2010) and DEX-MKK7 (Zhang et al., 2007) plants 

were crossed to obtain homozygous zar1-1/DEX-MKK7 lines. 

 

Bacterial inoculation and recovery from plant leaves 

For P. syringae inoculum preparation, bacterial lawns were grown on LB plates for 48 h 

at 28°C, collected and suspended in 2 mL of 10 mM MgCl2. The OD600 was adjusted to 

0.1, corresponding to 5 x 107 colony forming units (cfu/mL) and serial dilutions made to 

reach the desired inoculum concentration.  

Plant inoculation by infiltration to be used for either microscopy, bacterial growth 

assays, symptoms development on bean leaves, or PR1 accumulation, in either bean 
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plants or Arabidopsis were carried out as follows: one fully expanded leaf from a 10-

days old bean plant, or three fully expanded young leaves from 5-week-old Arabidopsis 

plants were pressure infiltrated using a 1-mL syringe without needle. The inoculum 

concentration for microscopy varied from 5 x 107 cfu/mL to 5 x 104 cfu/mL, depending 

on the experiment. For bacterial growth assays, the inoculum dose used was 5 x 104 

cfu/mL, unless otherwise stated, and for PR1 accumulation experiments 5 x 105 cfu/mL. 

For standard growth assays, three 10-mm-leaf discs were taken from either the 

inoculated or outside the inoculated area and ground in 1 mL MgCl2. Serial dilutions 

were plated and bacteria enumerated.  

Dip-inoculation for microscopy or growth assays was carried out by dipping leaves for 

30 seconds in a 5 x 107 cfu/ml mixed bacterial suspension in 10 mM MgCl2 and 0.02% 

Silwett L-77 (Crompton Europe Ltd, Evesham, UK).  

Infiltration of bean leaves to be analyzed for flow cytometry was carried out after 

dipping a whole leaf into a 5 x 105 cfu/ml bacterial solution in 0.01% Silwett L-77 

(Crompton Europe Ltd, Evesham, UK), using a pressure chamber. Four days post 

inoculation (dpi) bacteria were recovered from the plant by an apoplast fluid extraction. 

This extraction was carried out by pressure infiltrating a full leaf with 10 ml of a 10 mM 

MgCl2 solution inside a 20 ml syringe. Following 5 cycles of pressure application, the 

flow-through was removed and placed into a fresh 50 ml tube, and the leaf retained 

within the syringe introduced into another. Both tubes were centrifuged at 4ºC for 30 

min at low speed (900 g). Pellets were resuspended into 1 ml of MgCl2 and analyzed by 

flow cytometry. 

For Arabidopsis symptom visualization, 3-week-old plants were sprayed with a 

bacterial suspension containing 5x107 cfu/ml in 10 mM MgCl2 containing 0.02% 

Silwet-L77 (Crompton Europe Ltd, Evesham, UK). Plants were kept covered for 24h to 

keep humidity high. 

 

Competitive index and cancelled-out assays 

A detailed protocol for Competitive Index (CI) assays is attached as Apendix 1 (Macho 

et al., 2016). To calculate LBCIs, 500 µl of a 5x104 cfu/ml mixed inoculum, containing 

equal cfu of wild type and derivate strains, was inoculated into 4.5 ml of LB medium 

and grown for 24h at 28ºC with aeration. Serial dilutions were then plated onto LB agar 
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and LB agar with the corresponding antibiotic, to determine the precise ratio between 

the co-inoculated strains. In plants, competitive index and cancelled-out (COI) assays 

were performed as previously described (Macho et al., 2007). Using a blunt syringe, 4- 

to 5-week old plants were inoculated with a 5x104 cfu/ml mixed bacterial suspension, 

containing equal numbers of wild type and derivative strains. Serial dilutions of the 

inoculum were plated onto LB agar and LB agar with kanamycin to confirm dose and 

relative proportion between the strains, which should be close to one. At 4 dpi, three 10-

mm-diameter leaf discs were homogenized into 1 ml of 10 mM MgCl2, by mechanical 

disruption. Bacteria were enumerated by plating serial dilutions onto LB agar with 

cycloheximide, and LB agar with kanamycin and cycloheximide, to differentiate the 

strains within the mixed infection. Bacterial enumeration was carried out in the dilution 

displaying between 50 and 500 colonies per plate. The CI is defined as the mutant-to-

wild type ratio within the output sample divided by the mutant-to-wild type ratio within 

the input (inoculum) (Freter et al., 1981; Taylor et al., 1987). The cancelled-out index 

(COI) is calculated dividing the output ratio between the strain expressing two effectors 

and the strain expressing one effector, by their input ratio (Macho et al., 2010a). 

Competitive and cancelled-out indices shown are the mean of three replicates displaying 

typical results from at least three independent experiments. Errors bars represent 

standard error. Each CI or COI was analyzed using a homoscedastic and 2-tailed 

Student’s t-test and the null hypothesis: mean index is not significantly different from 1, 

or from other mean value (P value < 0.05).  

 

Fluorescent labelling of bacterial strains 

Constitutively expressed fluorescent reporter genes (eCFP or eYFP [enhanced cyan, and 

yellow fluorescent proteins, respectively]) were introduced into the chromosome of Pph 

strains 1448A and 1449B using a Tn7 delivery system (Lambertsen et al., 2004): 

plasmids used are listed in Table 3 of chapter 1. Plasmids were introduced into Pph 

strains by tetraparental mating, as previously described (Lambertsen et al., 2004). PCR 

using primers Tn7-GlmS and Tn7R109 (Lambertsen et al., 2004), as well as Southern 

blot analysis using aacC1 (GmR) as a probe, were used to confirm the correct and 

unique insertion of the transposon within the genome. 

Bacterial strains carrying chromosome-located transcriptional fusions of the hrp genes 

hrpL, hrcU and hopAB1 to a promoterless gfp gene were generated using an adaptation 
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of Zumaquero et al. (2010). The hrpL and hopAB1 genes are encoded as monocistronic 

units, whereas hrcU is the last gene of an operon (Rahme et al., 1991; Xiao and 

Hutcheson, 1994; Jackson et al., 2000). For each gene, two fragments of approximately 

500 pb were amplified from Pph 1448A genomic DNA using iProof High-Fidelity 

DNA Polymerase (Bio-Rad, USA); one fragment corresponding to the 3’ end of the 

ORF, including the STOP codon, and the other corresponding to the sequence 

immediately downstream the STOP codon. The reverse primer for the first fragment and 

the forward primer for the second share a 16 bp overlapping region, including the T7 

primer sequence and an EcoRI restriction site, providing homology and a cloning site 

between both fragments. All primers used are listed in Table 2 of chapter 2. Each 

reaction was carried out at 94ºC for 3 min, followed by 20 cycles at 94ºC for 20s, 55ºC 

for 30s, and 72ºC for 50s, followed by 7 min at 72ºC, and the reaction mixture 

contained 0.64 mM deoxynucleoside triphosphate (dNTP) mix, 5% dimethylsulfoxide 

(DMSO), 0.4 ng of each primer, 1 ng of genomic DNA, the appropriate enzyme buffer, 

and commercial ultrapure water (Nalgene, Rochester, NY, USA). Five µl of each gel-

purified PCR product were used, without additional primers or template, in a PCR 

reaction consisting of 8 cycles at 94ºC for 30s, 52ºC for 1 min, and 72ºC for 1 min, 

finishing with 7 min at 72ºC. Five µl of this reaction, containing a single fragment of 

approximately 1 Kb, was used as a template for an additional amplification with the 

forward primer from the first amplified fragment and the reverse from the second (0.4 

M of each), 0.64 mM dNTP mix, 5% DMSO, the corresponding buffer, and ultrapure 

water, for a reaction consisting of 20 cycles at 94°C for 20 s, 53°C for 30 s, and 72°C 

for 1 min, finishing with 7 min at 72°C. The resulting fragments, including the end of 

each ORF and its downstream sequence separated by an EcoRI site, were A/T cloned 

into pGEM-T (Promega, USA) and fully sequenced to discard mutations, giving raise to 

pDLM3 (phopAB1-EcoRI), pDLM4 (phrcU-EcoRI), and pDLM5 (phrpL-EcoRI).  

Plasmid pZEP07 (Hautefort et al., 2008) was used as template for PCR-amplification of 

a fragment containing a promoterless gfp gene carrying its own ribosomal-binding site 

(Willmann et al., 2011), followed by an EcoRV site and a chloramphenicol resistance 

cassette. This fragment was A/T cloned into pGEM-T (Promega, USA) generating 

pDLM1. A fragment containing the nptII kanamycin resistance gene, flanked by FRT 

sites (Flipase Recognition Target), was PCR-amplified using iProof High-Fidelity DNA 

Polymerase (Bio-Rad, USA), pDOC-K (Lee et al., 2009) as a template, and the 
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corresponding primers, and clone into the EcoRV site from pDLM1, to generate 

pDLM2. Plasmid pDLM2 was used as a template to amplify a fragment containing the 

promoterless gfp gene with its RBS, the kanamycin resistance gene, and the 

chloramphenicol resistance gene, and this fragment cloned into pDLM3, pDLM4 and 

pDLM5, digested with EcoRI and blunt-ended by treatment with the Klenow 

polymerase fragment (Takara, Japan) generating plasmids pDLM6, pDLM7 and 

pDLM8, respectively. These resulting plasmids were introduced by electroporation into 

Pph 1448A, as previously described (Zumaquero et al., 2010), and the transformation 

plated into LB plates supplemented with kanamycin. Replicas of the resulting colonies 

were carried out on LB plates supplemented with ampicillin (300 µg/ml) to determine 

which clones were the result of plasmid integration (a single recombination event), and 

which the result of allelic exchange (a double recombination event). Southern blot 

analysis, using the nptII gene as a probe, was used to confirm that allelic exchange 

occurred at a single and correct position within the genome.  

 

Microscopy 

Sections of inoculated P. vulgaris leaves (approximately 5 mm2) were excised with a 

razor blade, and mounted onto slides in double-distilled H2O (lower epidermis toward 

objective) under a 0.17 mm coverslip. Images of the leaf mesophyll were taken using 

the Leica SP5 II confocal microscope (Leica Microsystems GmbH, Germany). Variable 

AOTF filters were used for the visualization of the following fluorophores (excitation/ 

emission): eYFP (514 nm/ 525 to 600 nm), eCFP (458/ 465 to 505 nm), plant 

autofluorescence (458/ 605 to 670 nm) and VENUS (515 nm/ 525 to 600 nm). Z series 

imaging were taken at 1 mm or 10 mm intervals when using 40x or 10x objectives 

respectively. Images were processed using Leica LAS AF (Leica Microsystems). CCID 

analyzes were performed as described in Godfrey et al. (2010) using Fiji distribution of 

ImageJ software. 

Apoplast-extracted bacteria were stained with FM4-64 following instructions from the 

provider (Life Technologies), and analyzed using the Leica DMR fluorescence 

microscope (Leica Camera). 
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For Bimolecular Fluorescence Complementation (BiFC), leaf sections were excised 

with a razor blade at 20 hours after Agrobacterium tumefaciens inoculation (described 

below) and mounted into slides in distillated water.  

 

Flow Cytometry and Cell Sorting  

Five hundred µl of an overnight P. syringae culture in LB was washed twice into 

MgCl2, and added to 4.5 ml of Hrp-inducing medium (HIM, with 10 mM fructose and 

pH 5.7; (Huynh et al., 1989)). Bacterial cultures at the indicated growth stage, as well as 

apoplast-extracted bacterial suspensions, were analyzed using a Cytomics FC500-MPL 

cytometer (Beckman Coulter).  

Stationary cultures were sorted using a MoFloTM XDP cytometer (Beckman Coulter). 

Cultures of wild type Pph 1448A or Pph hopAB1::gfp were analyzed, and based on this 

analysis, gates were drawn to separate the cells displaying fluorescence levels 

overlapping those of a 1448A non-GFP bacterial population used as a negative control, 

from cells expressing higher GFP levels. From each gate, cells were collected into a 

sterile tube. Immediately before sorting, cells were spun at 12,000 g for 10 min, and the 

resulting pellets resuspended into 10mM MgCl2, and bacterial concentration adjusted to 

106 cfu/ml, and inoculated into bean plants.  An aliquot of sorted cells was analyzed 

again at the cytometer to visualize the differences in expression of the separated 

populations. Data were analyzed with FlowJo Software.  

 

Generation of point mutations 

HopZ1aK289R point mutation was generated following the instructions of the 

QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies) 

using the vector pAME30 (Macho et al, 2010) as template. The primers used were 

Z1aM1 (CCGGTGGATTTTTATAGGCATGGCGCTTCGCTG) and Z1aM2 

(CAGCGAAGCGCCATGCCTATAAAAATCCACCGG). The mutation was verified 

by sequencing. 

To generate MKK7K74R and MKK7K167R, primers used are listed in Chapter 4, Table 3, 

and NZYMutagenesis kit (NZYtech, Portugal) was used, following the instructions 

provided, and pENTR-MKK7 as template. Point mutations were verified by 

sequencing. 
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Plasmid generation 

Plasmids used in this work are listed in Table 2 of each chapter. All the PCR were 

performed using Q5 High-Fidelity DNA Polymerase (New England Biolabs, USA), 

unless otherwise stated. 

For COI assays, a fragment containing a gentamicin resistance cassette was excised 

from pMGm using KpnI and cloned into the corresponding site of pAME30 (HopZ1a), 

pAME27 (HopZ1aC216A), and pMAM1 (HopZ1aK289R), to generate pAME30Gm, 

pAME27Gm and pMAM1Gm, respectively. The gentamicin resistance cassette allowed 

antibiotic selection of strains carrying these plasmids versus strains carrying plasmids 

conferring kanamycin resistance. 

For the expression of proteins used in the in vitro acetylation assays, HopZ1a, 

HopZ1aC216A and HopZ1aK289R were amplified by PCR, using plasmids pAME30, 

pAME27, and pMAM1 as templates, and primers Z1pET-F 

(AACATATGGGAAATGTATGCGTCG) and Z1pET-R 

(AAGGATCCTTAGCGCTGCTCTTCGGC). PCR-amplified DNA fragments, 

encoding the corresponding ORFs were digested with NdeI and BamHI and cloned into 

the corresponding sites of expression vector pET28a(+). The resulting vectors pET28-

Z1a, pET28-C2 and pET28-K2 express HopZ1a, HopZ1aC216A, and HopZ1aK289R as 

6xHis N-terminal fusion proteins, respectively. 

For GST fusion proteins, MKK7 ORF was PCR amplified from Arabidopsis genomic 

DNA using the primers MKK7-F and MKK7-R1, and cloned into pGEX-5X-1 (GE 

Healthcare, UK) in BamHI and EcoRI restriction sites. 

For in planta transient expression assays, 6xHis-HopZ1a, 6xHis-HopZ1aC216A and 

6xHis-HopZ1aK289R ORFs were excised from pET28-Z1a, pET28-C2, and pET28-K2 

using XbaI and BamHI, and cloned into the corresponding sites of binary vector 

pBINX1: the resulting vectors were designated pBINZ1, pBINZ2 and pBINZ3, 

respectively. 

To generate Gateway-cloning intermediates, HopZ1a and HopZ1aC216A were amplified 

by PCR using plasmids pAME30 and pAME27 as templates, and primers Z1a pENTR-

F and Z1a pENTR-R. MKK7 was amplified from Arabidopsis genomic DNA using the 

primers MKK7 pENTR-F and MKK7 pENTR-R. All these fragments were digested 

with AscI and NdeI and cloned into the corresponding sites on pENTR/D (Invitrogen, 
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USA). After sequencing validation, fragments were cloned into their respective 

destination vectors using the Gateway LR Clonase II Enzyme mix (Invitrogen, USA). 

 

PR1 detection assays 

For PR1 detection, approximately 100 µg of leaf tissue were harvested, frozen into 

liquid nitrogen and grounded into 100 µl of extraction buffer (10 mM Tris-HCl pH 7.4, 

150 mM NaCl and EDTA-free plant protease inhibitor cocktail (Roche, Mannheim, 

Germany)). The resulting homogenate was centrifuged at 16 000 g for 10 min at 4ºC. 

Soluble supernatant was separated and centrifuged again to ensure absence of insoluble 

debris. Protein concentration within the supernatant was determined using a BioRad 

protein assay (BioRad, Hercules, USA). Unless otherwise stated, 10 µg of each protein 

sample, were separated by electrophosesis on 12% acrylamide SDS-PAGE gels (Mini 

protean, BioRad) and transferred onto PVDF membranes (Millipore, Billerica, USA). 

Western blots for immunodetection of PR-1 were carried out using standard methods, 

with a 1:5000 dilution of anti-PR-1 antibody and 1:10000 dilution of a secondary Anti-

Rabbit antibody (SIGMA, St. Louis, MO, USA). Membranes were developed using the 

BioRad Clarity Western ECL Substrate (BioRad, Hercules) following the instructions 

provided. Anti-PR-1 serum used has been described by Wang and collaborators (2005). 

Membranes were stained with Coomassie blue as loading control. 

 

Systemyc acquired resistance (SAR) assays 

For measuring SAR impact on Pto DC3000 growth, the fourth and fifth Arabidospsis 

younger-fully expanded leaves were inoculated with either 10 mM MgCl2 (mock), 

DC3000 or DC3000-expressing effectors at 5x105 cfu/ml. After 2 dpi, the 3 youngest-

fully expanded leaves were infiltrated with a 5x104 cfu/ml DC3000 suspension. Growth 

of DC3000 in the secondary leaves was measured by 4 dpi, as already described. 

To measure the PR1 accumulation in distal tissue, two Arabidopsis fully expanded 

leaves were inoculated with either 10 mM MgCl2 (mock) or a 10 mM MgCl2 bacterial 

suspension at 5x105 cfu/ml of the strain to be tested. After 48 hours, two distal-young 

leaves were collected and frozen into liquid nitrogen. Protein extraction and western 

blot were performed as already described. 
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Hypersensitive Response assays 

For macroscopic HR assays, fully expanded leaves of 4- to 5-week old Arabidopsis 

plants were inoculated using a blunt syringe with a 5x107 cfu/ml bacterial suspension, 

and symptoms were documented at 20 to 24 h post-inoculation (hpi). A minimum of 30 

leaves was infiltrated per strain and plant genotype.  

 

Nicotiana benthamiana transient expression assays 

For transient expression assays in N. benthamiana, 5-week old plants were infiltrated 

with an Agrobacterium tumefaciens C58C1 solution at OD600 0.5 in 10 mM MgCl2, 10 

mM MES (SIGMA, St. Louis, MO, USA), 200 µM 3′,5′-Dimethoxy-4′-

hydroxyacetophenone (acetosyringone) (SIGMA, St. Louis, MO, USA) carrying the 

corresponding binary plasmids.  

For immunoprecipitation assays, strains expressing either protein were co-inoculated at 

OD600= 0.5 each. Samples were collected at 20-30 hours post inoculation, before the 

onset of visible cell death.  

Plants were monitored for development of macroscopic cell death and photographed at 

24-48 hours post-inoculation.  

 

Protein expression and purification 

All proteins were expressed in E. coli NCM631 after induction with 0,1 mM IPTG at 

20ºC for 6 hours. His-tagged proteins were purified using Ni-NTA agarose (Quiagen, 

USA). GST and GST-tagged proteins were purified using Glutathione Sepharose 4B 

(GE Helathcare, USA). Protein concentrations were determined by the Bio-Rad protein 

assay (Bio-Rad, USA). 

 

In vitro acetylation assays 

For in vitro acetylation assays using Western blot, 3 µg of each 6xHis-HopZ1a, 6xHis-

HopZ1aC216A and 6xHis-HopZ1aK289R purified protein were incubated in acetylation 

buffer containing 50mM HEPES pH 8, 10% Glycerol, 1mM DTT and 1mM PMSF, 

with 100nM inositol hexakisphosphate (IP6 or phytic acid, SIGMA, USA) and 50µM 

Acetyl-CoA (SIGMA, USA). The reaction was incubated for 1 hour at 30ºC, and 
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stopped by adding 3X Laemmli buffer and boiling at 95ºC for 5 min. Twenty µl of each 

sample were separated by SDS-PAGE, and autoacetylation was detected using an anti-

Acetylated-Lysine Antibody (Ac-K-103, Cell Signaling Technology, USA). As a 

loading control 20 µl of the same samples were separated by SDS-PAGE and stained 

with Coomassie. 

For 14C-based acetylation assays, 3 µg of the effector (6xHis-HopZ1a, 6xHis-

HopZ1aC216A and 6xHis-HopZ1aK289R) and 5 µg of the substrate (GST, GST-MKK7, 

GST-MKK7K167R) were incubated in acetylation buffer containing 50 mM HEPES pH 

8, 10% Glycerol, 10 mM Sodium butyrate, 1 mM DTT and 1 mM PMSF, with 100 nM 

inositol hexakisphosphate (IP6 or phytic acid, SIGMA, USA) and 22 nCi Acetyl-CoA 

(PerkinElmer, USA). The reaction was incubated for 1 hour at 30ºC, and stopped by 

adding Laemmli buffer and boiled at 95ºC for 5 minutes. 20µl of each sample were 

separated by SDS-PAGE, and proteins were transferred to a PVDF membrane. 

Acetylation was detected by autoradiography. As a loading control 20µl of the same 

samples were separated by SDS-PAGE and stained by Coomassie 

 

Dexamethasone treatment 

Five weeks-old DEX-MKK7 plants were infiltrated with 10 µM dexamethasone 

(SIGMA; USA) 0.1% ethanol (DEX+), or water 0.1% ethanol (DEX-) for growth 

assays and callose deposition. Three hours post-infiltration, same leaves were 

inoculated with the corresponding bacterial suspension for PR1 assays. 

 

Flg22-responses assays 

For callose deposition assays, leaves pretreated with or without dexamethasone were 

infiltrated after 24h with 100 nM flg22. After 15 hours, leaves were cleared in alcoholic 

lactophenol (1 volume of phenol: glycerol: lactic acid: water and 2 volumes of ethanol) 

at 65ºC for 30 min, rinsed in water and stained with aniline blue 0.01% in 150mM 

K2HPO4. Samples were mounted in 50% glycerol and examined under UV fluorescence 

microscope. Four pictures were taken per leaf, and 6 leaves per treatment (2 leaves per 

plant). Callose deposition was measured using Fiji distribution of ImageJ. 

Oxidative burst was quantified as previously described (Macho et al, 2014). Plant discs 

were incubated overnight with 30 µM dexamethasone 0.1% ethanol, or water 0.1% 
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ethanol. ROS was elicited with 100 nM flg22 (GeneScript, USA). Twenty leaf discs 

from 4-week-old plants were used for each condition. Luminescence was measured 

using a Luminometer. 

To detect activation of MAP Kinases, DEX-MKK7 plants were germinated in MS 

medium, and, transferred after 7 days to liquid MS, where they were kept for another 7 

days. MS was changed by DEX+/DEX- treatment (as described before), and after 24 

hours plants treated with 100nM flg22. Plant samples were taken at the indicated time 

points and frozen into liquid nitrogen. Samples were grounded into 100 µl extraction 

buffer (100mM TRIS pH 7.5, 150mM NaCl, 5mM EDTA, 10% glycerol, 1X protease 

inhibitor cocktail (SIGMA, USA) and 1X phosphatase inhibitor (Cell Signaling, USA). 

After a 10 min centrifugation at 16,000 g, supernatants were transfered into fresh tubes, 

and proteins quantified using a BioRad protein assay (BioRad, Hercules, USA). Ten µg 

of proteins were loaded per lane in a SDS-PAGE, and transferred to a PVDF membrane. 

MAP kinase activation was detected using an anti-p42/p44-erk antibody (Cell 

Signalling, USA), and membrane was stained with Coomassie blue. 

 

Immunoprecipitation assays 

For immunoprecipitation assays, 1 g of leaf tissue was homogenized into liquid 

nitrogen, with 2 ml of extraction/washing buffer (50mM Tris-HCl pH 7.5, 150mM 

NaCl, 0.1% Triton, 0.2% NP-40, 6mM BME and 1X protease inhibitor cocktail 

[SIGMA, USA]). The resulting homogenate was centrifuged at 16,000 g for 20 min at 

4ºC, and the supernatant collected into a new tube. Twenty µl of pre-equilibrated anti-

HA agarose (SIGMA, USA) were added to each tube, and incubated for 3 hours at 4ºC 

in an end-over-end shaker. After incubation, tubes were spun down (900 g) and beads 

washed 3 times. To elute the proteins, beads were boiled 5 min at 95ºC in 20 µl 3X 

Laemmli buffer. 

 

In vitro kinase assay 

For in vitro kinase assays, 1 µg of GST, GST-MKK7, GST-MKK7K74R, or GST-

MKK7K167R plus 1 µg of the Myelin Basic Protein (MBP) (SIGMA, USA) were 

incubated into phosphorylation buffer containing 50 mM Tris-HCl pH 7.4, 5 mM 

MnCl2, 5 mM MgCl2, 1 mM DTT, 1 µM cold ATP and 5 µCi [γ32P] - ATP 
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(PerkinElmer, USA). The reaction was incubated for 30 minutes at 30ºC, and stopped 

by adding Laemmli buffer and boiling at 95ºC for 5 minutes. Ten µl of each sample 

were separated by SDS-PAGE, and phosphorylation detected by autoradiography. As a 

loading control, 10 µl of the same samples were separated by SDS-PAGE and stained 

with Coomassie blue. 
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Introduction	

Plants are continuously under attack by a myriad of microorganisms, often by a 

mixture of them simultaneously. The different defense mechanisms that plants use to 

resist such attacks have been the subject of extensive study for years, where much of 

this research has focused on the interaction between bacterial pathogens and the plant 

host (Dodds and Rathjen, 2010). These studies, mostly carried out in laboratory 

conditions, analyze the interaction in a one-to-one basis, one pathogen at a time. 

However, field infections are likely to be more complex. The interaction between the 

plant and a given pathogen can be influenced by additional interactions of the plant with 

the same or different pathogens. Contact with some pathogens, for instance, can induce 

systemic acquired resistance or SAR (Cameron et al., 1994). Induction of SAR 

determines a restriction of growth of a newly incoming pathogen in systemic tissues, by 

determining the pre-activation of defense responses in uninfected tissues, such as 

accumulation of salycilic acid (SA), or pathogenesis-related proteins (PRs). Plant-

associated bacteria can also determine pre-activation of defenses in systemic tissues in a 

SA-independent, jasmonic acid (JA)-dependent process known as induced systemic 

resistance (ISR) (van Loon et al., 1998).  

Even in the context of a seemingly single infection, genomic changes within the 

population have been shown to give raise to genetic variants, which can differ in their 

interaction with the plant. Only within the P. syringae complex the strain diversity is 

overwhelming, with many variants of a pathogen originated through horizontal gene 

transfer (HGT), mutation, chromosomal re-organisation, and unknown events giving 

raise to phase variation within the populations, and to the differentiation of variants with 

important differences on host adaptation (Ma et al., 2006; Godfrey et al., 2011). At the 

center of the process of host adaptation of P. syringae is the T3SS and the T3Es (Alfano 

and Collmer, 1997). Evolution of the T3SS and that of its effectors has been mostly 

driven by HGT (Rohmer et al., 2004; Sarkar et al., 2006).  

An example of how variants of a given pathogen with different virulence 

capabilities can meet within the plant is found in the bean pathogen P. syringae pv. 

phaseolicola (hereafter referred to as Pph). Inoculation of Pph 1302A into resistant bean 

plants activates the HR, which in turns triggers the excision of the bacterial PPHGI-1 

locus, a genomic island encoding a T3E, HopAR1 (formerly AvrPphB), responsible for 

triggering the HR in this cultivar (Pitman et al., 2005). Once excised from the 
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chromosome PPHGI-1 is maintained as a circular episome in which gene expression is 

severely reduced (Godfrey et al., 2011). As excision of PPHGI-1 takes places in a 

number of cells during an incompatible interaction, the bacterial population bifurcates 

into two subpopulation differing in whether they express, or not HopAR1. In a host 

carrying the resistance gene against HopAR1, these two subpopulations have a very 

different interaction with the host, since those carrying a genomic copy of the island 

will induce a strong HopAR1-triggered HR, and those carrying its episomal version will 

not (Godfrey et al., 2011).  

Little is known about how mixed populations of a given pathogen interact and 

develop with the host plant. Work in the 1960s showed that inoculation of a P. syringae 

strain capable of triggering strong plant defenses (avirulent strain) may result in the 

limitation of a co-inoculated virulent strain (Klement and Lovrekovich, 1961; Omer and 

Wood, 1969). However, a population of a non-pathogenic strain may also benefit from 

co-inoculation with a pathogenic one, reaching a larger population size than if 

inoculated alone (Young, 1974). More recently, following the lead of research in animal 

pathogens, where mixed infections are used to analyze bacterial virulence (Beuzón and 

Holden, 2001), our laboratory set up the conditions to use competitive index in mixed 

infections as a means to assay virulence (Macho et al., 2007). This work showed that 

co-inoculated P. syringae strains affected each other’s growth or not, depending on the 

concentration of the inoculum. Thus, when high inoculation doses were used, it was 

possible to detect dominant negative effects of avirulent strains on the growth of 

virulent, or complementation of growth defects of non-pathogenic by pathogenic co-

inoculated strains, such as those previously described. These interferences were not 

detected at lower inoculation doses, like those expected to take place within a natural 

infection. 

In this work, we apply fluorescent confocal microscopy to analyze how mixed 

bacterial populations of P. syringae, with key differences in their virulence capacity, 

develop within the plant host. We take advantage of the improvements in the 

biophysical properties of fluorophores and confocal microscopic imaging technology, 

which allows to minimize the background auto-fluorescence detection from both 

healthy, and most importantly, plant tissue undergoing the HR (Godfrey et al., 2010). 

These advances make possible the application of confocal microscopy to follow 

distribution and growth of P. syringae strains labeled with eYFP or eCFP inside the 
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leaf. We analyze the cellular basis that determine whether co-existing P. syringae 

bacteria with different virulence capabilities affect each other’s growth, and discuss the 

potential implications for host adaptation. 

 



 

Table 1. Strains used and generated in this work. 

Strain Genotype Reference 

1448A P. syringae pv. phaseolicola wild-type 

strain race 6 

(Teverson, 1991) 

1449b P. syringae pv. phaseolicola wild-type 

strain race 7 

(Teverson, 1991) 

IOM1 1448A ΔhrcV, KmR (Macho et al., 2007) 

JRP8 1448A Tn7-eGFP, GmR This work 

JRP9 1448A Tn7-eYFP, GmR This work 

JRP10 1448A Tn7-dsRFP, GmR This work 

JRP11 1448A Tn7-eCFP, GmR This work 

JRP12 1448A ΔhrcV Tn7-eYFP, GmR This work 

JRP15 1449b Tn7-eYFP, GmR This work 

JRP17 1449b Tn7-eCFP, GmR This work 

RW60 1449b Vir–, pAV511–, RifR (Jackson et al., 1999) 

JRP18 RW60 Tn7-eYFP, GmR This work 

 

Table 2. Plasmids used in this work. 

Name Description Reference 

pUXBF13 Helper plasmid, providing the Tn7 

transposase proteins, AmpR 

Bao et al. (1991) 

pRK2013 Conjugation helper plasmid, KmR Figurski et al. (1979) 

AKN132 dsRFP, AmpR, GmR Lambertsen et al. (2004) 

AKN100 eGFP, AmpR, GmR Lambertsen et al. (2004) 

AKN069 eYFP, AmpR, GmR Lambertsen et al. (2004) 

AKN033 eCFP, AmpR, GmR Lambertsen et al. (2004) 
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Results	

Development of mixed versus single micro-colonies within the plant apoplast 

Since our previous work showed that interference between co-inoculated largely 

depended on the concentration of the inoculum (Macho et al., 2007), ,we set out to 

apply confocal microscopy to analyze the cellular basis for that observation. We 

generated fluorescently labeled derivatives of the bean pathogen P. syringae pv. 

phaseolicola 1448A wild type strain (Table 1), and followed their distribution and 

growth within the leaf apoplast after inoculation at different concentrations. All 

fluorescent derivatives expressed the fluorophores, and in keeping with previous reports 

(Godfrey et al., 2010), the clearest differences in mixed cultures between labeled strains 

were detected when combining eCFP and eYFP-labeled bacteria (data not shown). 

Examination by light and fluorescent microscopy of mixed cultures of 1448A eYFP and 

1448A eCFP showed that every bacteria tagged with a given fluorophore emitted the 

corresponding fluorescence at a similar level, both in laboratory medium and in planta 

(Figures 1A and 1B). Growth of 1448A eYFP as well as symptom induction were 

confirmed to be wild type-like in all conditions tested (Table 3). Growth of 1448A 

eCFP showed a slight delay compared to wild type, both in laboratory medium and in 

planta (Table 3), but virulence was not affected, since the induction of symptoms was 

similar to that of 1448A eYFP (Figure 1D), and the number of colonies observed for 

these two strains was similar following mixed inoculation (Figure 1C). The size of the 

1448A eCFP colonies in leaves was somewhat smaller than that of 1448A eYFP 

colonies, in keeping with the observed delay of growth observed both within the plant 

and in laboratory medium (Figure 1C and Table 3). Thus, confocal microscopy of 

leaves inoculated with 1448A eYFP and 1448A eCFP can accurately reflect wild type 

growth dynamics within the host. 

Table 3. CI analysis of fluorescent P. syringae strains. 

Mixed Strains LBCI (±SE) in plantaCI (±SE) 

1448a wt vs. 1448a YFP 0,97 ± 0,06  - 

1448a wt vs. 1448a CFP 0,61 ± 0,1* - 
1448a YFP vs. 1448a CFP 0,59 ± 0,03* 0,64 ± 0,04* 

RW60 YFP vs. 1449b CFP 0,74 ± 0,06* - 
1449b YFP vs. 1449b CFP - 0,82 ± 0,02* 

 



Results 

 53 

 

 

Figure 1. Expression of either eYFP or eCFP in Pph 1448A is constitutive and does not affect 
virulence. (A). Left panel: Fluorescence microscopy image showing constitutive expression of eYFP 
and eCFP from bacteria grown within rich medium. Right panel: Merged fluorescence (eYFP, eCFP) 
and phase-contrast microscopy images. (B) Confocal fluorescence microscopy image of bean leaf 
sections 3 days post-inoculation (dpi) with a 5x105 cfu/ml suspension of 1448a eYFP (Left) or 1448a 
eCFP (Right). Bacterial microcolonies and even individual bacteria can be visualized within the plant 
apoplast. (C) Confocal fluorescence microscopy image of a bean leaf sections 2 days post-inoculation 
(dpi) with a 5x105 cfu/ml bacterial suspension containing equal amounts of 1448a eYFP and 1448a 
eCFP. Differently labeled wild type bacteria can be distinguished within single- or mixed-colored 
colonies. Red in images in B and C corresponds to auto-fluorescence emitted by chloroplasts. (D) 
Symptoms developed by either 1448A eCFP and 1448a eYFP X dpi with 5x105 cfu/ml. Scale bar: A 
and B: 25 µm. C: 100 µm. 
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Derivatives of 1448A expressing either eYFP or eCFP were co-infiltrated into 

bean leaves at different concentrations (5x107, 5x106, 5x105 and 5x104 cfu/ml), and leaf 

sections were taken at different days post-inoculation (1 to 5 dpi) and observed by 

confocal microscopy (Figure 2). Numerous colonies could be observed as early as 1 dpi 

in leaves inoculated with 5x107 cfu/ml (Figure 2A). The majority of these colonies 

displayed a mixture of eYFP and eCFP. By 2 dpi, many of the colonies merged as they 

grew in size. Longer time points showed tissue damage too extensive to be examined by 

microscopy, as severe disease symptoms had already started to develop. In leaves 

inoculated with 5x106 cfu/ml, colonies were clearly visible by 2 dpi, and although a 

considerable proportion of them showed both eYFP and eCFP, single-colored colonies 

could be detected as well (Figure 2B). As time increased, this trend became clearer 

despite the fact that confluence led to the appearance of merged colonies. To quantify 

this trend, we counted single-colored versus bicolored colonies, in three independent 

experiments (three fields per sample and experiment), and calculated the ratio between 

them. The ratio single- to bicolored colonies was 0.68±0.25, 2 days post-inoculation 

with 5x107 cfu/ml, supporting the observation of a minority of single-colored colonies at 

the highest inoculum concentration. However, this ratio was almost 20-fold higher 

(12.25+/-4.35) 3 days post inoculation with 5x106 cfu/ml, indicating an increase in 

single-colored colonies associated to lower inoculum concentrations. In short, a 10-fold 

decrease in the concentration of the inoculum led to a 20-fold increase in the ratio 

between single-colored versus bicolored colonies, from a minority of single-colored 

colonies, to a majority. Following this trend, leaves inoculated with 5x105 cfu/ml 

contained a vast majority of single-colored colonies by 3 dpi (Figure 2C). In fact, 

almost no bicolored colonies could be observed regardless of the time analyzed. In these 

conditions, equal numbers of both types of single-colored colonies could be observed, 

although the average size of the eCFP colonies was generally smaller than that of the 

eYFP colonies, as expected with the growth delay observed for the eCFP strain. As 

before, a later time point (4 dpi) was associated to an increment in the number of 

colonies where confluent growth had lead to large single-colored colonies merging 

(image shown in the back cover of this thesis).  

Lastly, when leaves were inoculated with 5x104, the inoculation dose most 

commonly use for competitive assays (Macho et al., 2007; Macho et al., 2016), we were 
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unable to observe any bicolored colonies by 4 dpi, and only a few merged, seemingly 

due to confluent growth of close single-colored colonies colonies by 5 dpi (Fig. 2D).  

 

 

Figure 2. Co-inoculation of 1448a eYFP and 1448a eCFP at different concentrations determines 
different dynamics of colony development. Wild-type Pph 1448A eYFP (yellow) or Pph 1448A 
eCFP (cyan) were co-inoculated in equal amounts at the indicated dose (left numbers, cfu/ml) and leaf 
sections taken and visualize at different dpi. Some time points were not displayed either because only 
a few and scattered bacteria could be observed, or the inoculated leaf tissue was too damaged due to 
the progress of the infection. Scale bars: 100 µm 
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Close proximity to a pathogenic strain promotes growth and spreading of a non-

pathogenic strain. 

Previous work including our own have shown that when inoculated at high 

concentratetions pathogenic strains can complementation growth of a non-pathogenic 

strain (Young, 1974; Macho et al., 2007). We co-infiltrated 1448A eCFP and its non-

pathogenic mutant derivative, ΔhrcV (eYFP) (Table 1) into bean leaves at different 

concentrations (5x107, 5x106 and 5x105 cfu/ml). Leaf sections were taken at 3 dpi and 

observed by confocal microscopy (Figure 3). The hrcV gene encodes an essential 

component of the Hrp T3SS (Cornelis and Van Gijsegem, 2000), required for 

development of infection in compatible hosts (Alfano and Collmer, 1997). As 

previously seen in Figure 2, images display differences in the rate of bicolored versus 

single-colored colonies depending of the concentration of the inoculum used: higher 

concentrations (5x107 cfu/ml) lead to a higher rate of bicolored colonies (Figure 3). 

Three days post-inoculation with 5x107 cfu/ml, growth of ΔhrcV eYFP, estimated as the 

amount of yellow fluorescence, was very similar to that of pathogenic 1448A eCFP 

(blue fluorescence) (Figures 3A and B). We confirmed these results using CI assays 

(Figure 3C). CIs result from dividing the output ratio between the two strains by their 

input ratio (should be close to 1:1), thus a CI close to 1.0 indicates that the co-

inoculated strains are growing similarly.. In these experiments, yellow fluorescence 

associated to the mutant non-pathogenic strain (ΔhrcV eYFP) was rarely detectable in 

single-colored colonies and almost only found in association to blue (1448A eCFP), in 

bicolored colonies (Figure 3A).. As the inoculum concentration decreased, the rate of 

bicolored colonies decreased too (Figure 3A), as did growth of ΔhrcV eYFP (Figures 

3B and C) reaching its maximal difference with pathogenic wild type 1448A eCFP, 

over 100-fold, in leaves inoculated with 5x104 cfu/ml. These results indicate that close 

proximity to pathogenic 1448A promotes growth of the non-pathogenic ΔhrcV strain 
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Having established that close proximity can determine complementation of 

growth of a non-pathogenic strain by a pathogenic one, we questioned the extent of such 

Figure 3. Close proximity with pathogenic bacteria complements growth of non-pathogenic. (A) 
Confocal microscope images showing growth of 1448a eCFP and ΔhrcV eYFP within bean leaves 
inoculated at different concentration (top numbers, cfu/ml). Scale bars: 100 µm. (B) Quantification of 
Confocal Colony Image Data (CCID) from images obtain for A. (C) Competitive Index (CI) assay of 
mixed inoculum of 1448a eCFP and ΔhrcV eYFP at the indicated doses. (D) Image showing disease 
symptoms spreading outside the area inoculated with 1448a at 106 cfu/ml by 7 dpi. (E) Image shows 
1448a eYFP bacterial scattered outside the area inoculated with 5x107 cfu/ml by 2 dpi. (F) Bacterial 
growth at 4 dpi within and outside the tissue inoculated with 5x107 cfu/ml of either 1448a, ΔhrcV or 
both. Error bars in B, C and F indicate standard error. 
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complementation. When leaves are inoculated with 5x106 cfu/ml of the wild type strain 

symptoms appear initially on the inoculated tissue, spreading with time onto non-

inoculated tissue (Figure 3D), as disease progresses and bacteria spreads outside of the 

inoculated area (Figure 3E). We determined the extent of the spread of 1448A and 

ΔhrcV beyond the inoculated area, in leaves inoculated with 5x107 cfu/ml of either 

single or mixed inocula (Figure 3F). Wild type bacteria could be consistently detected 

outside the inoculated area by 5 dpi, independently of whether it was individually or co-

inoculated with ΔhrcV bacteria. However, mutant bacteria could only be detected 

outside the inoculated area when co-inoculated with the wild type pathogenic strain 

(Figure 3F). It is noteworthy that the amount of wild type bacteria found outside the 

inoculated area was in fact 100-fold lower when co-inoculated with ΔhrcV bacteria, 

raising the possibility of systemic defense responses triggered by the non-pathogenic 

strain having a negative impact on the systemic spread of the wild type. 

 

Bacterial entry and bacterial growth in mixed inoculations. 

Although infiltration is the means of inoculation most commonly used for 

virulence assays, in the field, bacteria gains access to the plant apoplast mainly through 

natural openings such as stomata or occasional wounds (Melotto et al., 2008). 

Inoculations using a bacterial suspension to dip the leaf into, or to spray it, are used in 

the laboratory when trying to reproduce the natural route of inoculation. These means of 

inoculations are much less effective than infiltration, rendering maximal initial 

concentrations of bacterial within the apoplast similar to the concentrations obtained by 

infiltrating with 5x104 cfu/ml, the lower inoculation dose used in the previous 

experiments (Macho et al., 2012). Since the formation of mixed colonies following 

infiltration with 5x104 cfu/ml was shown to be severely reduced, and formation of 

mixed colonies necessary for growth interference between strains, natural inoculations 

could perhaps not lead to situations in which different bacteria could interfere with each 

other. However, whereas infiltration of a bacterial solution into the plant leaf forcefully 

spreads bacteria evenly throughout the apoplast of the infiltrated area, inoculation by 

dipping could result in higher local concentration of bacteria associated to the entry 

points, which could therefore act as concentrators promoting the close proximity 

required for growth interference. If this was the case, natural entry could potentially 
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lead to a higher rate of interference within heterogeneous populations, i.e. interference 

with fewer bacteria, than initially predicted from our infiltration assays.  

We analyzed the bacterial distribution within the leaf apoplast, 2 hours after dip-

inoculation with 1448A eYFP, but we could detect any clear increase in bacterial 

concentration in relation to stomata (Figure 4A). Unexpectedly, a high bacterial 

concentration could be found close to the base of trichomas (Figure 4B). Trichomas 

may represent a structural weak point for mechanical damage and thus offer an 

additional entry point for P. syringae as it would also help to accumulate the inoculating 

solution (or rainwater). One additional observation regarding bacterial distribution at 

this time point was their clear concentration close to the vascular bundles (Figure 4C). 

Interestingly, although P. syringae is not a vascular pathogen, it has been recently 

shown to localize and even move through the vascular bundles in Arabidopsis and 

Nicotiana benthamiana (Misas-Villamil et al., 2011; Yu et al., 2013). In any case, when 

leaves dip-inoculated with a mixed suspension of 1448A eCFP and 1448A eYFP were 

observed at 5 dpi, the majority of the colonies observed were bicolored colonies, 

interestingly located close to the vascular bundles (Figure 4D). Notably, a clear 

concentration of bacterial colonies could be observed close to the edges of the leaves, 

were hydatodes are located (Figure 4E). Hydatodes are a known port of entry for other 

leaf pathogens and can also act as such for P. syringae (Hugouvieux et al., 1998; Yu et 

al., 2013). These results support that inoculation by dipping (and presumably rainwater) 

does generate high local concentrations of bacteria. 
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Close proximity between virulent and avirulent bacteria can lead to dominant 

negative effects and/ or in trans defense suppression.  

Previous reports from our group and others (Klement and Lovrekovich, 1961; 

Averre and Kelman, 1964; Omer and Wood, 1969; Macho et al., 2007) had shown that 

inoculation with a strain capable of triggering a strong defense response (avirulent 

strain) could restrict growth of a co-inoculated virulent strain. We investigated the basis 

for this type of interference by analyzing the dynamics of colony development of 1449b 

eCFP, a wild type representative of P. syringae pv. phaseolicola race 7, and its avirulent 

derivative, RW60, expressing eYFP (Table 1). Strain 1449b is fully virulent in plants of 

the Canadian Wonder bean cultivar. RW60 is a plasmid-cured 1449b derivative that has 

lost a type III effector (HopAB1, formerly known as VirPphA) capable of suppressing 

the hypersensitive response (HR) triggered by other type III effector(s) from this strain 

(Jackson et al., 1999; Tsiamis et al., 2000). Thus, RW60 triggers the HR in cv. 

Canadian Wonder, which determines a severe restriction of bacterial growth within the 

plant. Our previous results showed that in leaves co-inoculated with 1449b and RW60 

at the relatively low inoculum concentration of 5x104 cfu/ml, growth of wild type 1449b 

Figure 4. Bacterial entry into the apoplast promotes close vicinity. Dip inoculation of 1448A eYFP 
allows bacteria to enter through stomata (A), thricoma (marked with a star)-associated wounds (B) or 
hydatodes (E). Bacteria tend to concentrate close to vascular bundles (C). Dip inoculation increases the 
formation of bi-colored colonies (D and E). Scale bars: A: 10 µm; B, C, D, and E: 100 µm. 
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was more than a five-fold lower than in leaves where it was inoculated alone (Macho et 

al., 2007). Thus, we co-inoculated 1449b eCFP and RW60 eYFP by infiltrating a 5x104 

cfu/ml into bean leaves and analyzed tissue sections taken by 5 dpi using confocal 

microscopy. An area of plant cells displaying pale green-blue/ yellow fluorescence in 

their outlines surrounded most single-colored RW60 eYFP colonies but did, not do so 

around single-colored 1449b eCFP colonies (Figure 5A). Auto-fluorescence in these 

cells is due to the accumulation of phenolic auto-fluorescent compounds associated to 

tissue collapse (Bennett et al., 1996; Yu et al., 1998) and liberation of antimicrobial 

compounds (Whalen et al., 1991; Jambunathan et al., 2001; Wright and Beattie, 2004) 

during the HR. Bicolored or closely located single-colored colonies could be classified 

into several types in regards to their association to surrounding auto-fluorescence. We 

found small colonies formed by virulent 1449b eCFP, closely located to colonies of 

avirulent RW60 eYFP, both surrounded by a large area of auto-fluorescence, covering 

many plant cells (Figures 5B and C). The appearance of this type of colonies, likely 

originated by a dominant negative effect of the defenses triggered by RW60 bacteria on 

the growth of closely located virulent wild type bacteria, would be in keeping with 

growth results previously reported (Klement and Lovrekovich, 1961; Omer and Wood, 

1969; Macho et al., 2007). However, we also found larger colonies of wild type virulent 

1449b eCFP, closely located or even merged with colonies of avirulent RW60 eYFP, 

without any evidence of defense activation in the surrounding plant cells (no auto-

fluorescent cellular outlines) (Figures 5B and D). This type of colonies could result 

from virulent bacteria either suppressing the activation or the onset of defenses against 

closely located avirulent RW60 bacteria. Lastly, closely located or merged colonies 

were also found that displayed auto-fluorescence only in a few plant cells surrounding 

the virulent colony or its area in the merged colonies, away from virulent eCFP wild 

type bacteria. These cases could be explained by the wild type colony having 

successfully suppressed the defense response only in the closest surrounding cells 

(Figures 5B and E). These last two types of colonies would indicate the ability of the 

wild type strain to locally suppress in trans the defense response triggered by RW60.  
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Figure 5. Co-inoculation of virulent and avirulent strains leads to a diversity of interactions. 
Confocal microscopy images of leaf sections 5 dpi with a bacterial suspension at either 5x104 cfu/ml 
(A) or 5x105 cfu/ml (B, C, D, and E), containing equal numbers of virulent wild-type 1449b eCFP 
(A, left panel; blue colonies in all other panels) and avirulent RW60 eYFP (B, right panel; yellow 
colonies in all other panels). C, D, and E are close ups of the different types of colonies displayed in 
B, as classified according to their association to fluorescent plant cell outlines associated to local 
activation of the defense response: (C) Growth of virulent 1449b eCFP is limited as small blue 
microcolonies can be seen fully surrounded by a large auto-fluorescent area due to the activation of 
the HR against closely located virulent RW60 eYFP microcolonies. (D) Avirulent RW60 eYFP 
microcolonies not surrounded by autofluorescence, seemingly protected by closely located large 
numbers of virulent eCFP bacteria. (E) Closely located microcolonies of virulent 1449b-CFP and 
avirulent RW60 eYFP were activation of plant defenses is restricted to the vicinity of avirulent 
bacteria, away from wild type virulent bacteria. .Size bars represent 100 µm.  
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Discussion	

In this study we have used confocal microscopy to analyze how P. syringae pv. 

phaseolicola distributes and grows within the plant apoplast, and to show an array of 

different scenarios taking place when strains displaying differences on their virulence 

meet within the plant. We confirm our previous results that the outcome of the 

individual interaction between a given strain and the host may have a strong impact on 

the development of a co-inoculated strain in certain conditions. We demonstrate that the 

interferences observed between strains co-inoculated at high bacterial concentrations, 

are due to close proximity, rather than to the overall high bacterial load on the 

inoculated area. This conclusion is supported by the fact that similar bacterial 

concentrations within the apoplast at the onset of the experiment, display different 

distribution within the inoculated area leading to differences in growth depending on the 

means of inoculation (i.e. infiltration versus dip-inoculation).  

 

In trans defense suppression within a mixed infection 

Interestingly, although complementation of non-pathogenic strains can only be 

clearly observed in mixed or merged colonies, interferences between virulent and 

avirulent strains (i.e. dominant-negative effects on wild type growth, or defense 

suppression) can also be observed between bacterial colonies located near, but not in 

direct contact. Thus, different types of interference seem to require a different degree of 

proximity to take place. In support of this conclusion, while no complementation of 

growth of the ΔhrcV mutant can be detected following inoculation by infiltration at 

5x104 cfu/ml, a mild dominant negative effect (five-fold decrease of growth) can be 

detected on a wild type strain when co-inoculated with its avirulent derivative RW60 at 

the same concentration (Macho et al., 2007). These results could reflect that cell-to-cell 

signaling between host cells may have a stronger role in the establishment of ETI than 

in the establishment of other type of defense responses, for which a more direct contact 

may be necessary both for its activation and its suppression.  

Another interesting result in regard to defense suppression within mixed 

infections is that in trans complementation of the ΔhrcV by the co-inoculated wild type 

allows the mutant to spread beyond the inoculated area. It has been reported that ETI in 
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Arabidopsis and PTI in N. benthamiana stop vascular transport through the xylem (Oh 

and Collmer, 2005; Freeman and Beattie, 2009), which P. syringae may use to colonize 

distant tissues (Misas-Villamil et al., 2011). On these bases, it has been proposed that 

vascular defenses may play a role in restricting pathogen spread (Misas-Villamil et al., 

2011). Our results indicate that close proximity between pathogenic and non-pathogenic 

bacteria allows the later to colonize distant tissues, and this could be achieved through 

in trans suppression of either local or vascular defenses involved in restricting 

ssystemic colonization. 

Here, we have analyzed interference between co-inoculated strains in the leaf 

apoplast of Canadian Wonder bean plants, but the relation between bacterial proximity 

and each type of interference detected could vary in specific microenvironments within 

different plant tissues, or in different hosts, depending on the intensity of the defenses 

involved. In relation to this, we previously observed that mixed populations of the 

pathogen Ralstonia solanacearum have very different dynamics depending on where 

they were inoculated within the plant: the same dose of inoculum triggered strong 

complementation in the stem, but not in the leaf (Macho et al., 2010b). One possible 

explanation was that in inoculation within the stem, rendered higher local concentration 

of bacteria, but it is also possible that differences in plant defenses in vascular versus 

parenchyma cells allow for differences in complementation.  

 

Bacterial entry into the plant apoplast during dip-inoculation  

Infiltration forces bacteria into the apoplast through the applied pressure, whereas, 

as in nature, bacteria have to gain entry through their own means when spray or dip-

inoculated. We have observed that different means of inoculation lead to differences in 

how bacteria distribute within the apoplast upon entry. Whereas dip-inoculation leads to 

a clear concentration of bacteria around trichomas, which could constitute a weak 

structural point prone to tissue damage, facilitating bacterial entry through the 

associated wounds, it did not lead to bacterial concentration around stomata. Stomata 

are largely considered to be the main port of entry of P. syringae into the plant apoplast 

(Melotto et al., 2006). However, this conclusion is largely based on the study of the 

interaction between P. syringae pv. tomato and other coronatine-producing P. syringae 

strains, and Arabidopsis and/ or tomato plants (Melotto et al., 2008). These studies have 

shown that despite inmediate closure of the stomata upon detection of conserved 
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patterns in the pathogen, such as flagelling, the production of the phytotoxin coronatine 

allows these bacteria to re-open stomata, allowing further and more efficient invasion of 

the leaf. However, how other P. syringae strains may reach the apoplast is less clear. P. 

syringae pv. tabaci has also been shown to re-open stomata even though it does not 

produce coronatine (Melotto et al., 2006), suggesting other virulence factor(s) encoded 

by this strain can either inhibit stomata closure or re-open them. However, it has also 

been suggested that pathogens lacking the ability to re-open stomata may favor other 

ports of entry, such as is the case for the foliar pathogen Xanthomonas campestris pv. 

campestris, which mainly enters the leaf through hydathodes, water-exuding pores at 

the edge of leaves (Hugouvieux et al., 1998). Thus, since P. syringae pv. phaseolicola 

does not produce coronatine, the absence of bacterial concentration around stomata in 

the dip-inoculated bean leaves could be an indication of this pathogen lacking the ability 

to re-open stomata. In support of this notion, we observed a clear concentration of 

bacterial colonies located close to the edges of the leaves, were hydathodes are located 

(Figure 4E). Interestingly, hydathodes has been recently shown as an alternative route 

of entry for the coronatine-producing P. syringae pv. tomato DC3000 in Arabidopsis 

(Yu et al., 2013). Nonetheless, our observation could reflect a bacterial preference for P. 

syringae pv. phaseolicola entry through hydathodes rather than stomata, or be simply a 

consequence of the distribution of the inoculating solution (and perhaps rainwater) on 

the leaf surface.  

But the most relevant result obtained when dip-inoculating bean leaves is that co-

inoculated strains interfere with each other at lower intra-apoplast concentrations than 

needed following infiltration. These results supports that the incidence of these type of 

interferences can be relevant for adaptation to the host in nature, where inoculation 

occurs mostly through rainwater, with high local epiphytic concentration of bacteria 

taking place (Kinkel et al., 2000; Lindow and Brandl, 2003). 

 

Mixed infection assays reveal a new phenomenon 

 We initially set out to analyze how meeting within the plant would affect the fate 

of bacteria with different virulence capabilities, and chose to do so using mixed 

infection assays, normally used as a sensitive assay to measure virulence attenuation 

(Beuzón and Holden, 2001; Macho et al., 2007; Macho et al., 2010b; Feng et al., 2012). 

However, through these assays we detected such a variety of interactions between co-
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inoculated bacteria within a single experiment that lead us to explore the possible source 

for such phenotypic heterogeneity. These results (Figure 5) show that different types of 

interferences do take place between virulent and avirulent bacteria within the same 

infection. The dominant negative effect previously detected in growth assays (Macho et 

al., 2007) would thus be the net resultant of all of these types of interferences. These 

different scenarios between the co-inoculated strains could arise from differences in the 

timing of the arrival and establishment of bacteria to a given tissue location. But they 

could also take place if the bacterial population was not homogeneously expressing the 

genes involved in determining the interaction with the plant (e.g. the genes encoding the 

effectors triggering the HR, or the genes encoding the T3SS): if there were cell-to-cell 

differences in the expression of a virulence gene(s) within each bacterial clonal 

population. 
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Introduction	

Infectious processes involve spatial and temporal gene expression changes that 

follow the migration of bacterial pathogens from the point of invasion to the target 

tissues of the host. Pathogen progression through the host is accompanied by 

adjustments in transcription and phenotype to respond to different stimuli and 

microenvironments. However, the sources of variation may not always be deterministic, 

directly correlated to stimuli. Stochastic events may cause cell-to-cell transcriptional 

and phenotypic differences between genetically identical individuals, and may take 

place within the same microenvironment. This leads to a probabilistic determination of 

gene transcription and phenotype generally known as phenotypic heterogeneity or 

variation. Phenotypic heterogeneity has been known to take place within microbial 

clonal populations for decades (Bigger, 1944; Novick and Weiner, 1957). Moreover, a 

heterogeneous unimodal pattern of gene expression may become bimodal, bifurcating 

into two distinct patterns, in a process known as bistability that leads to the formation of 

bacterial subpopulations or lineages. Genetically identical bacterial subpopulations 

formed without the involvement of environmental cues may be even viewed as a 

programmed event.  

Bistability on gene expression can be generated within a heterogeneous 

population by a positive feedback loop, as described by Novick and Weiner (1957) in 

the E. coli lac operon, or by a double negative feedback loop as in the lysis/lysogeny 

decision of bacteriophage lambda. The literature on bacterial bistable switches has been 

enriched with interesting examples in the last decade (Davidson and Surette, 2008; van 

der Woude, 2011; Sanchez-Romero and Casadesus, 2014; van Vliet and Ackermann, 

2015). For instance, bistability is known to occur in the acquisition of competence for 

DNA uptake and in the formation of a sporulating subpopulation in Bacillus subtilis 

(Chai et al., 2008). Despite these examples, microbiological studies of pathogens 

growing in tissue sites have largely relied on averaging microbial responses for entire 

populations. The recent advent of single cell analysis has enabled a shift in perspective 

allowing detection and analysis of cell-to-cell non-genetic variation.  

The importance of analyzing phenotypic heterogeneity in pathogen populations 

has been very recently highlighted in the context of antibiotic exposure for several 

animal and human pathogens including Salmonella enterica (Helaine and Holden, 2013; 

Arnoldini et al., 2014; Campbell-Valois et al., 2014; Claudi et al., 2014; Diard et al., 
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2014; Sanchez-Romero and Casadesus, 2014; Manina et al., 2015). The formation of 

distinct bacterial lineages has also been proposed to play a role in the colonization of 

animals by some bacterial pathogens. In Salmonella enterica, phenotypic heterogeneity 

has been observed at several stages of host colonization. During intestinal infection, 

flagella are necessary for swimming and also facilitate invasion of intestinal cells 

(Stecher et al., 2004). However, intestinal populations of Salmonella are a mixture of 

flagellated and non-flagellated bacteria (Saini et al., 2010b; Stewart and Cookson, 

2012). Formation of a non-flagellated subpopulation may be viewed as a stealth strategy 

because flagellin is highly immunogenic (Josenhans and Suerbaum, 2002). Another 

phenotypic bifurcation during Salmonella infection is observed in systemic infection: 

upon entry into macrophages the Salmonella population splits into two subpopulations, 

one of which replicates while the other enters a dormant-like state (Helaine and Holden, 

2013). Colonization of the gall bladder by Salmonella involves also lineage formation: a 

subpopulation invades the gall bladder epithelium, while another subpopulation remains 

in the gall bladder lumen (Baumler et al., 2011). The potential relevance of phenotypic 

heterogeneity in the development of bacterial infections is further supported by recent 

reports showing within-host bistable expression of major virulence traits, such as the 

cholera toxin in Vibrio cholerae (Nielsen et al., 2010), the SPI1 type III secretion 

system (T3SS) in S. enterica (Stecher et al., 2008; Saini et al., 2010a; Diard et al., 

2013), or NO-detoxification in Yersinia pseudotuberculosis (Davis et al., 2015). 

Despite the increasing evidence supporting the notion of bacterial pathogens 

exploiting non-genetic variation to adapt to mammalian hosts, little is known about the 

occurrence or potential impact of these processes in the adaptation of bacteria to non-

animal niches. In this work, we have addressed this question using the plant pathogen 

Pseudomonas syringae, an archetype considered by many the most relevant plant 

pathogenic bacteria (Mansfield et al., 2012). P. syringae is relevant both academically, 

as a model pathogen, and economically, for its increasing impact in agriculture, with the 

recent resurgence of old diseases (Shenge, 2007), and the emergence of new infections 

of worldwide importance (Green et al., 2010).  

In plants, P. syringae can be found in the surface of leaves, from where it enters 

the leaf through natural openings and wounds to reach the intercellular spaces of the 

leaf parenchyma, the apoplast, where it replicates causing disease. The plant presents a 

two-tiered response against P. syringae (Jones and Dangl, 2006).  
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In this study, we analyzed the molecular mechanism behind the phenotypic 

heterogeneity observed during bacterial colonization of the plant host. We demonstrate 

that expression of key structural and regulatory components, as well as expression of a 

translocated effector of the P. syringae T3SS is bistable within the plant apoplast. 

Bistability also takes place within the homogeneous environment of the laboratory, 

during exponential growth in nutrient-limited, T3SS-inducing medium, and it is a 

dynamic, reversible and non-heritable process. Furthermore, it has consequences for 

bacterial adaptation to the plant host since populations sorted by their T3SS expression 

levels display differences in virulence. Genetic analysis of the regulatory elements 

controlling expression of the T3SS in P. syringae identifies the HrpV/HrpG double 

negative regulatory loop as the bistable switch involved in turning heterogeneity into 

bistability, requiring the transcriptional activator HrpL, and enhanced by the 

contribution of HrpA, the main component of the T3SS pilus, involved in a positive 

feedback loop. To our knowledge, this is the first example of bacterial heterogeneity 

and bistability of a major virulence determinant shown within a non-mammalian host.  
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Table 1. Strains used and generated in this work. 

Strain Genotype Reference 

1448A P. syringae pv. phaseolicola wild-type 

strain race 6 

(Teverson, 1991) 

JRP9 1448A Tn7-eYFP, GmR This work 

JRP11 1448A Tn7-eCFP, GmR This work 

DLM1 1448A hrpL::gpf, KmR This work 

DLM2 1448A hrcU::gpf, KmR This work 

DLM3 1448A hopAB1::gpf, KmR This work 

IOM49 1448A ΔhrpA (Ortiz-Martin et al., 2010a) 

JRP-F1 1448A ΔhrpA; hrpL::gpf, KmR This work 

JRP-F2 1448A ΔhrpA; hopAB1::gpf, KmR This work 

IOM57 1448A ΔhrpG (Ortiz-Martin et al., 2010b) 

IOM48-F 1448A ΔhrpV Ortiz-Martín et al., 2010b 

IOM58 1448A ΔhrpG ΔhrpV Ortiz-Martín et al., 2010b 

JRP-F3 1448A ΔhrpG; hopAB1::gpf, KmR This work 

JRP-F4 1448A ΔhrpV; hopAB1::gpf, KmR This work 

JRP-F5 1448A ΔhrpG ΔhrpV; hopAB1::gpf, KmR This work 

 

Table 2. Plasmids used in this work. 

Name Description Reference 

pAME8 pAMEX derivative, contains the avrRpt2 

effector expressed from the nptII promoter 

(Macho et al., 2009) 

pIOM22 pBBR1-MCS-4 derivative, contains a 

promotorless hrpL gene expressed from the 

lacZ promoter  

(Ortiz-Martín et al., 

2010a) 

pIOM92 pBBR1-MCS-4 derivative, contains a (Ortiz-Martín et al., 
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promotorless hrpG gene expressed from the 

lacZ promoter  

2010b) 

pIOM53 pBBR1-MCS-4 derivative, contains a 

promotorless hrpV gene expressed from the 

lacZ promoter  

 

(Ortiz-Martín et al., 

2010b) 

 

Table 3. Primers used in this work. 

Name Description Restriction 

site 

HrpL A1 CGGTATCCGTCAACTGACGG NA 

HrpL A2 GAATTCTATCCACTCAGGCGAACGGG EcoRI 

HrpL B1 
TGAGTGGATAGAATTCTCTGTCTGGAACCAAC

TCGC 
EcoRI 

HrpL B2 ATGGGCGACCATCGGATCC NA 

HrcU A1 GTGATTCTGGGGTTGCTGC NA 

HrcU A2 GAATTCAGCTCCCAGCTTAAAGCTCC EcoRI 

HrcU B1 
AGCTGGGAGCTGAATTCGCAAGCCAGGCGTA

ACAGG 
EcoRI 

HrcU B2 TTCTACTACAACGTCGCTGC NA 

HopAB1 A1 GCATCCTTTATAACTGACCC NA 

HopAB1 A2 GAATTCCTGAAATCAGTTCAGCTTAACG EcoRI 

HopAB1 B1 CTGATTTCAGGAATTCTCGTTGTAGTGGCCGG EcoRI 

HopAB1 B2 GGACAGGTCGTAGTAGAGCG NA 

Zep07F GAATTCTAAGAAGGAGATATACATATGAG NA 

Zep07F GAATTCTTATCACTTATTCAGGCGTA NA 
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Results	

P. syringae displays bistable expression of the T3SS within the plant  

Using confocal microscopy to follow the dynamics of fluorescently labelled P. 

syringae populations during colonization of the plant apoplast, we often observe a clear 

heterogeneity on the size of the bacterial microcolonies (Figure 1 and Chapter 1). 

Heterogeneity even extends to the intensity of the plant defenses activated around 

individual microcolonies, as can be followed through the accumulation of auto-

fluorescent phenolic compounds (Figure 1 and Chapter 1) (Bennett et al., 1996). In 

order to investigate the source of the observed heterogeneity at a molecular level, we 

generated transcriptional fusions to gfp on the chromosome-located native copies of 

three genes encoding different elements of the major virulence determinant of P. 

syringae, its T3SS, required for activation and suppression of plant defenses, and 

virulence. The loci selected included the gene encoding HrpL, an alternative sigma 

factor of the extracytoplasmic factor (ECF) family (Fouts et al., 2002). HrpL activates 

expression of more than 50 genes within the nutrient-limited plant leaf apoplast 

(Ferreira et al., 2006; Lam et al., 2014; Mucyn et al., 2014), including the hrp/hrc genes 

that encode the T3SS, and the effector genes (Xiao et al., 1994; Fouts et al., 2002). We 

also selected two HrpL-regulated genes: hrcU, the last gene of the hrcQRSTU operon, 

encoding a structural component of the T3SS required for secretion and translocation 

(Charkowski et al., 1997), and hopAB1 (previously known as virPphA), encoding a type 

III-translocated effector (T3E) involved in suppression of effector-mediated plant 

defenses (Jackson et al., 1999). Expression of hrcU is abolished in a ΔhrpL mutant, 

while expression of hopAB1 is severely reduced but still detectable (Thwaites et al., 

2004). Expression of these fusions was examined by fluorescence microscopy both in 

apoplast-extracted bacteria and within the plant tissue 4 days post inoculation (dpi) 

(Figure 2A and data not shown). Clear differences in gfp fluorescence were observed 

for the highly expressed hopAB1::gfp gene fusion in apoplast-extracted bacteria, 

indicating that expression of this gene displays phenotypic heterogeneity during 

bacterial growth within the plant (Figure 2A). Flow cytometry analyses were then 

carried out on apoplast-extracted bacteria for all three genes. Expression of both 

hrpL::gfp and hopAB1::gfp reached bistability following a bimodal distribution, and all 

three genes displayed expression heterogeneity (Figure 2B). 
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Figure 1. Bacterial growth and activation of defenses displays heterogeneity during P. syringae 
colonisation of the plant apoplast. (A) Confocal microscopy images of bean leaves inoculated with 
5x106, cfu/ml of either wild type 1448a eCFP (left panel) or 1448a eYFP (right panel) at 3 dpi. (B) 
Confocal microscopy images of bean leaves inoculated with 5x106, cfu/ml of a bacterial suspension 
containing equal numbers of 1448a eCFP and 1448a eYFP at 3 dpi. Boxes highlight small colonies of 
either strain found among typically larger colonies (C) Confocal microscopy images of bean leaves 
inoculated with 5x105, cfu/ml inoculum, containing equal amounts of 1448a eCFP and 1448a eYFP 
expressing AvrRpt2, at 3 dpi. AvrRpt2 triggers the hypersensitive response leading to the 
accumulation of auto-fluorescent (yellow and blue) phenolic compounds that accumulate in the cell 
wall. Boxes highlight large and small colonies of 1448a eYFP expressing AvrRpt2 surrounded or not 
by defense-related auto-fluorescence, regardless of their size. Red corresponds to auto-fluorescence 
generated by chloroplasts. 
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Figure 2. Expression of hrpL::gfp and hopAB1::gfp is bistable within the plant. (A) Fluorescence 
microscopy images apoplast-extracted bacteria from bean leaves inoculated with a 5x105 cfu/ml 
inoculum of a strain carrying hopAB1::gfp at 5 dpi. Left panel shows GFP fluorescence. Right panel 
shows bacteria strain stained with the membrane dye FM4-64 (B) Flow cytometry analysis of 
apoplast-extracted bacteria carrying either hrpL::gfp, hrcU::gfp or hopAB1::gfp, obtained from bean 
leaves inoculated with a 5x105 cfu/ml inoculum of each strain at 5 dpi. Dotted lines indicate the 
mode(s) for each gene and condition. All data were collected for 100,000 events per sample. 

A 
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Expression of T3SS genes bifurcates into two subpopulations in a highly dynamic 

and reversible manner 

A number of factors could explain these observations, e.g. differences could 

reflect spatial differences between microenvironments within the apoplast. However, 

they could also result from stochastic events, such as an uneven distribution of 

regulators during cell division leading to cell-to-cell transcriptional differences within 

the same microenvironment. A previous report on the necrotrophic plant pathogen 

Dickeya dadantii showed that a plasmid-cloned type III secretion promoter could 

display phenotypic heterogeneity in laboratory conditions (Zeng et al., 2012b). 

Although the T3SS is not as relevant for virulence in necrotrophic pathogens as it is in 

biotrophic or hemibiotrophic pathogens, such as P. syringae, (Glazebrook, 2005; 

Davidsson et al., 2013), this report led us to analyze if the bistabiity on the expression 

of the T3SS genes observed in planta could take place in the homogeneous environment 

of laboratory medium. 

Expression of all three genes was induced in bacteria growing in nutrient-limited 

HIM (Hrp-inducing medium) (Huynh et al., 1989) (Figure 3). The expression curves for 

all three genes were heterogeneous in this medium, with heterogeneity being larger in 

exponential than stationary phase bacteria. A detectable proportion of all cultures, 

particularly in those corresponding to exponentially growing bacteria, displayed 

fluorescence levels overlapping those of the non-GFP control bacteria (Figure 3). 

Remarkably, expression of both hrpL::gfp and hopAB1::gfp was found to be bimodal 

during exponential growth (Figure 3A). The mode for one of the subpopulations 

observed for hrpL::gfp coincided with the mode of the population of non-GFP control 

bacteria (Figure 3). Bistability was no longer detected in stationary phase cultures 

supporting a reversible and non-genetic origin for the differences observed between 

these subpopulations (Figure 3B). 
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Differences in gene expression correlate with differences in virulence  

Since the T3SS is essential to suppress basal defenses and without it P. syringae 

cannot multiply within the plant or cause disease (Alfano and Collmer, 1997), bacterial 

Figure 3. Expression of hrpL::gfp and hopAB1::gfp is bistable during exponential growth in 
Hrp-inducing medium. Flow cytometry analysis of strains carrying chromosome-located 
transcriptional fusions to the T3SS genes hrpL, hrcU or hopAB1, growing in HIM (Hrp-inducing 
medium). Histograms show GFP fluorescence distribution in strains growing at, either 0h 
(immediately after a 1:10 dilution of an overnight LB culture), 24h (exponential phase) or 48h 
(stationary phase). Black histograms show non-fluorescent 1448A included as a reference. All data 
were collected for 100,000 events per sample.  
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subpopulations differing in their expression of hrpL and T3SS-related genes are 

expected to differ in how they interact with the plant host. To validate this notion, we 

went back into the plant to analyze the development of disease in leaves inoculated with 

two different bacterial subpopulations, sorted according to their level of expression of 

hopAB1 (Figure 4A, upper panel). Disease symptoms developed faster, and were 

stronger, in leaf areas inoculated with the population expressing higher levels of 

hopAB1 (Figure 4B). The symptoms also spread sooner beyond the area inoculated with 

the high-expressing subpopulation. Thus, differences in gene expression correlate with 

differences in virulence. 

 

 

Figure 4. The level of hopAB1 expression correlates with virulence. (A) Flow cytometry analysis 
of strain carrying hopAB1::gfp. GFP fluorescence intensity is shown as a green histogram. Gates were 
drawn to separate hopAB1::gfp bacteria displaying fluorescence levels overlapping the 1448A non-
GFP bacterial population (indicated with a line marked as low), used as a negative control (Grey 
histogram), from cells expressing high GFP levels (indicated with a line marked as high, and 
including the mode for the expressing population). After sorting, aliquots of sorted cells were run 
again at the cytometer to confirm the efficacy of the sorting process (below), and bacterial 
concentration adjusted to 1 x 106 cfu/ml. Some overlap caused by the dynamic and reversible nature 
of the process can be detected (B) Disease symptom progression in bean leaves inoculated with 1 x 
106 cfu/ml of each of the sorted populations at 6 and 11 days post inoculation (dpi). 
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Bistability of the T3SS genes is established at the level of HrpL by the action of 

HrpA, and HrpV/HrpG regulatory loops 

HrpL regulates expression of hopAB1 (Xiao and Hutcheson, 1994). Thus, the 

bistability displayed by hopAB1 is likely to originate from that affecting hrpL 

expression. To test this hypothesis, a plasmid carrying a copy of hrpL under the control 

of the lacZ promoter, constitutive in P. syringae (Ortiz-Martin et al., 2010a) was 

introduced in the strains carrying the hrpL::gfp or hopAB1::gfp fusions and its effect in 

gfp expression analyzed by flow cytometry. Figure 5A shows how the bimodal 

distribution of hrpL::gfp becomes unimodal in the presence of constitutively expressed 

HrpL, and that of hopAB1::gfp strongly reduced, displaying a shift towards a more 

activated state, supporting the central role of HrpL in the establishment of bistability in 

the system.  

The establishment of bistability usually requires the action of at least one 

feedback loop (either a positive or a double negative regulatory loop) to turn 

quantitative differences originated through heterogeneous expression, into qualitative 

differences and a bimodal distribution of expression (Veening et al., 2008). Two such 

feedback loops regulate the expression of the T3SS genes in P. syringae a positive 

feedback loop carried out HrpA the main component of the T3SS pilus (Roine et al., 

1997 2000), and a double negative feedback loop carried out by HrpV, an anti-activator 

of the T3SS genes that binds to HrpS the enhancer-binding protein required for HrpL 

expression, and HrpG, which binds HrpV acting as an anti-anti-activator (Wei et al., 

2005). We analyzed the roles of these two regulatory loops in the establishment of 

bistability using mutants and/ or plasmids encoding the corresponding genes. Bistability 

in both hrpL::gfp and hopAB1::gfp was reduced but not abolished in an ΔhrpA mutant 

background (Figure 5B), supporting a non-essential contribution for HrpA to the 

bistable phenotype. Bistability of hopAB1::gfp was completely abolished in a ΔhrpG 

(Figure 6A), where in the absence of its repressor, HrpV establishes a negative feedback 

loop expected to dampen noisy and heterogeneous expression. In the absence of HrpV, 

expression increased and bistability was also increased, regardless of the presence of 

HrpG, since the phenotype of the ΔhrpV mutant was identical to that of a double mutant 

ΔhrpV ΔhrpG (Figure 6A). The epistatic effect of the ΔhrpV mutation on the phenotype 

of ΔhrpG supports the notion of HrpG exerting its role in regulation of the expression of 

the T3SS genes mainly through its role as repressor of HrpV. Constitutive expression of 
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either regulator from a plasmid lead to reciprocal results, with a stronger bistable 

phenotype associated to overexpression of HrpG, and the absence of bistability in cells 

overexpressing HrpV (Figure 6B). Plasmid-expression of these regulators also caused 

these effects on the expression of hrpL::gfp. 

 

 

Figure 5. Bistability of hrpL::gfp and hopAB1::gfp is abolished by constitutive expression of 
HrpL, and mildly reduced in the absence of HrpA. Flow cytometry analysis of HIM-growing 
bacterial strains carrying chromosome-located transcriptional fusions to the T3SS genes hrpL, hrcU or 
hopAB1, in different genetic backgrounds. Histograms show GFP fluorescence distribution in strains 
growing at 24h. Black histograms show fluorescence of the fusions in the wild type 1448A 
background. Coloured histograms show fluorescence of the fusions in: (A) A strain carrying a plasmid 
encoding HrpL under the control of a lacZ promoter, and (B) A strain carrying a ΔhrpA mutation. All 
data were collected for 100,000 events per sample. 
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Figure 6. Bistability of hrpL::gfp and/ or hopAB1::gfp is abolished by deletion of hrpG or 
constitutive expression of HrpV, and enhanced by deletion of hrpV or constitutive expression of 
HrpG. Flow cytometry analysis of HIM-growing bacterial strains carrying chromosome-located 
transcriptional fusions to the T3SS genes hrpL, hrcU or hopAB1, in different genetic backgrounds. 
Histograms show GFP fluorescence distribution in strains growing at 24h. Black histograms show 
fluorescence of the fusions in the wild type 1448A background. Coloured histograms show: (A) 
Fluorescence of hopAB1::gfp in strains carrying mutations in either hrpG, hrpV, or both; (B) 
Fluorescence of either hopAB1::gfp or hrpL::gfp in a strain carrying a plasmid encoding either HrpG 
or HrpV, under the control of a lacZ promoter. All data were collected for 100,000 events per sample. 



Chapter 2: Bistability on the T3SS of P. syringae 

 82 

Discussion	

This study was undertaken to investigate the molecular mechanisms underlying 

the heterogeneity observed within the process of colonisation of the plant apoplast. We 

found that expression of the T3SS genes, the major virulence determinant of P. 

syringae, is heterogeneous and bistable during bacterial growth within the apoplast. The 

plant apoplast is a complex environment where different factors may alter bacterial 

responses. Thwaites and collaborators (2004) reported that following leaf extraction, 

bacteria that remained attached to the plant cell wall displayed higher amounts of T3SS 

gene transcripts than those found within the apoplastic fluid. However, the 

heterogeneity hereby described was detected in apoplastic bacteria. The apoplast is a 

nutrient-limited environment (Rico and Preston, 2008), where unsuppressed plant 

defenses can still be detected (Mitchell et al., 2015), and can therfore be considered 

stressful for bacteria. Bacterial stress is accompanied by a reduction in both 

transcription and translation that has been proposed to increase phenotypic 

heterogeneity in some systems (Veening et al., 2008). Interestingly, the apoplastic 

environment has been shown to activate recombination-mediated genomic 

rearrangements in P. syringae that lead to phase variation upon activation of the HR 

(Lovell et al., 2011). The fact that phenotypic heterogeneity is enhanced in some 

stressful situations suggests a potential adaptive value. Indeed, theoretical studies 

proposed that such adaptative advantage may become apparent in changeful and/ or 

hostile environments (Kussell et al., 2005; Kussell and Leibler, 2005), while later 

reports have provided experimental evidence supporting this notion for several animal 

and plant pathogens (Srikhanta et al., 2010; Lovell et al., 2011; Hernandez et al., 2012; 

Claudi et al., 2014; Sanchez-Romero and Casadesus, 2014; Manina et al., 2015). The 

differences in virulence established in this work for bacterial subpopulations sorted 

according to T3SS expression levels further suggests that non-genetic phenotypic 

heterogeneity can be relevant for bacterial adaptation to plant hosts. On these grounds, a 

tentative interpretation of our results is that the stressful conditions found within the 

apoplast may favour phenotypic heterogeneity and confer selective advantage to P. 

syringae populations with heterogeneous and/ or bistable expression of the T3SS and 

effector genes.  

Bacteria not expressing the T3SS could act as ‘cheaters’ benefiting from the 

T3SS-mediated contribution of those ‘cooperator’ bacteria that express it, in a model 
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similar to that proposed for complex microbial communities with secreting and no-

secreting genotypes (Xavier et al., 2011). Plus, ‘cheater’ bacteria could gain a potential 

fitness advantage, being relieved of the metabolic burden of expressing the T3SS. 

Moreover, activation of expression of the T3SS genes in P. syringae has been shown to 

be associated to repression of housekeeping functions (Ferreira et al., 2006). Such a 

fitness advantage has been described in animal pathogens such as S. enterica, P. 

aeruginosa and Yersinia spp (Wiley et al., 2007; Kohler et al., 2009 2011). Supporting 

this notion, Barret and collaborators (2011) found unexpectedly high frequencies of 

polymorphism affecting several virulence traits, including the T3SS, in natural 

populations of P. syringae infecting Arabidopsis thaliana, and demonstrated that less 

aggressive strains increase their growth potential in mixed infections and have a fitness 

advantage in non-host environments. Hence, reversible phenotypic heterogeneity on the 

T3SS expression might facilitate adaptation to different agricultural and environmental 

conditions. Giving strength to this view, Morris and collaborators (2008) found that 

natural isolates of P. syringae from various agricultural and non-agricultural habitats 

showed changes in the phenotypic but not the genotypic population structure.  

Because the apoplast is a complex environment, we turned to an in vitro system 

for further investigation. Since HrpL is the transcriptional activator of the other two 

genes, hrcU and hopAB1, and also regulates indirectly its own expression through a 

positive loop determined by the product of the HrpL-activated hrpA gene (Wei et al., 

2000), and a double negative loop determined by the products of the HrpL-regulated 

hrpG and hrpV genes (Wei et al., 2005), the simplest explanation for our results was 

that the phenotypic heterogeneity observed for hrcU and bistability of hopAB1 

originated from hrpL heterogeneous and bistable expression. The fact that not all three 

genes display bistability may reflect different thresholds in the response of each gene to 

HrpL activation. Indeed, different levels of HrpL-regulation have been reported for 

T3SS-structural and effector genes in P. syringae (Zumaquero et al., 2010). It could also 

be due to additional regulatory loops differentially affecting these genes, dampening or 

enhancing heterogeneity, e.g. an additional negative regulation of structural genes such 

as hrcU. Although no such loops have been described for the hrcQRSTU operon, the 

hrpC operon encoding HrcC and HrcF structural components of the T3SS has been 

reported to display a differential regulation (Ortiz-Martin et al., 2010b). In any case, the 

fact that bistability requires native expression of HrpL, and it is abrogated when HrpL is 
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consititutively expressed from a plasmid confirms the central role of this protein in the 

establishment of this phenotype. Indeed, both the double negative regulation carried out 

by HrpV and HrpG, and the positive regulation carried out by HrpA, identified as 

necessary for or contributing to bistability, involved the action of HrpL. The drastic and 

reciprocal effects of deletion and overexpression of either HrpV or HrpG on bistability 

of the T3SS genes clearly identifies this pair as the bistable switch involved in turning 

heterogeneity into bistability. The observation of a link between bistability and growth 

phase could reflect the need for active cell division to generate stochastic differences in 

the relative levels of these two proteins through involvement of an additional factor 

differentially associated to growth phase. Bistable expression of tcpA expression in 

Vibrio cholerae is established through the combined effect of the positive auto-

regulation of ToxT production and CRP-cAMP, with this complex involved in 

restricting bistability to stationary phase (Nielsen et al., 2010).  

The phenotypic heterogeneity displayed by HrpL could also translate in 

differences in non-T3SS genes of the HrpL regulon. One system potentially affected by 

HrpL bistability is the flagella assembly, since HrpL has been shown to downregulate 

motility (Ortiz-Martin et al., 2010a). In P. syringae, differences in motility correlate 

with differences in adaptation to the host and other environments (Schroth, 1974; 

Haefele and Lindow, 1987; Hatterman D.R., 1989). In addition, the flagellum is both a 

costly organelle to assemble (Macnab, 1996) and a strong activator of plant defenses 

(Felix et al., 1999). In S. enterica, the expression of genes encoding the SPI1 T3SS, 

necessary to induce gut inflammation and to overcome competition from commensal 

microbiota (Kaiser et al., 2012), as well as that of the flagellar genes, display 

phenotypic heterogeneity during colonisation of the host (Cummings et al., 2006; Saini 

et al., 2010a), leading to the different phenotypic combinations to cooperate to promote 

the infection through the division of labour (Stecher et al., 2008; Diard et al., 2013). 

On the basis of these results, we tentatively propose that phenotypic heterogeneity 

plays a role in the adaptation of P. syringae to agricultural and perhaps to non-

agricultural, ecologically relevant environments. These findings can potentially impact 

control strategies to protect economically important crops. Our results provide the first 

proof of phenotypic variation in a plant bacterial pathogen, adding to the very few 

examples showing phenotypic variation directly affecting a major virulence factor, and 

identify the molecular mechanisms involved in turning expression heterogeneity into 
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bistability and non-genetic lineage formation. Although we cannot rule out additional 

sources of variation, our results also provide a mechanistic explanation for the presence 

of bacterial microcolonies displaying phenotypic differences in growth and/ or 

activation of defenses within the plant apoplast. Finally, they show that phenotypic 

heterogeneity, as a bacterial strategy to generate within-host diversity, is not restricted 

to mammalian hosts. 

 

 
  



 

 

	



 

	
	
	
	
	
	
Chapter	3:	Auto-acetylation	on	K289	is	
not	essential	for	HopZ1a-mediated	
plant	defense	suppression	

 

José S. Rufián, Ainhoa Lucía, Alberto P. Macho, Begoña Orozco-Navarrete, 

Manuel Arroyo-Mateos, Eduardo R. Bejarano, Carmen R. Beuzón, Javier Ruiz-

Albert 

 

The results presented in this chapter have been published in: 

 

Rufián JS, Lucía A, Macho AP, Orozco-Navarrete B, Arroyo-Mateos M, Bejarano ER, 

Beuzón CR and Ruiz-Albert J (2015) Auto-acetylation on K289 is not essential for 

HopZ1a-mediated plant defense suppression. Front. Microbiol. 6:684. doi: 

10.3389/fmicb.2015.00684 

 

  



Chapter 3: K289 auto-acetylation and HopZ1a function 

 88 

Introduction	

Many Gram-negative pathogenic bacteria use a type III secretion system (T3SS) 

to secrete proteins, known as effectors, directly inside the host cell cytosol. Type III 

effectors (T3Es) modulate diverse processes inside the host, suppressing plant defense 

responses triggered upon recognition of the pathogen (Gohre and Robatzek, 2008). One 

such defense is triggered upon recognition of conserved pathogen-associated molecular 

patterns (PAMPs) and is known as PAMP-triggered immunity or PTI (Boller and Felix, 

2009). T3Es can be directly or indirectly detected by the plant resistance proteins, 

triggering a second line of defense, a strong response known as effector-triggered 

immunity (ETI) that is typically accompanied by a type of programmed cell death 

referred to as the hypersensitive response (HR). The ETI response determines a severe 

restriction in pathogen growth (Chisholm et al., 2006). Effectors triggering strong 

immunity were originally named avirulence factors, as their expression by a pathogen 

determines resistance against the disease (Mansfield, 2009).  

Effectors can also suppress ETI, cell death and other HR-associated phenomena, 

thus promoting pathogen growth and the development of disease (Jones and Dangl, 

2006). We have shown that HopZ1a from Pseudomonas syringae pv. syringae is one 

such effector (Macho et al., 2010a). Heterologous expression of HopZ1a from P. 

syringae pv. tomato DC3000 (hereafter DC3000), suppresses RNA and protein 

accumulation of pathogenesis related-1 (PR1), triggered in Arabidopsis by this 

pathogen (Macho et al., 2010a), and partially suppresses the ETI triggered by the 

expression of the heterologous effectors AvrRpt2, AvrRps4 and AvrRpm1 (Macho et 

al., 2010a). These defense suppression activities of HopZ1a are similar to those 

described for the related Xanthomonas effector AvrBsT (Kim et al., 2010; Szczesny et 

al., 2010; Kim et al., 2013). We have also demonstrated that HopZ1a is capable of 

suppressing systemic acquired resistance (SAR) triggered by either virulent or avirulent 

bacteria (Macho et al., 2010a). All these virulence activities are fully dependent on 

HopZ1a C216 catalytic residue. In turn, HopZ1a triggers SA and EDS1-independent 

immunity in Arabidopsis (Lewis et al., 2010; Macho et al., 2010a) upon recognition by 

the ZAR-1 resistance gene (Lewis et al., 2010). 

HopZ1a is a member of the YopJ/HopZ effector superfamily, whose members 

share a conserved catalytic triad (C/H/D) and have been shown to perform numerous 

biochemical activities, mainly as proteases and/or acetyltransferases, with some 
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effectors such as YopJ displaying up to three different biochemical functions 

concurrently (Orth et al., 2000; Mukherjee et al., 2006; Sweet et al., 2007). To explain 

such multiplicity of activities, it has been suggested that acetyltransferases and 

proteases might use the same catalytic mechanism on different substrates (Mukherjee et 

al., 2007). HopZ1a has been described to display cysteine protease activity (Ma et al., 

2006), but also acetyltransferase activity on lysine residues of a number of plant target 

proteins, with the latter activity requiring the plant cofactor phytic acid (Lee et al., 2012; 

Jiang et al., 2013; Lewis et al., 2013). HopZ1a catalytic triad cysteine (C216) is essential for 

all described virulence and avirulence functions, as well as for its biochemical activities, 

and a HopZ1aC216A mutant behaves as a catalytically inactive mutant (Ma et al., 2006; 

Lewis et al., 2008; Macho et al., 2010a; Lee et al., 2012). Xanthomonas AvrBsT, the 

only other effector of the YopJ/HopZ superfamily with ETI-suppressing activity, shares 

with HopZ1a the biochemical activities, cofactor requirements, and catalytic triad 

dependence on its virulence and avirulence functions (Szczesny et al., 2010; Kim et al., 

2013; Cheong et al., 2014). HopZ1a has also been shown to autoacetylate in a lysine 

residue (K289) conserved in some related effectors, with the HopZ1aK289R mutant 

phenocopying the catalytically inactive HopZ1aC216A mutant in respect to the 

acetyltransferase activity, and also to its avirulence and some of its virulence functions 

(Lee et al., 2012). Autoacetylation of such conserved lysine residue was originally 

described for another member of the YopJ/HopZ superfamily, Ralstonia effector PopP2 

(Tasset et al., 2010). Autoacetylation of PopP2 is required to trigger a defense response 

mediated by RRS1-R, a plant resistance protein that interacts with PopP2 but is not 

acetylated by this effector (Tasset et al., 2010). 

In this work, we analyze the requirement of HopZ1a K289 acetylation for 

HopZ1a suppression of ETI and SAR, as well as its avirulence function, i.e. HopZ1a 

induction of ETI. We have found that expression of HopZ1aK289R suppresses 

accumulation of PR1 in local tissue, as well as SAR in distal tissues, although the 

suppression activities of the mutant effector are not as efficient as those achieved by 

expression of wild type HopZ1a. Our results indicate that autoacetylation of this residue 

is important for full activity but not essential for suppression of either ETI or SAR. 

Interestingly, we also found that the K289R mutation does not abolish the onset of ETI 

upon HopZ1a recognition, although it is required for full immunity. The K289R 

mutation reduces but does not prevent HopZ1a-mediated immunity from restricting 
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growth of DC3000, in contrast with mutation of the C216 catalytic residue. Similarly, 

the K289R mutation reduces but does not abolish HopZ1a induction of macroscopic 

HR, and more importantly, it does not eliminate HopZ1a ability to effectively protect 

Arabidopsis against infection with DC3000. Our results indicate that this residue is 

important but not essential for HopZ1a activity, since its mutation does not abrogate the 

effector virulence and avirulence activities. 

 



 

 

Table 1. Plasmids used in this work 

Name Promoter Expressed effectors Resistance Reference 

pAME30 nptII HopZ1a Amp, Km (Macho et al., 2010a) 

pAME27 nptII HopZ1aC216A Amp, Km (Macho et al., 2010a) 

pMAM1 nptII HopZ1aK289R Amp, Km This work 

pAME8 nptII AvrRpt2 Amp, Km (Macho et al., 2009) 

pAME33 nptII HopZ1a + AvrRpt2 Amp, Km (Macho et al., 2010a) 

pAME34 nptII HopZ1aC216A + 

AvrRpt2 

Amp, Km (Macho et al., 2010a) 

pJRU10 nptII HopZ1aK289R + 

AvrRpt2 

Amp, Km This work 

pMGm - - Gm (Murillo et al., 1994) 

pAME30Gm nptII HopZ1a Amp, Km, 

Gm 

This work 

pAME27Gm nptII HopZ1aC216A Amp, Km, 

Gm 

This work 

pMAM1Gm nptII HopZ1aK289R Amp, Km, 

Gm 

This work 

pET28a(+) T7 - Amp Novagen (USA) 

pET28-Z1a T7 6xHis-HopZ1a Amp This work 

pET28-C2 T7 6xHis-HopZ1aC216A Amp This work 

pET28-K2 T7 6xHis-HopZ1aK289R Amp This work 

pBINX1 CaMV35S - Km (Sanchez-Duran et 

al., 2011) 

pBINZ1 35S 6xHis-HopZ1a Km This work 

pBINZ2 35S 6xHis-HopZ1aC216A Km This work 
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pBINZ3 35S 6xHis-HopZ1aK289R Km This work 
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Results	

HopZ1aK289R suppresses local PR1 accumulation triggered by DC3000 

We have previously shown that HopZ1a suppresses DC3000-triggered PR1 

protein accumulation, and that this suppression requires its catalytic cysteine C216 

residue (Macho et al., 2010a). To analyze the potential effect of the K289R mutation on 

HopZ1a activity, we inoculated Arabidopsis Col-0 plants with DC3000, DC3000 

expressing HopZ1a, or DC3000 expressing either the catalytically inactive HopZ1aC216A 

mutant or the HopZ1aK289R mutant, and compared the levels of PR1 accumulation in 

local tissue 48 hours after infection (hpi).  

In keeping with our previous results (Macho et al., 2010a), PR1 accumulated to 

similar levels in leaves inoculated with DC3000 or DC3000 expressing HopZ1aC216A, 

while PR1 accumulation was clearly reduced in plants inoculated with DC3000 

expressing HopZ1a (Figure 1). When leaves were inoculated with DC3000 expressing 

the HopZ1aK289R mutant protein, PR1 levels were slightly reduced compared to those 

observed following inoculation with DC3000 or DC3000 expressing HopZ1aC216A, 

however this reduction was not as substantial as that achieved by the wild type version 

of the effector (Figure 1). These results indicate that the HopZ1aK289R mutant is still able 

to suppress local PR1 accumulation elicited by virulent bacteria in the context of a 

compatible interaction, and suggest that the K289R mutation does not render the 

effector inactive, in contrast to the C216A mutation. 

 

 

 

 

 



Chapter 3: K289 auto-acetylation and HopZ1a function 

 94 

 

 

 

HopZ1aK289R suppresses AvrRp2-triggered immunity 

We have also described previously that HopZ1a suppresses the local accumulation 

of PR1 that accompanies the onset of the ETI triggered by the expression of the 

heterologous effector AvrRpt2 by DC3000 (Macho et al., 2010a). HopZ1a suppression 

of AvrRpt2-induced PR1 accumulation is a virulence activity that also depends on the 

HopZ1a catalytic cysteine C216 (Macho et al., 2010a). To analyze the potential effect 

of the K289R mutation on HopZ1a activity, we inoculated Arabidopsis Col-0 plants 

with DC3000 expressing AvrRpt2, or DC3000 co-expressing AvrRpt2 and either 

HopZ1a, HopZ1aC216A, or HopZ1aK289R, and compared the levels of PR1 in the 

inoculated tissue at 24 hpi. 

PR1 accumulated to similar levels in leaves inoculated with DC3000 expressing 

AvrRpt2 or DC3000 co-expressing AvrRpt2 and HopZ1aC216A, while PR1 accumulation 

was clearly reduced in leaves inoculated with DC3000 co-expressing AvrRpt2 and 

HopZ1a (Figure 2A). In leaves inoculated with DC3000 co-expressing AvrRpt2 and the 

HopZ1aK289R mutant protein, we could not detect differences in PR1 accumulation in 

comparison to leaves inoculated with either DC3000 expressing AvrRpt2 alone or with 

HopZ1aC216A (Figure 2A) 

Figure 1. HopZ1a-mediated suppression of local DC3000-triggered PR1 accumulation is 
reduced but not abolished by the K289R mutation. Western blot showing PR1 accumulation in 
Col-0 leaves inoculated with 5 x 105 cfu/ml of DC3000, DC3000 expressing HopZ1a (pAME30), or 
DC3000 expressing the mutant derivatives HopZ1aC216A (pAME27) or HopZ1aK289R (pMAM1). Ten 
micrograms of total protein were loaded per sample, and Coomassie staining is shown as loading 
control. The signal intensity for each band was quantified using Fiji distribution of ImageJ software 
and is shown below the blot. The experiment was repeated three times with similar results. 
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HopZ1a suppression of AvrRpt2-triggered defense responses has also been 

demonstrated in Arabidopsis by directly comparing the growth attenuation determined 

by the individual expression of each effector, with the growth attenuation determined by 

their simultaneous expression (Macho et al., 2010a). Thus, we also analyzed the impact 

of the K289R mutation on the suppression of AvrRpt2-triggered growth restriction. To 

do so we performed mixed infections and calculated the cancelled-out index (COI), a 

modification of the competitive index (Beuzón and Holden, 2001), previously applied 

to this purpose (Macho et al., 2010a). COIs directly measure the differences in growth, 

within the same plant, between a strain expressing one of the effectors and a strain co-

expressing both effectors, i.e. differences in growth of co-inoculated DC3000 

expressing HopZ1a and DC3000 co-expressing HopZ1a and AvrRpt2. Thus, we can 

directly compare how expression of AvrRpt2 affects growth of DC3000 in the presence 

of HopZ1a or any of its mutant derivatives, with growth of DC3000 expressing only the 

HopZ1a version. As HopZ1a is expressed in both strains, the growth reduction it causes 

in Col-0 is cancelled out as it equally affects both strains (Macho et al., 2010a), and any 

difference in growth detected between the strain expressing both effectors and the strain 

expressing only the HopZ1a version, would be due to a growth restriction determined 

by the unsuppressed defenses triggered against AvrRpt2. A diagram illustrating this 

analysis is included as supplementary material (Figure S1). 
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As previously reported (Macho et al., 2009; Macho et al., 2010a) DC3000 co-

expressing AvrRpt2 and HopZ1a displayed a small although significant growth 

attenuation compared to that of co-inoculated DC3000 only expressing HopZ1a 

Figure 2. HopZ1aK289R partially suppresses AvrRpt2-triggered immunity. (A) Western blot showing 
PR1 accumulation in Col-0 leaves inoculated with 5 x 105 cfu/ml of DC3000 expressing AvrRpt2 
(pAME8) alone or co-expressing AvrRpt2 with HopZ1a (pAME33), HopZ1aC216A (pAME34) or 
HopZ1aK289R (pJRU10). Ten micrograms of total protein were loaded per sample, and Coomassie staining 
is shown as loading control. The experiment was repeated twice with similar results. (B) Cancelled-out 
indices (COIs) measuring growth within a mixed infection of DC3000 co-expressing AvrRpt2 and any of 
the three HopZ1a variants: wild-type HopZ1a (pAME33), HopZ1aC216A (pAME34) or HopZ1aK289R 
(pJRU10) , in relation to growth of DC3000 expressing only the corresponding HopZ1a: wild-type 
HopZ1a (pAME30Gm), HopZ1aC216A (pAME27Gm) or HopZ1aK289R (pMAM1Gm). COIs are calculated 
as the output ratio between the strain expressing both effectors and the strain expressing just one, divided 
by their input ratio. Each COI value represents the means of 2 independent experiments with 3 biological 
replicates each. Error bars represent the standard error. Mean values marked with the same letter are not 
significantly different from each other as established by Student’s t-test (P<0.05). 
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(COI=0.69±0.09) (Figure 2B, Figure S1), despite the fact that AvrRpt2 alone triggers a 

50-100 fold growth attenuation when expressed by DC3000 from the same plasmid. 

This result is expected since HopZ1a is capable of partially suppresing the defense 

response triggered by AvrRpt2 in Arabidopsis (Macho et al., 2010a). Accordingly, 

growth of DC3000 co-expressing AvrRpt2 and the HopZ1aC216A catalytic mutant was 

almost 50 fold lower than the growth of DC3000 expressing HopZ1aC216A alone 

(COI=0.03±0.01) (Figure 2B, Figure S1). However, growth of DC3000 co-expressing 

AvrRpt2 and the HopZ1aK289R mutant was only a 10-fold lower than growth of the 

strain expressing HopZ1aK289R alone (COI=0.09±0.01). These results indicate that 

mutation K289R decreases, but does not abrogate, HopZ1a ability to suppress AvrRpt2-

triggered restriction of growth, since co-expression of AvrRpt2 and HopZ1aK289R causes 

a smaller attenuation of growth than co-expression of AvrRpt2 and the HopZ1aC216A 

catalytic mutant or expression of AvrRpt2 alone (Figure 2B).  

Our results (Figure 2B) indicate that, unlike the catalytically inactive HopZ1aC216A 

mutant derivative, HopZ1aK289R mutant is still able to suppress AvrRpt2-triggered 

immunity, since it still suppresses AvrRpt2-triggered restriction of growth. The fact that 

we do not detect suppression of PR1 protein in plants inoculated with DC3000 

expressing the HopZ1aK289R mutant may indicate that our assay is not sensitive enough, 

or that the association between the PR1 accumulation and growth restriction associated 

to AvrRpt2-triggered immunity is not linear. To this regards, a similar lack of linearity 

in the association between PR1 accumulation and growth restriction during induction of 

SAR has been previously shown (Macho et al., 2010a). 

 

HopZ1a partially suppresses AvrRpt2-triggered immunity in zar1-1 mutant plants 

Results presented in Figure 2B are in agreement with our previous report 

concluding that HopZ1a partially suppresses AvrRpt2-triggered ETI in Arabidopsis 

(Macho et al., 2010a). However, it has been recently reported that HopZ1a transgenic 

expression in zar1-1 plants does not interfere with AvrRpt2-induced macroscopic HR 

(Lewis et al., 2014). HopZ1a-triggered immunity in Arabidopsis is dependent on the 

ZAR1 resistance protein (Lewis et al., 2010). In the light of this report we decided to 

analyze the ability of HopZ1a to suppress AvrRpt2-triggered immunity in the absence 

of HopZ1a-triggered immunity. To this purpose, we analyzed HopZ1a impact on 

AvrRpt2-triggered restriction of growth in a zar1-1 plant genotype (Lewis et al., 2010).  
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Using CI assays, we compared growth of DC3000 expressing HopZ1a or AvrRpt2 

with growth of DC3000 in zar1-1 plants, to determine the growth restriction associated 

to ETI responses against each of these effectors in the mutant background (Figure 3). 

Growth of DC3000 expressing HopZ1a was very similar to growth of DC3000 in zar1-

1 plants (CI=0.72±0.09) (Figure 3). Whereas, as expected since AvrRtp2-triggered 

immunity is independent of ZAR1, the expression of this effector in DC3000 still 

determined a strong attenuation of growth (CI=0.03±0.01) (Figure 3). However, co-

expression of AvrRpt2 and HopZ1a in zar1-1 plants caused significantly less growth 

attenuation (CI=0.10±0.03) than that caused by expression of AvrRpt2 alone (Figure 3), 

demonstrating that HopZ1a suppression of AvrRpt2-triggered immunity takes place in 

the absence of HopZ1a-triggered immunity, and is not caused by an overlap or 

interference between the two ETI pathways. 

 

 

 

 

 

Figure 3. HopZ1a suppresses AvrRpt2-triggered ETI in zar1-1 plants. Competitive indices (CIs) 
measuring growth within a mixed infection of DC3000 expressing HopZ1a (Z1a, pAME30), AvrRpt2 
(pAME8) or co-expressing both (Z1a + AvrRpt2, pAME33) in relation to growth of DC3000. CIs are 
calculated as the output ratio between the strain expressing the effector(s) and DC3000, divided by 
their input ratio. Each CI value represents the means of 3 independent experiments with 3 biological 
replicates each. Error bars represent the standard error. Mean values marked with the same letter were 
not significantly different from each other as established by Student’s t-test (P<0.05). 
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HopZ1aK289R retains the ability to suppress Systemic Acquired Resistance (SAR) 

triggered by DC3000 infection 

Both virulent and avirulent bacteria can trigger SAR, a defense response elicited 

in distal (systemic) tissues as a result of local infection. Activation of SAR determines 

both systemic accumulation of PR1, and restriction of growth of newly incoming 

bacteria (Cameron et al., 1994). We have previously shown that HopZ1a expression 

suppresses SAR triggered by DC3000, and that such suppression requires HopZ1a 

catalytic cysteine C216 (Macho et al., 2010a). To determine whether the HopZ1aK289R 

mutant retained HopZ1a ability to suppress SAR, we first analyzed the effect of the 

mutation K289R in HopZ1a ability to suppress SAR-associated restriction of growth of 

newly incoming bacteria. We inoculated primary leaves with either 10 mM MgCl2 

(mock), DC3000, or DC3000 expressing HopZ1a or the corresponding mutant 

derivatives HopZ1aC216A or HopZ1aK289R (Figure 4A). Two days after inoculation of 

primary leaves, distal leaves were inoculated with DC3000, and 4 days after this second 

inoculation we monitored the growth of DC3000. Figure 4A shows that, as previously 

described, pre-inoculation of primary leaves with either DC3000 or DC3000 expressing 

the catalytically inactive mutant HopZ1aC216A triggered SAR to equivalent levels, since 

growth of DC3000 in distal leaves was similarly attenuated in both cases. In contrast, 

pre-inoculation with DC3000 expressing HopZ1a did not result in detectable attenuation 

of growth of DC3000 in distal leaves, since it did not show significant differences with 

that observed in mock pre-inoculated leaves, thus confirming the reported HopZ1a 

suppression of SAR (Macho et al., 2010a). Systemic leaves from plants pre-inoculated 

with DC3000 expressing HopZ1aK289R displayed DC3000 cfu values significantly 

different to those reached in plants pre-inoculated with DC3000 expressing 

HopZ1aC216A, but similar to those reached in plants pre-inoculated with DC3000 

expressing HopZ1a (Figure 4A), supporting the notion that autoacetylation of HopZ1a 

on K289 is not required for suppression of SAR in Arabidopsis. 
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To determine how the HopZ1aK289R mutant ability to suppress SAR correlates 

with suppression of PR1 accumulation in systemic tissue, we used western blot analysis 

to analyze accumulation of PR1 in systemic leaves of plants pre-inoculated with 

DC3000 or DC3000 expressing the different versions of HopZ1a. In keeping with 

previous results (Macho et al., 2010a), expression of HopZ1a in DC3000 suppresses 

PR1 accumulation in systemic tissues, since distal leaves of plants pre-inoculated with 

DC3000 expressing HopZ1a displayed a strong reduction of PR1 accumulation when 

Figure 4. HopZ1a-mediated suppression of SAR is reduced but not abolished by the K289R mutation. 
(A) Growth of DC3000 inoculated in secondary leaves of plants pre-inoculated in primary leaves by 
infiltrating either a 10 mM MgCl2 solution (Mock), or 5 x 105 cfu/ml of DC3000, DC3000 expressing 
HopZ1a (pAME30), or DC3000 expressing the mutant derivatives HopZ1aC216A (pAME27) or 
HopZ1aK289R (pMAM1). Two days post-inoculation of primary leaves, secondary leaves were inoculated 
with 5 x 104 cfu/ml of DC3000, and growth was measured at 4 days post-inoculation of the secondary 
leaves. The experiment was repeated four times with similar results, and the results shown correspond to 
a representative experiment. The values shown represent the means of 5 biological replicates. Error bars 
represent the standard error. Values marked with the same letter were not significantly different from 
each other as established by Student’s t-test (P<0.05). (B) Western blot analysis for immunodetection of 
PR1 on distal non-inoculated leaves, 2 days after inoculating primary leaves with either 10 mM MgCl2 
(Mock), or 5 x 105 cfu/ml of DC3000, DC3000 expressing HopZ1a (pAME30), or DC3000 expressing 
the mutant derivatives HopZ1aC216A (pAME27) or HopZ1aK289R (pMAM1). Ten micrograms of total 
protein were loaded per sample, and Coomassie staining is shown as loading control. The experiment 
was repeated twice with similar results. 
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compared to plants pre-inoculated with DC3000 (Figure 4B). This suppression is 

dependent on HopZ1a catalytic cysteine, since systemic leaves of plants pre-inoculated 

with DC3000 expressing HopZ1aC216A displayed PR1 levels that were higher than those 

observed in plants pre-inoculated with DC3000 expressing HopZ1a (Figure 4B). As 

previously reported (Macho et al., 2010a) the C216A mutation did not entirely abolish 

HopZ1a ability to suppress PR1 accumulation, since the systemic levels of PR1 in 

plants pre-inoculated with DC3000 expressing HopZ1aC216A did not reach the levels 

observed in plants pre-inoculated with DC3000 (Figure 4B). Interestingly, when 

primary leaves were inoculated with DC3000 expressing HopZ1aK289R, the 

accumulation of PR1 in distal leaves reached levels that were intermediate between 

those elicited by DC3000 expressing HopZ1aC216A and DC3000 expressing wild type 

version of the effector (Figure 4B). These results indicate that the HopZ1aK289R mutant 

is still able to partially suppress systemic accumulation of PR1 in response to DC3000. 

 

HopZ1aK289R triggers ETI in Arabidopsis and N. benthamiana 

Inoculation of Arabidposis leaves with a 5x107 cfu/ml of DC3000 expressing 

HopZ1a induces macroscopic HR symptoms in Arabidopsis leaves, which are absent in 

leaves inoculated with the same dose of DC3000 expressing the HopZ1aC216A catalytic 

mutant (Lewis et al., 2008; Macho et al., 2010a). It has been reported that the mutation 

K289R completely prevents HopZ1a-triggered HR, which cannot be detected when 

expressing the mutant effector under the control of its own promoter (Lee et al., 2012). 

However, considering that our results presented above indicate that such mutation does 

not render the effector entirely inactive, we wondered whether HopZ1aK289R could still 

be able to trigger immunity in Arabidopsis. 

To analyze whether the HopZ1aK289R mutant was able to trigger macroscopic HR 

in Arabidopsis, we inoculated leaves with 5x107 cfu/ml of DC3000, DC3000 expressing 

HopZ1a, or DC3000 expressing either HopZ1aC216A or HopZ1aK289R mutant derivatives, 

and monitored HR development by 20–24 hpi (Figure 5A). Development of 

macroscopic HR requires a rather strong ETI response, which might not be reached by 

lower levels of effector expression (Macho et al., 2009), thus we expressed HopZ1a and 

its mutant derivatives under the control of the strong constitutive nptII promoter, to 

factor in the chance of an stronger effector expression allowing detection of a mild ETI. 

In keeping with previous reports (Lewis et al., 2008; Macho et al., 2010a), a clear HR 
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was detected in plants inoculated with DC3000 expressing HopZ1a, while no HR could 

be detected in leaves inoculated with either DC3000 or DC3000 expressing 

HopZ1aC216A (Figure 5A). Interestingly, leaves inoculated with DC3000 expressing 

HopZ1aK289R displayed noticeable macroscopic HR (Figure 5A). As expected from 

previous reports (Lewis et al., 2010) (Lewis et al., 2014), inoculation of zar1-1 leaves 

with these strains did not induce any visible cell death symptom (Figure S2). 

The ETI triggered in Arabidopsis against HopZ1a in Arabidopsis determines a 

strong restriction of bacterial growth that can be measured using competitive index 

assays (CIs), in mixed infections of DC3000 co-inoculated with DC3000 expressing 

HopZ1a (Macho et al., 2009; Macho et al., 2010a). To further investigate the impact of 

the K289R mutation in HopZ1a activation of ETI in Arabidopsis, we performed CI 

assays by co-inoculating Arabidopsis plants with DC3000 and DC3000 expressing 

HopZ1a, HopZ1aC216A, or HopZ1aK289R (Figure 5B). As previously described (Macho et 

al., 2010a), a clear growth attenuation was measured for DC3000 expressing HopZ1a in 

comparison with co-inoculated DC3000 (CI=0.03±0.01), while no significant 

attenuation was detected for DC3000 expressing HopZ1aC216A catalytically inactive 

(CI=0.91±0.10) (Figure 5B). In contrast, DC3000 expressing HopZ1aK289R displayed a 

small attenuation of growth (CI=0.46±0.10), significantly smaller than that measured 

for DC3000 expressing HopZ1a, but significantly different from the absence of 

attenuation observed for HopZ1aC216A-expressing DC3000 bacteria (Figure 5B). 
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In addition to triggering HR in Arabidopsis, HopZ1a has been shown to trigger 

macroscopic HR in Nicotiana benthamiana leaves when transiently expressed using 

Agrobacterium (Ma et al., 2006); (Lewis et al., 2008). We expressed HopZ1a and its 

mutant derivatives HopZ1aC216A and HopZ1aK289R in N. benthamiana leaves, under the 

control of a constitutive promoter, by using Agrobacterium-mediated transient 

expression, and monitored HR symptoms at 40 hours after Agrobacterium inoculation. 

While transient HopZ1aC216A overexpression did not result in HR elicitation whatsoever, 

HopZ1aK289R overexpression elicited an HR of a similar intensity to that elicited by 

overexpressing HopZ1a (Figure 5C).  

Figure 5. HopZ1aK289R triggers ETI. (A) Hypersensitive response (HR) to hand-infiltration of Col-0 
leaves with bacterial suspensions containing 5 x 107 cfu/ml of DC3000 alone or DC3000 expressing 
HopZ1a (pAME30), or each of its mutant derivatives HopZ1aC216A (pAME27) or HopZ1aK289R 
(pMAM1). Photographs were taken 24 hours post-inoculation. Images are representative of at least 30 
inoculated leaves per strain and experiment. The experiment was repeated twice with similar results. 
(B) Competitive indices (CIs) measuring growth within a mixed infection of DC3000 expressing 
HopZ1a (Z1a, pAME30), or each of its mutant derivatives HopZ1aC216A (Z1aC216A, pAME27) or 
HopZ1aK289R (Z1aK289R, pMAM1), in relation to growth of DC3000. CIs are calculated as the output 
ratio between the strain expressing the effector and DC3000, divided by their input ratio. Each CI 
value represents the means of 3 independent experiments with 3 biological replicates each. Error bars 
represent the standard error. Mean values marked with the same letter were not significantly different 
from each other as established by Student’s t-test (P<0.05). (C) Development of HR following 
transient expression of either 6xHis-HopZ1a (pBINZ1) or each of its mutant derivatives 6xHis-
HopZ1aC216A (pBINZ2) or 6xHis-HopZ1aK289R (pBINZ3).  Nicotiana benthamiana leaves were 
inoculated with Agrobacterium tumefaciens C58C1 carrying binary plasmids encoding the 
corresponding effector genes. Pictures were taken 48 hours post inoculation. The experiment was 
repeated 3 times with similar results. 
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Taken together, results shown in Figure 5 indicate that autoacetylation of HopZ1a 

in its lysine 289 contributes, but it is not essential, to trigger ETI in Arabidopsis. 

HopZ1aK289R-triggered defenses effectively protects Arabidopsis against disease 

development 

We have previously shown that resistance triggered in Arabidopsis by the 

expression of HopZ1a efficiently protects plants from DC3000 infection, resulting in 

the absence of virulence-associated disease symptoms (Macho et al., 2010a). To analyze 

whether the defense response triggered against HopZ1aK289R mutant is sufficient to 

stymie DC3000 disease in Arabidopsis, we monitored development of disease 

symptoms at 4–6 dpi on plants spray-inoculated with DC3000, DC3000 expressing 

HopZ1a, or DC3000 expressing either HopZ1aC216A or HopZ1aK289R mutant derivatives. 

As expected from previous results (Macho et al., 2010a), plants sprayed with either 

DC3000 or DC3000 expressing HopZ1aC216A displayed noticeable disease symptoms, 

namely chlorosis and stunted growth, while plants sprayed with DC3000 expressing 

HopZ1a did not (Figure 6). Interestingly, plants sprayed with DC3000 expressing 

HopZ1aK289R did not display chlorosis and only a slightly reduction in plant growth 

could be observed (Figure 6).  

These results clearly show that the HopZ1aK289R mutant triggered-resistance 

effectively protects Arabidopsis plants from disease. 

 

 

 

 

Figure 6. Expression of HopZ1aK289R from DC3000 protects Col-0 plants against disease. 
Virulence symptoms caused by spray-inoculated DC3000, or DC3000 expressing HopZ1a (pAME30), 
or each of its mutant derivatives HopZ1aC216A (pAME27) or HopZ1aK289R (pMAM1). Arabidopsis 
plants were sprayed with bacterial suspensions containing 5 x 107 cfu/ml in 0.02% Silwet L-77, and 
photographed 6 days post-inoculation. The experiment was repeated three times using 5 plants per 
strain, and representative images are shown. 
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HopZ1aK289R is acetylated in vitro 

Since our results demonstrate that the K289 lysine residue is not essential for 

HopZ1a activities within the plant, it is possible that an alternative lysine residue may 

still be acetylated in the absence of K289, thus partially complementing the potential 

requirement for HopZ1a autoacetylation. Therefore, we decided to reassess 

HopZ1aK289R acetylation in vitro, by incubating wild type HopZ1a and its mutant 

derivatives HopZ1aK289R and HopZ1aC216A in the presence of acetyl-coenzyme A and 

the eukaryotic co-factor phytic acid (Mittal et al.), and monitoring lysine acetylation of 

each effector version by Western blot using an specific antibody. HopZ1aK289R is still 

acetylated in vitro although to a lesser extend that the wild type HopZ1a protein, in 

contrast to complete absence of acetylation in the catalytically inactive HopZ1aC216A 

mutant (Figure 7). These results are in contrast to previously published results (Lee et 

al.; Ma et al., 2015).  

 

 

Figure 7. HopZ1a is acetylated on K289 in vitro. Western blot analysis for immunodetection of 
acetylated lysines. 20 ul of the in vitro acetylation reaction of 6xHis-HopZ1a (pET28-Z1a), 6xHis-
HopZ1aC216A (pET28-C2) or 6xHis-HopZ1aK289R (pET28-K2) were loaded per lane. Coomassie 
staining is shown as loading control. The experiment was repeated three times with similar results. 
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Discussion	

HopZ1aK289R triggers ETI in Arabidopsis and N. benthamiana and effectively 

protects Arabidopsis against disease developmen 

Results described in this chapter indicate that the HopZ1aK289R mutant is still able 

to trigger a defense response that induces macroscopic HR (Figure 5) and, more 

importantly, effectively protects Arabidopsis from infection (Figure 6). While our 

results in respect to HopZ1aK289R mutant triggering macroscopic HR are at variance 

with those described previously (Lee et al., 2012), this discrepancy can be due to 

differences in effector levels, since we express HopZ1a under the control of a strong 

constitutive promoter, and macroscopic HR symptoms can be quite dependent on 

threshold levels of the eliciting effectors (Macho et al., 2009). While the development 

of macroscopic HR symptoms after high-dose bacterial inoculation is a good measure of 

the ability of an effector to trigger a defense response, the protection from infection 

after a low-dose inoculation may reflect more accurately the physiological significance 

of such defense response for the plant. In this respect, results shown in Figure 6 support 

the notion that the K289R mutation does not abrogate HopZ1a avirulence activity. It is 

important to notice that in neither of these assays, regarding induction of macroscopic 

HR or protection against disease development, did the catalytically inactive 

HopZ1aC216A trigger any defense response whatsoever, regardless of being expressed 

under the control of the same strong promoter, supporting the notion that HopZ1aK289R 

activity is not an artifact due to overexpression.  
 

HopZ1aK289R suppresses DC3000-triggered basal immunity 

Results described in this chapter indicate that the HopZ1aK289R mutant retains its 

ability to suppress basal immunity triggered by DC3000, since it can partially suppress 

DC3000-triggered local and systemic PR1 accumulation (Figures 1, 4), as well as 

DC3000-triggered SAR-dependent restriction of growth in systemic tissues (Figure 4).  

The fact that PR1 accumulation against DC3000 requires a functional T3SS (Figure 1) 

(Macho et al., 2010a) suggests that it is due to weak ETI-like defenses. However, the 

implication of PTI cannot be ruled out, since the level of PR1 accumulated in response 

to PAMPs in the attenuated T3SS mutant could be below the level of detection. In 

regards to this, a recent report demonstrates that HopZ1a can indeed suppress DC3000-

triggered PTI response when overexpressed in transgenic Arabidopsis plants (Lewis et 
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al., 2014). Additionally, the related effector AvrBsT can also suppress the PTI triggered 

by DC3000 infection in tomato, as shown by a lower accumulation of PR1 in the 

infected plants (Kim et al., 2010).  

Previous reports have suggested that the K289R mutation completely abrogates HopZ1a 

virulence activity, since heterologous expression of the corresponding mutant effector in 

Pseudomonas syringae pv. cilantro 0788-9 did not contribute to the growth of the 

expressing strain in the Arabidopsis zar1-1 background (Lee et al., 2012). However, the 

rather modest growth rate achieved in Arabidopsis by Pseudomonas strain 0788-9, 

together with the limited contribution of wild type HopZ1a to such growth, might be 

limiting the sensitivity of such assay. Using a wider array of virulence assays, we 

demonstrate that the K289R mutation does not abolish HopZ1a virulence activity. 
 

HopZ1a suppresses AvrRpt2-triggered immunity in the absence of HopZ1a-

triggered immunity 

Our results demonstrate that HopZ1a suppression of AvrRpt2-triggered immunity 

takes place in the absence of HopZ1-triggered immunity (Figure 3), and it is therefore 

not a consequence of an overlap or interference between the defense responses triggered 

by these effectors. This notion was previously supported by the fact that AvrRpt2 does 

not alter HopZ1a-triggered restriction of growth in rps2 plants, where AvrRpt2 does not 

trigger resistance but still displays virulence activity (Macho et al., 2010a). This is in 

disagreement with a recent report based on transgenic overexpression of HopZ1a in 

zar1-1 plants where it has been shown to suppress PTI, but not to prevent the onset of 

macroscopic HR (Lewis et al., 2014). However, such a strong suppression of PTI could 

alter potentially the ETI response of the transgenic lines.  
 

HopZ1aK289R suppresses AvrRpt2-triggered ETI 

ETI suppression is a key virulence activity of HopZ1a that is only partly affected 

by the K289R mutation, while being completely eliminated in the catalytically inactive 

HopZ1aC216A mutant. The related Xanthomonas effector AvrBsT has also been shown to 

suppress the ETI induced in pepper plants by a second Xanthomonas effector, AvrBs1 

(Szczesny et al., 2010). In fact, the demonstrations of the ETI-suppressing activities of 

AvrBsT and HopZ1a were presented simultaneously, becoming the first known 

effectors belonging to the YopJ / HopZ family to display such virulence function 

(Macho et al., 2010a; Szczesny et al., 2010). The ETI-suppression ability of AvrBsT is 
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also dependent on its catalytic cysteine (Szczesny et al., 2010). However, the activity of 

the AvrBsT mutant equivalent to HopZ1aK289R has only been assayed by heterologous 

expression in the interaction model based on Pseudomonas DC3000 and the 

Arabidopsis Pi-0 ecotype, where it does not display any virulence function (Cheong et 

al., 2014). In view of the new results presented here, and the similarities between 

HopZ1a and AvrBsT, it would be interesting to analyze the performance of the 

AvrBsTK282R mutant in pepper plants, where it displays ETI-suppression abilities. 
 

ZAR1-mediated resistance against HopZ1a 

HopZ1a has been reported in turn to slightly enhance the growth of DC3000 in 

zar1-1 plants (Lewis et al., 2010) and to slightly decrease it (Jiang et al., 2013), 

however in both cases differences in growth were within the same log. In our 

experimental conditions growth of DC3000 expressing HopZ1a was close to that of 

DC3000 in zar1-1 plants, albeit slightly decreased (Figure 3), since the CI of DC3000 

expressing HopZ1a in mixed infection with DC3000 (CI=0.72±0.09) was statistically 

different from 1.0. Our results are therefore in agreement with the observations of (Jiang 

et al., 2013). The disparity with the results from the first report (Lewis et al., 2010) 

could be due to differences in experimental settings, however the existence of a residual 

defense against HopZ1a in the Arabidopsis zar1-1 background cannot be ruled out. 

Such residual defense could be either due to residual activity of a truncated ZAR1 

protein, or to a weak recognition by a second resistance protein, as described for other 

effectors (Saucet et al., 2015).  
 

HopZ1a acetyltransferase activity 

On view of the results presented in this work, the absolute requirement of the 

K289 lysine residue for HopZ1a activity can be discarded. A recent paper (Ma et al., 

2015) support this result, and described two serine residues (S349 and S351) that are 

also acetylated in HopZ1a. The acetyltransferase activity described for the HopZ/YopJ 

effector family is based on the Ping-Pong model, which requires an autoacetylated state 

of the effector prior to the transfer of the acetyl group to the substrate (Mukherjee et al., 

2006). Thus, we hypothesize that HopZ1a autoacetylates itself on the two serines 

described (Ma et al., 2015), and theses acetyl groups are used by the lysine 289 to 

transacetylate its targets. Our in vitro assays (Figure 7) suggest the presence of 

alternative lysine residues in HopZ1a that can be acetylated, partially complementing 
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the absence of K289. However, using 14C-labelled acetyl-CoA as acetyl donor, Ma et al. 

(Ma et al., 2015) observed an increased autoacetylation activity in HopZ1aK289R mutant 

compared with the wild type. This inconsistent result can only be explained as 

methodological differences. We use a specific anti-acetylated lysines antibody to detect 

differences on the lysine-acetylation status of HopZ1a and the K289R mutant. However, 

the radioactivity-based assay used by Ma et al. (Ma et al., 2015) detects the acetylation 

of all putative residues in the protein (i.e. lysines, serines and threonines).  

However we cannot rule out that autoacetylation of HopZ1a might not be 

altogether essential for HopZ1a activities within the plant. In fact, it has been suggested 

in relation to the closely related effector HopZ1c (Lewis et al., 2014) that the C-terminal 

third of the HopZ family might be dispensable for acetyltransferase activity, or that 

HopZ1c may use water instead of acetyl-CoA during its enzymatic reaction, resulting in 

hydrolysis of substrates rather than acetylation, in an alternative catalytic mechanism 

suggested by (Mukherjee et al., 2007).  

Furthermore, although HopZ1a is indeed susceptible of autoacetylation in lysine 

and serine residues, as shown by Figure 7, Lee et al. 2012 and Ma et al. 2015, it should 

be noted that the only HopZ1a interacting protein where the acetylated residues have 

been identified, namely the pseudokinase ZED1, is acetylated on threonine residues 

rather than lysines (Lewis et al., 2013). Therefore, we cannot rule out that HopZ1a 

might also display acetyltransferase activity on other amino acid residues, such as serine 

or threonine, as it is the case with YopJ, the archetypal effector of the YopJ/HopZ 

superfamily (Mukherjee et al., 2006). 

Results presented to date for several YopJ/HopZ effectors do not support a 

consistent association between their autoacetylation at the conserved lysine residue and 

their transacetylation activities. For instance, AvrBsT maintains the autoacetylation 

activity in the absence of the conserved lysine residue, which is however essential for 

the acetylation of one of its described targets (Cheong et al., 2014). On the other hand, 

prior autoacetylation of YopJ is not required for acetylation of MEK, one of its 

described targets (Mittal et al., 2010). This opens the possibility that the said lysine 

residue and/or its autoacetylation, while contributing to the overall function of the 

effectors, may not be essential for all their activities in planta. Considering the various 

targets proposed for each of the effectors belonging to the YopJ/HopZ superfamily, and 

the numerous biochemical activities assigned, sometimes concurrently, to said effectors 
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(Orth et al., 2000; Hotson and Mudgett, 2004; Ma et al., 2006; Mukherjee et al., 2006; 

Sweet et al., 2007; Szczesny et al., 2010; Tasset et al., 2010; Zhou et al., 2011; Lee et 

al., 2012; Jiang et al., 2013; Lewis et al., 2013; Cheong et al., 2014), it is tempting to 

speculate that their molecular mechanisms in planta might be manifold, and therefore 

that the conserved lysine residue and/or its autoacetylation might not be required for all 

targets or activities. The resultant of all these activities on numerous targets would be 

observed as virulence or avirulence manifestations on a given plant model, and might be 

behind the intermediate phenotypes described for the HopZ1aK289R mutant in this work. 
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Figure S1. Diagram depicting the cancelled-out analysis carried out in this study. A. COI is 
defined as ratio between cfu of the the strain expressing both AvrRpt2 and any version of 
HopZ1a, and the cfu of the strain expressing only the corresponding HopZ1a version in the 
output sample, divided by their ratio within the input inoculum. B. Determination and analysis 
of COI. A mix inoculum containing an equal bacterial number of both strains is infiltrated into 
plant leaves. The inoculum is plated onto LB and LB supplemented with antibiotics, to 
differentiate between the co-inoculated strains, and to establish the input ratio which should be 
close to 1. Bacteria are recovered from plant leaves at 4 days post inoculation (dpi), and plated 
into LB and LB supplemented with antibiotics, to differentiate the strains ant to determine their 
output ration. I and II represent the two control outcomes for the analysis. 
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Introduction	

HopZ1a is a P. syringae T3E with the ability to suppress several layers of plant 

defense. HopZ1a has been shown to suppress in Arabidopsis (i) basal resistance or PTI 

triggered by P. syringae pv. tomato DC3000 (Macho et al., 2010a; Lewis et al., 2014) 

(ii), ETI triggered by the expression of the heterologous effectors AvrRpt2, AvrRps4 

and AvrRpm1 (Macho et al., 2010a; Rufian et al., 2015), and (iii) systemic acquired 

resistance (SAR) triggered by either virulent or avirulent bacteria (Macho et al., 2010a; 

Rufian et al., 2015). On the other hand, HopZ1a triggers ETI in Col-0 Arabidopsis 

plants upon recognition by the ZAR-1 resistance protein (Lewis et al., 2010), a defense 

response that is independent of salicylic acid (SA) and EDS1 (Lewis et al., 2010; 

Macho et al., 2010a).  

HopZ1a belongs to the YopJ / HopZ superfamily of T3Es, which includes 

representatives from both animal and plant pathogens (Ma et al., 2006; Lewis et al., 

2010). Many of these T3Es have been described to function as acetyltransferases, 

among other biochemical activities (Trosky et al.; Zhou et al.; Mittal et al., 2006; Jones 

et al.; Lee et al., 2012). In fact, HopZ1a has been shown to display acetyltransferase 

activity, with varying degrees of efficiency, on some of its proposed plant targets (Lee 

et al., 2012; Jiang et al., 2013) or decoys (Lewis et al., 2013). HopZ1a acetyltransferase 

activity is completely dependent on the integrity of the catalytic triad cysteine (C216), 

since a HopZ1aC216A mutant behaves as a catalytically inactive mutant (Lee et al., 

2012). Likewise, residue C216 is essential for all described HopZ1a virulence and 

avirulence functions in planta (Ma et al., 2006; Lewis et al., 2008; Macho et al., 2010a; 

Lewis et al., 2014; Rufian et al., 2015). HopZ1a has also been described to auto-

acetylate in two serine residues (S349 and S351) that are required for acetyltransferase 

activity in vitro, virulence activity in planta, and interaction with the co-factor IP6 (Ma 

et al., 2015). In turn, lysine residue K289, which was originally postulated to be the 

only HopZ1a auto-acetylation site and key for effector activity (Lee et al., 2012), might 

only partially contribute to trans-acetylation (Ma et al., 2015) and does not seem to be 

essential for HopZ1a virulence or avirulence activities (Rufian et al., 2015). 

A common theme among the majority of T3Es that constitute the YopJ / HopZ 

superfamily, particularly for those present in animal pathogens, seems to be the 

interference with MAPK signaling cascades leading to the activation of the immune 

response. The archetypal member of the superfamily, Yersinia effector YopJ, acetylates 
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key serine and threonine residues of a subset of mitogen-activated protein kinase 

kinases (MAP2Ks or MKKs) and MAP kinase kinase kinases (MAP3Ks) from several 

animal models, competing with the phosphorylation of said residues, which in turn 

leads to inactivation of downstream defense signaling, and suppression of the immune 

response (Mittal et al., 2010 ; Meinzer et al., 2012). YopJ can also acetylate lysine 

residues of several of its targets, however this modification does not seem to be 

essential for its inhibitory function (Mukherjee et al., 2006; Paquette et al., 2012). 

Within the same superfamily, AvrA from Salmonella and VopA from Vibrio acetylate 

key serine, threonine, and lysine residues of their corresponding target MKKs, resulting 

in inhibition of kinase activity and the suppression of immune responses (Trosky et al.; 

Jones et al.). YopJ and VopA can also interfere with MAPK modules in yeast, via 

acetylation of kinases PBS2, MEK1, or Ste7 (Yoon et al., 2003; Trosky et al., 2004; 

Hao et al., 2008). 

In plants, MAPK cascades also constitute signaling networks leading to defense 

against pathogens, since PRR recognition of PAMPs leads to activation of MAPK 

modules and ultimately to the corresponding immune response (reviewed by (Pitzschke 

et al.; Feng and Zhou, 2012)). Interestingly, HopZ1a has been described to suppress 

MAPK activation in Arabidopsis (Lewis et al., 2014). Further, several other T3Es 

suppress plant defense signaling by targeting mitogen-activated protein kinase (MAPK) 

cascades at different levels, as in the case of HopAI1 interfering with several MAP 

kinases (MPKs) (Zhang et al., 2007a; Zhang et al., 2012), or HopF2 blocking the 

phosphorylation of a MAP kinase kinase, MKK5 (Wang et al., 2010). In fact, a 

considerable number of T3Es interact with plant kinases, altering their function, which 

results in the interference of plant defense signaling (Block and Alfano, 2011; Macho 

and Zipfel, 2015). Some T3Es, such as AvrPto, AvrPtoB, or HopF2, target PRRs or its 

co-receptors, typically acting on them as kinase inhibitors and suppressing early PTI 

events (Shan et al., 2008; Xiang et al., 2008; Cheng et al., 2011; Wu et al., 2011; Xiang 

et al., 2011; Zeng et al., 2012a; Zhou et al., 2014). Other T3Es, such as AvrPphB or 

AvrAC, act on PRR-associated receptor-like cytoplasmic kinases (RLCKs), inactivating 

their function to suppress PTI (Zhang et al., 2010; Feng and Zhou, 2012).  

Since RLCKs and MAPKs are important components of plant defense signaling 

targeted by T3Es, they are accordingly guarded by plant resistance proteins that in 

resistant plants can detect, directly or indirectly, the alterations induced by T3E action 
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on their targets, and trigger the corresponding ETI defense responses, as those described 

for AvrPphB or AvrAC when acting respectively on the RLCKs PBS1 (Shao et al., 

2003) or PBL2/RIPK (Guy et al., 2013), or for HopAI1 while acting on MPK4 (Zhang 

et al., 2012). In this sense, the ETI triggered by HopZ1a in Arabidopsis seems to be the 

consequence of the recognition, by the ZAR-1 resistance protein, of HopZ1a acetylation 

of the RLCK pseudokinase ZED1, which is proposed to act as a decoy (Lewis et al., 

2010; Lewis et al., 2013). 

In addition to the molecular decoy ZED1, a number of plant proteins have been 

proposed to be the targets of HopZ1a virulence activity (Zhou et al., 2011; Lee et al., 

2012; Jiang et al., 2013).  

Zhou et al. (2011) described the interaction of HopZ1 with Glycine max HID1 

(GmHID1), an enzyme involved in the biosynthesis of daidzein, a major soybean 

isoflavone. HopZ1 activity resulted in the degradation of GmHID1, and the suppression 

of daidzein biosynthesis, which is induced by P. syringae. However, the authors failed 

to find any direct inhibitory effect of daidzein on P. syringae growth, therefore the 

putative role of GmHID1 in PTI was not confirmed, likewise its suppression by HopZ1. 

It is important to notice that GmHID1 has no putative ortholog in Arabidopsis, the plant 

model were the majority of HopZ1a virulence or avirulence activities have been 

characterized. 

Later on, Lee et al. (2012) described the interaction of HopZ1a with tubulin, using 

a heterologous in vivo screen in human HEK293T cells. In Arabidopsis, HopZ1a 

interacted with tubulin at a higher rate than the unrelated control effector HopF2. 

HopZ1a expression in Arabidopsis seedlings destroyed, with potential consequences on 

plant basal defense, the microtubule network to a higher extent than expression of the 

unrelated control effector AvrRpt2, in conditions were both T3Es were triggering ETI to 

some degree. However, the authors acknowledged that such microtubule destruction 

might be an indirect effect of HopZ1a acting on a yet unidentified protein, such as a 

MAPK. 

Finally, Jiang et al. (2013) described the interaction of HopZ1a with soybean and 

Arabidopsis JAZ proteins, key negative regulators of jasmonate (JA) signaling. HopZ1a 

expression induced COI-dependent degradation of JAZ, thus promoting JA-responsive 

gene expression. The authors hypothesized that, since plant JA signaling is to some 
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extent antagonistic to SA-dependent plant defense, activation of JA signaling by 

HopZ1a action might facilitate host defense suppression and pathogenesis. 

Remarkably, the aforementioned reports (Zhou et al., 2011; Lee et al., 2012; Jiang 

et al., 2013) addressed only indirectly, if at all, HopZ1a ability to suppress plant basal 

defenses in regard to the proposed plant targets, while neither addressed the 

involvement of HopZ1a in the suppression of ETI or SAR. It is conceivable that 

HopZ1a interferes with many host proteins, with a number of them yet to be identified 

behind the unexplained suppression phenotypes. Alternatively, given the broad plant 

defense suppression abilities of HopZ1a, its host target might be a single key positive 

regulator of defense, participating in the signaling of different branches of the immune 

response. Considering the pattern of interference with MKKs displayed by many T3Es 

of the YopJ / HopZ superfamily leading to defense suppression, the existence of 

multiple T3Es from plant pathogens interfering with host kinases to suppress immunity, 

the effect on MAPK activation displayed by HopZ1, and the fact that HopZ1a 

molecular decoy is indeed a plant kinase, we decided to analyze Arabidopsis MKKs as 

putative targets for HopZ1a. 

Arabidopsis genome presents only ten genes encoding MKKs, of which only eight 

are likely to be expressed (Zhang et al., 2008). Among these, MKK3, MKK4/5, and 

MKK7 have all been identified as positive regulators of plant defense (Doczi et al., 

2007; Zhang et al., 2007a; Xu et al., 2008). Interestingly, while neither MKK3 nor 

MKK4/5 cascades have been associated to positive signaling of SAR, the suppression 

of which is a trademark of HopZ1a virulence activity, MKK7 has been proved to be 

essential for SAR activation, since specific silencing of MKK7 blocks SAR induction 

and promotes growth of P. syringae pv. maculicola and Xanthomonas campestris pv. 

campestris (Zhang et al., 2007b).  All things considered,, we decided to investigate 

MKK7 as a potential target for HopZ1a interference, such a key target that could single-

handedly account for all the defense suppression phenotypes described for this effector. 

In this work, we demonstrate that MKK7 participates in the signaling of basal 

defenses restricting DC3000 growth in Arabidopsis, validating this model pathosystem 

for the characterization of MKK7 potential interactors. Our results are the first to show 

MKK7-dependent accumulation of callose, ROS burst response, and MAPK activation, 

which eventually restrict the growth of both wild-type DC3000 and the corresponding 

T3SS null mutant. Furthermore, we demonstrate the participation of MKK7 in the 
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signaling of the ETI response triggered by AvrRpt2. In regard to HopZ1a interference 

with MKK7 signaling, we first demonstrate that this effector can suppress the 

abovementioned MKK7-dependent PTI and ETI defense responses, and continue to 

prove HopZ1a-MKK7 interaction in planta, as well as HopZ1a-dependent acetylation of 

MKK7 in vitro. Finally, we determine that MKK7 acetylation occurs in a conserved 

lysine residue, which we show to be essential for MKK7 activity in vitro and in planta, 

and that such modification reduces MKK7 self-phosphorylation, and abrogates MKK7 

trans-phosphorylation activity on a generic susbtrate 

 

	



 

Table 1. Plasmids used in this work 

Name Promoter 
Expressed 

protein 
Resistance Reference 

pAME30 nptII HopZ1a Amp, Km Macho et al. (2010a) 

pAME27 nptII HopZ1aC216A Amp, Km Macho et al. (2010a) 

pMAM1 nptII HopZ1aK289R Amp, Km Rufián et al., (2015) 

pAME8 nptII AvrRpt2 Amp, Km Macho et al. (2009) 

pAME30Gm nptII HopZ1a Amp, Km, Gm Rufián et al. (2015) 

pENTRTM/D-

TOPO 
- - Km Invitrogen 

pENTR-Z1a - HopZ1a Km This work 

pENTR-C2 - HopZ1aC216A Km This work 

pENTR-K2 - HopZ1aK289R Km This work 

pENTR-GFP - GFP Km This work 

pENTR-MKK7 - MKK7 Km This work 

pENTR-

MKK7K167R 
- MKK7 K167R Km This work 

pMD1 35S - Km Tai et al., (1999) 

pMD-Z1 35S HopZ1a-3xFLAG Km Macho et al. (2010) 

pMD-C2 35S 
HopZ1aC216A-

3xFLAG 
Km This work 

pMD-K2 35S 
HopZ1aK289R-

3xFLAG 
Km This work 

pMD-GFP 35S GFP-3xFLAG Km This work 

pMD-MKK7 35S MKK7-HA Km This work 

pMD-MKK7K167R 35S MKK7 K167R -HA Km This work 
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pDEST-GWVYNE 35S VENUS-N-term Km Gehl et al., (2009) 

pDEST-GWVYCE 35S VENUS-C-term Km Gehl et al., (2009) 

pZ1-VYNE 35S 
HopZ1a-VENUS-

N-term 
Km This work 

pC2-VYNE 35S 
HopZ1aC216A-

VENUS-N-term 
Km This work 

pK2-VYNE 35S 
HopZ1aK289R-

VENUS-N-term 
Km This work 

pMKK7-VYCE 35S 
MKK7-VENUS-

C-term 
Km This work 

pET28a(+) T7 - Km Novagen (USA) 

pET28-Z1a T7 HopZ1a Km This work (Chapter 3) 

pET28-C2 T7 HopZ1aC216A Km This work (Chapter 3) 

pET28-K2 T7 HopZ1aK289R Km This work (Chapter 3) 

pGEX-5X-1 tac GST Amp GE Healthcare 

pGEX-MKK7 tac GST-MKK7 Amp This work 

pGEX-MKK7K74R tac GST-MKK7K74R Amp This work 

pGEX-MKK7K167R tac GST-MKK7K167R Amp This work 

 

 

 

 

 

 

 



 

Table 2. Primers used in this work 

Name Sequence 
Restriction 

site 

pENTR-Z1-F AAGCGGCCGCCATGGGAAATGTATGCGTCG NotI 

pENTR-Z1-R AAGGCGCGCCCGCGCTGCTCTTCGGCAAG AscI 

pENTR-MKK7-

F 
AAGCGGCCGCCATGGCTCTTGTTCGTAAACGC NotI 

pENTR-MKK7-

R 
AAGGCGCGCCCAAGACTTTCACGGAGAAAAGG AscI 

MKK7-K167R-

F 
AGAGACATCAGACCTGCGAATC - 

MKK7-K167R-

R 
TTCGCAGGTCTGATGTCTCTG - 

MKK7 K74R-F AGATATACGCTCTGAGATCAGTCAACGGCGACATGAGTCC - 

MKK7 K74R-R GGACTCATGTCGCCGTTGACTGATCTCAGAGCGTATATCT - 

MKK7-F AAGGATCCCCGCTCTTGTTCGTAAACGCC BamHI 

MKK7-R2 AAGAATTCCTAAAGACTTTCACGGAGAAAAGG EcoRI 
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Results	

MKK7 participates in the Arabidopsis basal defense response to Pseudomonas 

syringae 

Recognition of bacterial PAMPs ultimately leads to the restriction of bacterial 

growth (Zipfel et al., 2004). The role played by MKK7 in plant defense against bacterial 

pathogens has been previously shown, by monitoring the effect of MKK7 

overexpression, or MKK7 silencing, in Arabidopsis plants inoculated with 

Pseudomonas syringae pathovar maculicola or Xanthomonas campestris pathovar 

campestris (Zhang et al., 2007b). To confirm that these results were consistent with the 

interaction model comprising Pseudomonas syringae pathovar tomato strain DC3000 

(hereafter DC3000) and Arabidopsis, a model where HopZ1a characterization has been 

predominantly accomplished, we set to investigate whether overexpression of MKK7 in 

Arabidopsis limits the growth of this compatible pathogen. 

To this purpose, we used transgenic Arabidopsis plants expressing the MKK7 

gene under the control of the dexamethasone (DEX)-inducible promoter (hereafter 

MKK7-DEX plants), previously generated by Zhang et al. (2007b). Upon DEX 

treatment, MKK7-DEX plants display activated Pathogenesis-Related 1 (PR1) gene 

expression and increased resistance to P. syringae pv. maculicola infection (Zhang et al. 

2007). It is important to notice that transgenic lines were generated in the wild type Col-

0 background (Zhang et al., 2007b), and therefore carry the wild type gene coding for 

MKK7. We treated MKK7-DEX plants with either 0.1% ethanol (control plants) or 

DEX (induced plants) 3 hours before inoculation by infiltration with DC3000 at 5 x 104 

cfu/ml, and measured bacterial growth at 4 days post inoculation (dpi). Bacterial growth 

in DEX-induced plants was approximately 15-fold lower than that achieved in control 

plants (Figure 1A) demonstrating that MKK7 expression negatively affects DC3000 

growth in Arabidopsis. 

Furthermore, we analyzed the growth of a DC3000 ΔhrcV mutant strain, which is 

unable to assemble a functional T3SS, triggering PTI, and it is therefore non-pathogenic 

with Arabidopsis, after inoculation into induced on non-induced MKK7-DEX plants. 

We treated transgenic plants with DEX to induce expression of the corresponding 

transgenes, 3 hours before inoculation by infiltration with a ΔhrcV mutant strain at 5 x 

105 cfu/ml, and measured bacterial growth at 4 dpi. Bacterial growth of the mutant 
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strain in DEX-activated plants was approximately 10-fold lower than that achieved in 

control plants (Figure 1B) suggesting the existence of an MKK7-dependent basal 

defense against DC3000. 

To further characterize the MKK7-dependent basal defense response in 

Arabidopsis, we monitored the accumulation of callose in the cell wall of MKK7-DEX 

plants, in response to flagellin. In Arabidopsis, recognition of this archetypal PAMP by 

plant receptors eventually leads to the strengthening of the plant cell wall by callose 

deposition (Gómez-Gómez et al., 1999; Gómez-Gómez and Boller, 2000). To this 

purpose we infiltrated MKK7-DEX plants, either induced with DEX or non-induced, 

with the conserved flagellin peptide flg22, and then monitored the average number of 

callose deposits, as visualized by staining with the fluorescent dye aniline blue (Figure 

1C). MKK7-DEX plants induced for MKK7 expression 24h hours before flg22 

infiltration presented significantly more foci stained with aniline blue than non-induced 

plants, which in turn presented more callose deposits than control plants treated with 

water before flg22 infiltration (Figure 1C). 
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Taken together, results shown in Figure 1 demonstrate the existence of MKK7-

dependent basal defenses that can affect DC3000 growth in Arabidopsis, and validate 

the use of this model pathosystem for the characterization of MKK7 potential 

interactors. 

 

MKK7 participates in Arabidopsis ROS burst signaling and activates MAP kinase 

modules 

One of the early events occurring during PTI activation is the production of 

Reactive Oxygen Species (ROS) (Felix et al., 1999). In Arabidopsis, transgenic 

expression of HopZ1a has been described to actively block the production of ROS, in a 

manner dependent on the integrity of HopZ1a catalytic site (Lewis et al., 2014). To 

determine if MKK7 participates in the signaling pathway leading to the production of 

ROS in response to flagellin, we performed a plate-based assay using flg22 peptide to 

induce PTI in leaf discs obtained from MKK7-DEX transgenic plants, measuring ROS 

production by luminol-dependent chemiluminiscence (Figure 2A). Overexpression of 

MKK7 in induced MKK7-DEX plants triggered a stronger ROS burst than that 

triggered in non-induced MKK7-DEX plants (Figure 2A). Results shown in Figure 2A 

indicate that MKK7 takes part in the signaling events leading to ROS production in 

response to flg22 treatment. 

Plant receptor recognition of bacterial PAMPs can also lead to the activation of 

MAPK signaling cascades (Pitzschke et al., 2009; Macho and Zipfel, 2015). Transgenic 

expression of HopZ1a in Arabidopsis has been described to suppress the MAP kinase 

activation triggered upon flg22 treatment, as indicated by the suppression of MPK3 and 

MPK6 phosphorylation (Lewis et al., 2014). To determine if MKK7 participates in the 

signaling pathway leading to the activation of MAP kinase cascades, we induced 2-

Figure 1. Expression of MKK7 increases disease resistance. (A) P. syringae pv. tomato DC3000 
growth in DEX-MKK7 plants pre-treated with dexamethasone (DEX+) or water (DEX-). Plants were 
inoculated with a 5x104 cfu/ml bacterial suspension, and bacteria were recovered at 4 dpi. The 
experiment was repeated 3 times with similar results. (B) P. syringae pv. tomato ΔhrcV. growth in 
DEX-MKK7 plants induced (DEX+) or uninduced (DEX-). Plants were inoculated with a 5x105 
cfu/ml bacterial suspension and bacteria were recovered at 4 dpi. The experiment was repeated twice 
with similar results. (C) Callose deposition in response to flg22-PTI activation. DEX-MKK7 plants 
were inoculated with dexamethasone (DEX+) or water (DEX-) 24h prior to flg22 treatment. After 15 
hours, leaves were stained with aniline blue and observed under UV fluorescence microscope. Left 
panel show mean quantification of callose deposits in 24 photos. Right panel show representative 
images. Error bars represent standard error, and asterisks indicate significant differences from the 
untreated plants, as established by Student’s test (P<0.05) 
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weeks old MKK7-DEX plants 24 hours prior to flg22 treatment. After treatment, we 

recovered samples at 0, 5, 10, and 15 minutes, and analyzed MPK activation by western 

blot. As shown in figure 2B, overexpression of MKK7 triggers a faster activation of 

MPK3, MPK6 and MPK4/11 in response to flg22. 

 

 

 

MKK7 participates in the ETI defense response triggered in Arabidopsis by 

heterologous expression of AvrRpt2 

Expression of MKK7 is induced in Arabidopsis by inoculation of DC3000 

expressing the heterologous effector AvrRpt2 (Zhang et al., 2007b). Expression of 

AvrRpt2 from DC3000 triggers the ETI defense response in Arabidopsis plants 

expressing the resistance protein RPS2, which in turn results in the growth attenuation 

of the DC3000 strain harboring the effector. Since the results of Zhang and 

collaborators (2007) suggested a role of MKK7 in ETI signaling, we set out to 

Figure 2. Overexpression of MKK7 enhances PTI response. (A) Reactive Oxygen Species (ROS) 
burst triggered by flg22. 3 weeks-old leaves discs were incubated with dexamethasone (DEX+) or 
water (DEX-) 24h prior to flg22 treatment. Immediately after flg22 treatment, luminescence was 
measured. Error bars represent standard error from 24 leaf discs per treatment. (B) MPKs activation in 
response to flg22 treatment. 2 weeks-old plants were overnight incubated with dexamethasone 
(DEX+) or water (DEX-). This solution was removed to apply flg22 treatment. 3 whole plants were 
frozen in liquid nitrogen at the indicated time point. Western blot analysis was carried out to detect 
activated MPKs. Coomassie blue staining is shown as loading control. 
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investigate whether silencing of MKK7 would interfere with AvrRpt2-induced ETI in 

Arabidopsis, by measuring the effect of such silencing on the growth attenuation 

displayed by DC3000 expressing AvrRpt2. Since previous efforts to identify an MKK7 

knockout mutant have been unsuccessful (Zhang et al. 2007) we used MKK7 antisense 

lines (hereafter, asMKK7 plants), expressing an antisense MKK7 transgene under the 

control of a 35S promoter, generated in the wild-type background by Dai et al. (2006). 

We performed competitive index (CI) assays by co-inoculating DC3000 and DC3000 

expressing AvrRpt2, in both Col-0 and asMKK7 Arabidopsis plants (Figure 3). As 

previously described (Macho et al., 2007) in Col-0 plants, we detected clear growth 

attenuation for DC3000 expressing AvrRpt2 in comparison with co-inoculated DC3000 

(CI=0,06±0,02). Interestingly, when the same CIs where performed in the asMKK7 

background, DC3000 bacteria expressing AvrRpt2 displayed a considerably lower 

growth attenuation, multiplying to almost the same levels as the co-inoculated DC3000 

strain (CI=0,58±0,10). The growth attenuation of DC3000 expressing HopZ1a in Col-0 

(CI=0,02±0,007) was not altered on the asMKK7 background (CI=0,05±0,004) (Figure 

3), indicating that MKK7 is essential for RPS2-triggered immunity, which is SA-

dependent, but not for SA-independent ZAR1-mediated immunity 

 

 

 

Figure 3. MKK7 is required for AvrRpt2-mediated ETI. Competitive indices (CI) resulting from 
mixed infections of DC3000 with derivatives expressing the effectors AvrRpt2 (left) or HopZ1a 
(right) in Arabidopsis Col-0 or asMKK7 plants. Index values shown correspond to the mean of three 
samples and error bars represent the standard error. Experiment was repeated three times with similar 
results. 
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HopZ1a suppresses MKK7-dependent defense signaling 

Taken together, results presented previously validate MKK7 as a potential target 

for the virulence function of HopZ1a within the plant, since suppression of MKK7-

dependent defense responses will account for all described HopZ1a-associated virulence 

phenotypes in the Arabidopsis-DC3000 pathosystem, i.e. suppression of plant defenses 

associated to PTI (Figures 1 and 2), ETI (Figure 3) and SAR (Zhang et al., 2007b). 

Therefore, we set out to analyze whether HopZ1a expression interfered specifically with 

MKK7-dependent defense signaling in Arabidopsis. 

First, we analyzed whether HopZ1a was able to suppress MKK7-dependent PR1 

accumulation (Figure 4A). Overexpression of MKK7 in the de-regulated Arabidopsis 

mutant bud1 (Dai et al., 2006) has been shown to result in constitutive expression of the 

molecular marker genes for plant defense responses PR1, PR2, and PR5 (Zhang et al., 

2007b). Furthermore, overexpression of MKK7 in induced MKK7-DEX plants has been 

described to induce PR1 gene expression (Liu et al., 2007). We induced MKK7 

expression in MKK7-DEX plants by DEX treatment, 3 hours before inoculation by 

infiltration with Pseudomonas fluorescens strain Pf55 (hereafter Pf55), a 

non-pathogenic strain expressing a functional T3SS but only those effector genes 

purposely cloned and expressed from a plasmid, in this case the HopZ1a effector gene. 

We then monitored PR1 protein levels by Western blot in plant extracts taken at the 

inoculation site, 48 hours after bacterial inoculation (Figure 4A). As controls we 

included mock inoculated plants, and plants inoculated with a Pf55 strain not expressing 

the HopZ1a gene (Figure 4A). As expected, both control plants displayed local PR1 

accumulation in the inoculated tissues as a consequence of transgenic MKK7 

expression. PR1 accumulation was higher in Pf55-inoculated than in mock-inoculated 

plants, since in the former PR1 expression is also induced as a consequence of the mild 

basal defense triggered by the Pf55 strain. Local PR1 accumulation was almost 

completely abolished in plants inoculated with Pf55 expressing the HopZ1a effector 

protein, indicating that HopZ1a is capable of suppressing PR1 accumulation due to Pf55 

defense elicitation, and more importantly, capable of suppressesing MKK7-dependent 

PR1 accumulation. 
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To investigate whether HopZ1a suppression of MKK7-dependent PR1 

accumulation correlates with higher bacterial growth, we analyzed whether HopZ1a 

expression from DC3000 was able to abrogate the growth attenuation suffered by this 

strain in induced MKK7-DEX plants, as a consequence of MKK7 overexpression 

(Figure 4B). To analyze HopZ1a suppression ability in the absence of the ETI triggered 

by HopZ1a in Arabidopsis Col-0, we crossed DEX-MKK7 transgenic plants with zar1-

1 knockout plants, lacking the resistance gene ZAR1 that is responsible of the HopZ1a-

triggered immunity, and selected zar1-1 / DEX-MKK7 homozygous lines. We used 

Figure 4. HopZ1a interferes in the MKK7 defense activation pathway. (A) Western blot showing 
PR-1 accumulation in DEX-MKK7 plants induced with dexamethasone. 3 hours after DEX treatment, 
plants were infiltrated with 10 mM MgCl2 (Mock), or a 5x105 cfu/ml bacterial suspension of Pf55 or 
Pf55 expressing HopZ1a. Samples were recovered at 48 hours. Ten micrograms of total protein were 
loaded per sample, and Coomassie staining is shown as loading control. Results presented are 
representative of two independent experiments. (B) Competitive indices (CI) resulting from mixed 
infections of DC3000 with DC3000 expressing the effector HopZ1a in zar1-1/DEX-MKK7 plants 
induced (DEX+) or un-induced (DEX-) with dexamethasone. Index values shown correspond to the 
mean of three samples and error bars represent the standard error. Experiment was repeated three 
times with similar results. 



Results 

 129 

these plants, either DEX-induced for MKK7 overexpression or non-induced, to perform 

CI analysis comparing the growth of DC3000 versus a co-inoculated DC3000 strain 

expressing HopZ1a (Figure 4B). As expected (Jiang et al., 2013; Rufian et al., 2015), in 

non-induced zar1-1 plants growth of DC3000 expressing HopZ1a presents only a slight 

growth reduction compared with the co-inoculated DC3000 strain (CI=0,55±0,05). In 

contrast, in DEX-induced zar1-1 plants overexpressing MKK7, DC3000 expressing 

HopZ1a displays a growth advantage versus DC3000 (CI=1,52±0,27), suggesting that 

HopZ1a can in fact suppress MKK7-dependent defense responses. 

HopZ1a interacts with MKK7 in vitro and in planta 

Data presented in Figure 4 demonstrates that HopZ1a suppresses MKK7-

dependent defense signaling in Arabidopsis. To investigate whether such HopZ1a 

defense suppression ability is a consequence of its direct interference with MKK7 

function, or rather an indirect effect due to its interaction with another component of the 

same signaling pathway, we analyzed in planta HopZ1a-MKK7 interaction using co-

immunoprecipitation and BiFC assays. 

 



Chapter 4: HopZ1a acetylates MKK7 to suppress plant defenses 

 130 

 

 

 

Figure 5. HopZ1a interacts with MKK7 in planta. (A) Coimmunoprecipitation assay using anti HA 
beads of MKK7-HA with HopZ1a and derivatives. N. benthamiana plants were agroinfiltrated with 
mixed inoculum containing the strains encoding MKK7-HA and each one of the 3xFLAG fusions. 
Protein extraction and immunoprecipitation was performed at 30 hours post inoculation. The output 
panel show the signal of the 3xFLAG fusion proteins in the elutions. The input panels show 
immunoblots of 10 ul of total proteins using anti FLAG or anti HA antibodies. (B) Bimolecular 
fluorocomplementation (BiFC) assay. The N-terminal of the fluorescent protein VENUS was fused to 
the C-terminal of HopZ1a, and the C-terminal of VENUS to the C-terminal of MKK7. Proteins were 
transiently expressed in N. benthamiana using Agrobacterium. Leaf sections were analyzed under the 
confocal 20 hours after inoculation. 
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For co-immunoprecipitation assays, we cloned MKK7 and HopZ1a in binary 

vectors in order to express C-terminal fusion proteins with either HA-tag or 3xFLAG-

tag, respectively (Table 1). Since catalytically inactive enzymes have been sometimes 

found to exhibit stabilized interactions with substrates (Blanchetot et al., 2005), we also 

generated the corresponding plasmids to express the canonical HopZ1a catalytic mutant 

(HopZ1aC216A-3xFLAG), and the leaky mutant in lysine K289 (HopZ1aK289R-3xFLAG), 

which might be affected in the transacetylation of the target protein (Ma et al., 2015). 

Further, HopZ1aC216A does not trigger HR when transiently expressed in planta (Jiang et 

al., 2013; Lewis et al., 2013) which might improve protein recovery. 

We co-expressed MKK7-HA with, either HopZ1a-3xFLAG or each of its mutant 

derivatives HopZ1aC216A-3xFLAG and HopZ1aK289R-3xFLAG, in N. benthamiana 

leaves, under the control of a constitutive promoter, by using Agrobacterium-mediated 

transient expression. As a negative control, we used GFP-3xFLAG. We recovered the 

Agrobacterium infiltrated tissue at 24-30 hours after Agrobacterium inoculation, since 

transient expression of either MKK7 or HopZ1a, cause cell death in N. benthamiana at 

later time points (Ma et al., 2006; Lewis et al., 2008; Popescu et al., 2009). We then 

performed co-immunoprecipitation with protein extracts obtained from the recovered 

tissues using anti-HA beads, and the corresponding eluates were separated by SDS-

PAGE and analyzed by western blot using anti-FLAG antibodies. We could not detect 

interaction of MKK7-HA with either HopZ1a-3xFLAG or the catalytic mutant 

HopZ1aC216A-3xFLAG. Interestingly, we did detect a hybridization signal indicative of 

interaction between MKK7-HA and HopZ1aK289R-3xFLAG (Figure 5A), demonstrating 

that both proteins are indeed interacting partners in planta. 

To confirm the detected interaction, we performed a bimolecular 

complementation assay (BiFC). To this purpose, we generated binary plasmids 

expressing MKK7, HopZ1a, or the corresponding HopZ1a mutant derivatives, as 

fusions to either the N-terminal or the C-terminal domains of the fluorescent protein 

VENUS (Table 1). We expressed MKK7 as a fusion protein to the C-terminal domain 

of VENUS, and expressed HopZ1a and its mutant derivatives as fusion proteins to the 

N-terminal domain of VENUS. We then co-expressed MKK7-VENUS-C with each of 

the HopZ1a-VENUS-N fusion proteins in N. benthamiana by using Agrobacterium-

mediated transient expression, and analyzed by microscopy the samples at 18-20 hours, 

a time point prior to the development of HR symptoms at the microscopic level. In this 
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assay, we detected fluorescence in those samples corresponding to the co-expression of 

MKK7-VENUS-C with either HopZ1a-VENUS-N or HopZ1aK289R-VENUS-N (Figure 

5B). Interestingly, fluorescence was not detectable in the sample corresponding to 

MKK7-VENUS-C co-expression with HopZ1aC216A-VENUS-N (Figure 5B). 

Taken together, our co-immunoprecipitation and BIFC results show that HopZ1a 

and MKK7 do interact in planta, and suggest that such interaction is transient, and may 

be locked-on in the HopZ1aK289R mutant, but not in the catalytic mutant. 

HopZ1a acetylates MKK7 in vitro on residue K167 

HopZ1a has been described to function as an acetyltransferase in vitro, capable 

of strong autoacetylation, and also of transacetylation of tubulin and the Arabidopsis 

pseudokinase ZED1 (Lee et al., 2012; Lewis et al., 2013). To determine whether 

HopZ1a was able to acetylate MKK7, we performed a 14C-labelled-acetyl-coenzyme A 

(acetyl-CoA) transferase reaction in vitro, in the presence of MKK7 and either HopZ1a, 

the catalytically inactive mutant HopZ1aC216A, or mutant HopZ1aK289R. As previously 

described, HopZ1a was strongly autoacetylated, while mutant HopZ1aC216A was not 

(Figure 6). HopZ1aK289R was acetylated to a similar level of the wild type version of the 

effector, in agreement with a recent report (Ma et al., 2015). Interestingly, MKK7 was 

acetylated in the presence of HopZ1a, but not in the presence of HopZ1aC216A or 

HopZ1aK289R (Figure 6), demonstrating that HopZ1a acetylates MKK7 in vitro.  

 

 

Figure 6. HopZ1a in vitro acetylates MKK7 in the lysine 167. Recombinant GST-MKK7, GST-
MKK7K167R or GST were incubated with 6xHis-HopZ1a, 6xHis-HopZ1aC216A or 6xHis-HopZ1aK289R 
in acetylation buffer containing 14C-Acetyl CoA. Samples were separated in a SDS-PAGE and 
proteins were transferred to a PVDF membrane. The membrane was exposed to an imaging plate for 
one week. 
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We then set to determine which MKK7 residues were acetylated by HopZ1a, and 

to that purpose we examined the evidence available regarding HopZ1a acetylation of 

pseudokinase ZED1. HopZ1a acetylates the Arabidopsis pseudokinase ZED1 on 

threonine residues located in positions 125 and 177 of its amino acid sequence (Lewis et 

al., 2013). However, ZED1 pseudokinase is not considered a proper target of HopZ1a 

virulence activity, but rather believed to function as a decoy to trigger ZAR1-dependent 

ETI responses (Lewis et al., 2013). In fact, ZED1 is a non-functional kinase, since it 

lacks a critical proton accepting aspartate within its catalytic loop, a domain that also 

includes HopZ1a-acetylated threonine 177. Since decoys are expected to mimic the 

proteins targeted by pathogen effectors, we reasoned that HopZ1a acetylation on its 

bona fide target kinase was likely to happen on residues situated within the catalytic 

loop. MKK7 lacks threonine residues in this domain, but presents a lysine residue 

(K167). 

We introduced a point mutation on MKK7 substituting the residue K167 with 

arginine, generating the mutant MKK7K167R, and used it as substrate for HopZ1a 

acetylation in vitro (Figure 6). The MKK7K167R mutant derivative was not acetylated 

(Figure 6). These results suggest that K167 is the only, or at least the main, MKK7 

residue subject to HopZ1a acetylation. 

Lysine residue K167 is essential for MKK7 activity in vitro and in planta 

It has been previously shown that MKK7-dependent activation of the plant 

defense response requires MKK7 kinase activity (Zhang et al., 2007b). Recombinant 

MKK7 expressed in E. coli displays in vitro auto-phosphorylation activity, which is 

absent in the MKK7K74R mutant version of the protein, in which a lysine in the ATP 

binding site was changed to an arginine (Dai et al., 2006). To determine whether the 

K167 residue is necessary for MKK7 kinase activity, we carried out in vitro GST-

MKK7, GST-MKK7K74R, and GST-MKK7K167R autophosphorilation and trans 

phosphorylation assays using the generic substrate MBP (Myelin Basic Protein), 

(Figure 7A). Autophosphorylation of GST-MKK7 is abolished on the GST-MKK7K74R 

mutant, as expected. Interestingly, the K167R mutation reduces autophosphorylation of 

MKK7 by an 82%, and completely abolished its trans phosphorylation activity on MBP 

(Figure 7A) 
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To confirm that residue K167 is also essential for MKK7 activity in planta, we 

expressed MKK7-HA and its mutant derivative MKK7K167R-HA in N. benthamiana 

leaves, under the control of a constitutive promoter, by using Agrobacterium-mediated 

transient expression, and monitored cell death symptoms 40 hours after Agrobacterium 

Figure 7. Lysine 167 is important for MKK7 activity. (A) Recombinant GST-MKK7, GST-
MKK7K74R, GST-MKK7K167, or GST were incubated in kinase buffer containing 32P-γ-ATP. Samples 
were separated in a SDS-PAGE and proteins were transferred to a PVDF membrane. The membrane 
was exposed to an imaging plate for one day. Coomassie staining is shown as loading control. (B) 
Agrobacterium transient expression in N. benthamiana of MKK7-HA and MKK7K167R-HA. Pictures 
were taken two days post inoculation. 
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inoculation (Figure 7B). Transient overexpression of MKK7 resulted in the 

manifestation of macroscopic cell death in N. benthamiana tissues (Figure 7B), most 

likely as a result of its unregulated activation of the defense responses, as previously 

suggested by the failure to generate Arabidopsis transgenic plants expressing this kinase 

from a 35S promoter (Dai et al., 2006; Zhang et al., 2007b). Interestingly, MKK7K167R 

expression did not elicited macroscopic HR (Figure 7B). These results indicate that the 

K167 residue, targeted for acetylation by HopZ1a, is essential for MKK7 activity in 

planta. 

Acetylation of K167 by HopZ1a interferes with MKK7 kinase activity 

Since we have demonstrated that HopZ1a acetylates MKK7 in a lysine residue 

that is essential for MKK7 kinase activity in vitro, and for HR induction in planta, we 

set out to analyze whether such acetylation indeed affected MKK7 function.. To this 

purpose, we performed an in vitro acetylation assay using HopZ1a as the means for 

MKK7 acetylation, followed by a kinase assay on the HopZ1a-modified MKK7 

resulting from the previous experiment. We first incubated GST-MKK7 or GST-

MKK7K167R with either 6xHis-HopZ1a or 6xHis-HopZ1aC216A in an acetylation buffer 

containing non-radioactive acetyl-CoA as acetyl group donor. After this incubation, we 

added the components needed for kinase reaction, including the artificial substrate MBP 

and 32P-ATP to provide the necessary radioactive signal. The corresponding protein 

samples were separated by SDS-PAGE and transferred to a PVDF membrane, which 

was exposed to detect the autoradiographic signal. Data presented in Figure 8 indicates 

that the levels of phosphorylated MKK7 are reduced in those samples pre-treated with 

HopZ1a, when compared to those observed when MKK7 was pre-treated with the 

catalytic mutant HopZ1aC216A (Figure 8). This suggests that acetylation of MKK7 by 

HopZ1a, which is dependent on the integrity of HopZ1a catalytic site, impairs to some 

degree the ability of the kinase to autophosphorylate. Furthermore, since the levels of 

phosphorylated MKK7K167R remain unaffected, the inhibitory effect of HopZ1a seems 

to pivot on the modification of this particular MKK7 residue. More importantly, MKK7 

trans-phosphorylation activity on MBP is completely abolished in those samples pre-

treated with HopZ1a, but remains unaffected in those samples pre-treated with the 

catalytic mutant HopZ1aC216A, suggesting that acetylation of MKK7 by HopZ1a, which 

is dependent on the integrity of HopZ1a catalytic site, completely abrogates the ability 



Chapter 4: HopZ1a acetylates MKK7 to suppress plant defenses 

 136 

of the kinase to phosphorylate proteins in trans, and therefore is likely to block MKK7-

dependent signal transduction. 

 

 

 

 

	 	

Figure 7. Acetylation of MKK7 by HopZ1a interferes with kinase activity. Recombinant GST-
MKK7, or GST-MKK7K167, were incubated in acetylation buffer with either HopZ1a or HopZ1aC216. 
After 1 hour, components of kinase buffer were added, including 32P-γ-ATP. Samples were separated 
in a SDS-PAGE and proteins were transferred to a PVDF membrane. The membrane was exposed to 
an imaging plate for one day. 
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Discussion	

MKK7 is a key regulator of plant immunity 

The analysis of MKK7 interaction with HopZ1a, and the consequences of its 

modification by this effector, has allowed us to uncover a number of novel features to 

what seems to be an important regulator of plant defense. This work illustrates the 

application of bacterial effectors as tools to analyze the molecular mechanisms of their 

eukaryotic hosts. 

Mitogen-activated protein kinase (MAPK) cascades play a central role on the 

activation of plant immunity pathways. In general, pathogen perception initiates the 

signaling by the activation of MAP kinase kinase kinases (MEKKs), which activate 

downstream MAP kinase kinases (MKKs) by phosphorylation of specific serine and 

threonine residues. In turn, MKKs phosphorylate MAP kinases (MPKs) in specific 

threonine and tyrosine residues, changing their localization and/or activating 

downstream substrates, including transcription factors, to activate the expression of 

defense genes (Mundy et al., 2012; Meng et al., 2013).  

MKKs containing the consensus sequence S/TXDXXXS/T are autoactive and do 

not require upstream phosphorylation from MKKKs. MKK7 possesses tandem copies 

of this consensus sequence, with the second one being canonical. We demonstrate here 

that MKK7 is indeed autoactive, since purified MKK7 autophosphorylates in vitro in 

addition to trans phosphorylating the generic substrate MBP (Figure 7A), indicating 

that upstream phosphorylation by an MKKK is not required for MKK7 kinase activity. 

An exhaustive analysis of MKK7 phosphorylated residues by mass spectrometry will be 

required to determine which of the two predicted consensus sequences is functional in 

MKK7. In spite of its ability to autophosphorylate in vitro, our results show that 

overexpression of MKK7 is not enough to trigger PTI-related events in Arabidopsis, 

since transgenic plants expressing MKK7 after induction with dexamethasone do not 

accumulate callose deposits, nor activate downstream MPKs, in the absence of flg22-

induction (Figures 1 and 2). These results suggest that MKK7 is not active by default, 

but requires PAMP perception to activate defenses. In this regard, a number of works 

have shown negative regulation of plant defense responses by protein phosphatase type 

2C (PP2C), including the regulation of MAPK activity by dephosphorylation (Lee and 
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Ellis, 2007; Schweighofer et al., 2007; Anderson et al., 2011). Therefore it is 

conceivable that specific protein phosphatases may dephosphorylate MKK7 in the 

absence of PAMP perception, thus releasing MKK7 autoactivation and downstream 

signaling, and maintaining plant defenses down. Supporting this notion, transient 

overexpression of MKK7 in N. benthamiana induces a strong cell death phenotype, 

most likely associated to the unregulated activation of the defense responses (Figure 7). 

We can envision a situation in which resident protein phosphatases, unable to cope with 

the excess of MKK7 resulting from ectopic expression, cannot repress MKK7 

autoactivation and downstream signaling. Interestingly, a number of Arabidopsis 

protein phosphatases, some of them described to have regulatory roles, are associated to 

MKK7 in the interaction database STRING (Jensen et al., 2009), all of them potential 

candidates to participate in the proposed negative regulation of MKK7 activity. 

Furthermore, there are a number of conserved residues in MKK7, apart from those 

serine and threonines included in the activation loop, which are potential targets of 

regulation by dephosphorylation. All these data opens a potential new line of research 

regarding MKK7 and plant defense signaling that should be continued. 

Our results also show that overexpression of MKK7 enhances the ROS burst, but 

also MPK3/6 and 4/11 activation, and callose deposition (Figures 1 and 2). Interestingly 

two independent pathways upon PAMP perception have been described to regulate ROS 

burst and MPK activation (Ranf et al., 2011; Segonzac and Zipfel, 2011; Xu et al., 

2013). Therefore, data presented here suggest that MKK7 might be part of a regulatory 

hub linking these independent basal defense pathways, in yet another novel feature of 

this MKK. 

Flg22 perception induces phosphorylation of the RLCK BIK1, which becomes 

active and in turn phosphorylates the NADPH Oxidase RbohD to induce the ROS burst 

(Kadota et al., 2014; Li et al., 2014). Later on, other kinases such as the calcium-

dependent kinase CPK5 further phosphorylate RbohD, amplifying the ROS burst in 

subsequent waves. RbohD regulates callose deposition, since Arabidopsis rbohD 

mutant plants exhibit decreased callose deposits after flg22 treatment compared with 

wild type plants (Zhang et al., 2007a). Interestingly, RbohD and ROS burst have been 

shown to be essential for systemic acquired resistance (SAR) (El-Shetehy et al., 2015), 

a defense mechanism that is also signaled by MKK7, in one of its most characteristic 

phenotypes (Zhang et al., 2007b). Since our results indicate that MKK7 participates in 
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the positive regulation of the ROS burst, we propose that such regulation could be 

achieved by direct or indirect phosphorylation of NADPH oxidases, therefore triggering 

the SAR response. Such molecular mechanism might be the one behind MKK7 role in 

SAR signaling (Liu et al., 2007). The putative phosphorylation of RbohD and/or related 

proteins by MKK7 should be further investigated. 

In regards to MPK activation, two different MAPK modules activate MPKs in 

response to pathogen perception. The MEKK1 activates MKK1/2, which in turn 

phosphorylate MPK4, inducing expression of antimicrobial compounds and SA 

accumulation. The second module is comprised by MKK4/5, which activates MPK3 

and MPK6, leading to the expression of several defense genes and ethylene induction 

(Meng and Zhang, 2013). In this work, we demonstrate that MKK7 overexpression 

produces a faster activation of both MAPK modules, resulting in faster activation of 

MPK3, MPK6 and MPK4. This role of MKK7 is remarkable, and somehow 

unexpected, since it has been suggested that the induction of ROS burst, as described 

above, and MAPK activation are independent signaling pathways (Ranf et al., 2011; 

Segonzac and Zipfel, 2011; Xu et al., 2013). However, protein microarray data have 

previously showed that MKK7 potentially activates six MPKs, including MPK3, MPK6 

and MPK4 (Popescu et al., 2009). With our current data we cannot elucidate whether 

MKK7 activates these MPKs directly or indirectly, although the low intracellular levels 

of MKK7 (Zhang et al., 2007b), and its relative simplicity, makes us favor the latter. 

We also demonstrate in this work a role for MKK7 in the signaling of AvrRpt2-

dependent ETI (Figure 3). To date, such role has only been suggested by the induction 

of MKK7 expression as a result of expression of AvrRpt2 from infecting bacteria (Liu 

et al., 2007). In this sense, it is important to notice that the signaling pathway for 

AvrRpt2-triggered immunity, which is mediated by the NLR protein RPS2, is salicylic 

acid (SA)-dependent (Nawrath and Metraux, 1999), and that overexpression of MKK7 

induces SA accumulation (Zhang et al., 2007b), indicating a role of MKK7 on 

activation of SA-dependent pathways. It is also relevant that MKK7 does not participate 

in HopZ1a-triggered ETI, mediated by ZAR1 and SA-independent (Figure 3).  
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HopZ1a targets MKK7 

On the last years, a number of studies have shown that bacterial effectors can have 

multiple targets. An archetypal example of one such effector is the P. syringae effector 

HopF2. HopF2 ADP-ribosylates MKK5 to suppress PTI activation (Wang et al., 2010), 

while simultaneously acting upsteam of MKKs through its interaction with RLCK 

PBL1 and PRR co-receptor BAK1 (Zhou et al., 2014). Furthermore, HopF2 also 

inhibits AvrRpt2-triggered ETI by interacting with RIN4 (Wilton et al., 2010). Thus, the 

T3E HopF2 illustrates the fact that a single T3E can exert a single biochemical activity 

(kinase inhibition) on multiple host target proteins (MKK5, RIN4 and BAK1), thus 

interfering with different branches of defense signaling. HopF2 plant defense 

suppression abilities nicely shadow some of those described for HopZ1a, i.e interfering 

with PTI, a phenotype common to many T3Es, but also suppressing ETI, an interference 

not as often described for T3Es.  

HopZ1a is also an example of T3E with multiple targets reported to date. HopZ1a 

interacts with, and weakly acetylates, tubulin inducing microtubule disruption (Lee et 

al., 2012). However, considering the weak acetylation of tubulin achieved by HopZ1a in 

vitro, the authors suggested the existence of an indirect mechanism for HopZ1a-

mediated microtubule disruption, such as interaction with MKKs. In any case, chemical 

disruption by the microtubule inhibitor oryzalin slightly increases DC3000 growth but 

has no effect on the growth of a T3SS deficient mutant (ΔhrcC), indicating that 

microtubule disruption does not affect PTI (Lee et al., 2012). Another reported target 

for HopZ1a are the JAZ transcriptional repressors (Jiang et al., 2013). HopZ1a 

acetylates Arabidopsis JAZ6, directly or indirectly promoting its COI-dependent 

degradation, thus inducing the expression of JA and complementing the virulence 

function of DC3000 JA-mimic coronatine (Jiang et al., 2013). The inhibition of JAZ 

proteins proposed, while suggesting a mechanistic explanation for previously described 

HopZ1a triggered JA activation (Macho et al., 2010a), could only account for HopZ1a 

PTI suppression abilities assuming an absolutely antagonistic effect of JA and SA-

dependent defenses, which remains a debatable topic. More relevantly, the 

pseudokinase ZED1 was recently described to act as a molecular decoy for HopZ1a 

action, since HopZ1a acetylation of ZED1 in specific threonines results in ZAR1-

mediated activation of HopZ1a-triggered immunity. Since molecular decoys are 

supposed to mimic archetypal plant targets to detect the modifying action of different 
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T3Es, it makes more sense for the plant target of HopZ1a to be a kinase of some kind, 

rather than tubulin or the structurally unrelated JAZ proteins.. The finding of MKK7 as 

a target for HopZ1a nicely fits with the molecular decoy presented by the plant defense 

system to detect its action. Nonetheless, we cannot rule out that HopZ1a, as it is the case 

with HopF2, might have several targets including such as those already described (like 

JAZ regulators), or others pending to be identified such as previously discussed 

calcium-dependent kinases (CPKs) acting on RbohD. In any case, interference with 

MKK7 provides by itself a fully convincing explanation for the PTI, ETI and SAR 

suppression activities of HopZ1a (Macho et al., 2010a; Lewis et al., 2014). Since, as 

discussed above, MKK7 is a positive regulator of PTI, ETI and SAR, inactivation of 

this enzyme by acetylation would suppress all mentioned defense responses. 

The acetyltransferase activity of HopZ1a, as occur in many other members of the 

YopJ superfamily, is essential for its function. Mass spectrometry analysis showed that 

acetylation of HopZ1a in two particular serine residues is required for the binding of its 

co-factor IP6 (Ma et al., 2015). However, these serine residues are not required for trans 

acetylation and acetylation of a lysine residue is important, although not essential, for its 

function (Ma et al., 2015; Rufian et al., 2015). 

Acetylation on the serine residues of HopZ1a could perhaps affect the binding 

capability to its targets. We have shown that interaction between HopZ1a and MKK7 is 

enhanced by HopZ1a K289R mutation (Figure 5). Acetylation of MKK7 is expected to 

be a highly dynamic process, and the HopZ1a-MKK7 complex highly transient. Our 

results indicate that mutation K289R somehow prolongs the life of this complex. 

Interestingly, the catalytic mutant HopZ1aC216A is unable to interact with MKK7. In this 

regard, Wang et al. (2010) showed that in vivo, the interaction between MKK5 and 

HopF2 was impaired by either R71A or D175A catalytic mutations. These results 

indicate that the interaction between HopZ1a and MKK7 is specific and requires 

acetylation of HopZ1a. 

 

The lysine 167 is a novel-described residue targeted by an effector 

Serine/threonine (S/T) kinases are enzymes that phosphorylates either serine or 

threonine residues. In contrast, tyrosine (Y) kinases phosphorylate tyrosines, whereas 

mixed function kinases phosphorylates both serine/threonine and tyrosine 
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simultaneously (Nelson, 2008). Based on the comparison of PKA (cAMP-dependent 

protein kinase) and IRK (Insulin Receptor protein-tyrosine Kinase) structures, Taylor et 

al. (Taylor et al., 1996) described three residues as critical to differentiate S/T kinases 

from Y kinases: a threonine at the end of the activation loop in S/T kinases (T203 in 

MKK7), replaced with a proline in Y kinases, a lysine in the catalytic loop of S/T 

kinases (K167 in MKK7) corresponding to an arginine in Y kinases, and a threonine in 

the phosphorylation site of the activation loop in S/T kinases, which corresponds to a 

tyrosine in Y kinases. We have found that lysine 167, which is conserved among all 

Arabidopsis MKKs, is important for MKK7 function (Figure 8). Substitution of this 

lysine by an arginine reduces MKK7 kinase activity by an 80%. Is important to notice 

that arginine is a positively charged residue, as is lysine, and that the named residue is 

present in this position on tyrosine kinases. Lost of function in the MKK7K167R could 

indicate a specific role of this lysine in S/T kinases. However, the specific role of lysine 

167 in MKK7 function remains unclear. We can speculate two possible roles for this 

residue based on information available for orthologs S/T kinases. PKA K168 forms a 

hydrogen bond to, and neutralizes, the negative charge of the γ-phosphate of ATP, 

stabilizing this phosphate during the transfer (Cheek et al., 2005), and also H-bonds to 

the substrate, triggering the closure of the active site (Nelson, 2008). Also, interaction of 

PKA K168 with the aspartic acid residue D166 seems to be crucial for the correct 

placement of the substrate into the catalytic loop (Montenegro et al., 2012). Similarly, 

MKK7 K167 could stabilize the γ-phosphate of the ATP bound on K74, and interact 

with D165 to allow substrate positioning. HopZ1a acetylates the MKK7 lysine 167, 

removing its positive charge. This change on the electric state of this residue could 

abolish the attraction to the negative γ-phosphate of ATP and to the aspartic acid 165, 

affecting its kinase activity. Vibrio parahemeolyticus effector VopA, belonging to the 

YopJ / HopZ family, acetylates lysine 172 on human MKK6 (Trosky et al., 2007). 

However, lysine 172 does not correspond with the conserved lysine in the catalytic 

loop. Indeed, MKK6 K172 is located before the HRD characteristic motif, and is not 

conserved among S/T kinaes, while MKK7 K167 localizes two residues after HRD. The 

MKK6 K172 aligns with the lysine 160 on MKK7. A mutation changing the lysine 160 

to an arginine has no effect on MKK7 kinase activity (data not shown), indicating a 

different role for each of these lysine residues.	
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The aim of this thesis was the study of different aspects of the plant-pathogen 

interaction using the model the bacterial pathogen Pseudomonas syringae. To address 

this point, we have used different experimental and methodological approaches, from 

cellular to molecular biology, from genetics to biochemistry. At the beginning of this 

work, the use of cellular biology techniques and fluorescent proteins allowed us to get 

new insights in the colonization and infection process of P. syringae within the plant. 

The phenotypic heterogeneity observed by confocal microscopy on the colonization and 

responses of plant tissues inoculated with a mixed inoculum of isogenic strains differing 

on their virulence, lead us to investigate the source of this variation within the bacterial 

population. Using transcriptional fusions to GFP as a reporter for the expression of 

different elements of the T3SS, and single-cell analysis techniques, we established that 

expression of HrpL, the transcriptional activator of the T3SS genes, and that of 

HopAB1, one of its effectors, is bistable within the plant. Although we cannot rule out 

additional sources of variation, these findings provide a plausible explanation for the 

phenotypic diversity observed within infected plant tissues. HopAB1 was the fist 

effector for which a virulence activity was demonstrated, postulated to be suppression 

of HopF1-triggered immunity (Jackson et al., 1999). Orthologs of HopAB1 in other 

P. syringae pathovars have been described to suppress and also trigger defense response 

in different plant species (Jackson et al., 2002; de Torres et al., 2006). For example, 

HopAB2 from P. syringae pv. tomato DC3000, acts as an E3 ubiquitin ligase activity 

that promotes degradation of the tomato Fen kinase and suppresses ETI responses 

(Rosebrock et al., 2007). Previous results from our laboratory have shown that 

constitutive expression of HopAB1 in Pph 1448a from a plasmid from either a strong 

(PnptII) or a medium-to-low promoter (PlacZ) does not complement the attenuation of 

growth within the plant caused by a ΔhopAB1 mutation. In fact, expression of HopAB1 

from these promoters attenuated bacterial growth within the plant to a larger degree that 

its mutation (Macho et al., 2012). However, plasmid expression of HopAB1 from its 

native promoter did not cause growth attenuation and complemented growth of a 

ΔhopAB1 mutant. Constitutive expression of the effector could alter secretion hierarchy 

or promote unspecific activities of the effector within the plant cell, negatively affecting 

bacterial growth. However, since Agrobacterium-mediated transient expression of 

HopAB1 in the bean plants of the same cultivar elicits cell death (Vinatzer et al., 2006), 

its also possible that an excess of HopAB1 translocation within infected tissues could 

lead to defense activation and growth attenuation of wild type bacteria. Thus, bistability 
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on the expression and translocation of HopAB1 could be important to maintain the 

overall translocated protein levels below the threshold for ETI activation..  

The second part of this thesis focuses on another effector that can also activate 

ETI, through indirect recognition by the NLR protein ZAR1, and suppresses ETI 

activated against other effectors. In this part of the work, we provide a mechanism for 

HopZ1a-mediated suppression of PTI, ETI and SAR, through the identification of 

MKK7 as a target for HopZ1a-mediated acetylation. Unpublished data from our 

laboratory indicate that P. syringae pv. syringae strain 7B40, which contains a hopZ1a 

gene, can suppress HopZ1a-triggered ETI response through an unknown mechanism 

(Rufian et al., in preparation-b). Taking into account that HopZ1a suppresses SAR, 

bistability of the T3SS genes in this strain could provide an interesting mechanism for 

colonization of distal tissue. Thus, it is tempting to speculate what would happen if 

bistability did indeed take place in this strain. If this were the case, a bacterium 

expressing the effector hopZ1a would be detected by the plant cell, which in response 

would trigger ETI, causing local cell death and activation of SAR that would, limit its 

proliferation. However, suppression of SAR by HopZ1a could pave the way for bacteria 

not-expressing the T3SS to colonize distal tissue, in a cooperative manner similar to that 

described for Salmonella typhimurium subpopulations generated through bistable 

expression of one of its T3SS the SPI-1. Interestingly, expression of the SPI-1 T3SS and 

expression of the flagellum is counter-regulated in Salmonella, also similar to the 

downregulation of motility reported HrpL (Ortiz-Martin et al., 2010a). Following this 

model, a bacteria subpopulation not expressing the T3SS could move to distal tissue and 

colonize distal tissues where activation of SAR would have been suppressed by the ON-

population whose growth had been restricted through HopZ1a-triggered local defenses. 

In this case, the T3SS ON subpopulation would have an altruistic behavior since its 

virulence activity would not benefit itself but the OFF-population, as that demonstrated 

for the subpopulations of Salmonella generated through SPI1 bistability.  

Finally, plant defense suppression has been extensively shown as an essential 

process for the pathogen to proliferate and colonize the plant tissue. Effectors alter a 

number of plant processes to carry out such suppression, and use a wide array of 

biochemical activities to do so. Thus, effectors are frequently used as molecular probes 

to deeper our understanding of the plant immune system, as well as to gain insight into 

how bacteria generate disease. And our results on the role of MKK7 in plant defense, 
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revealed during the characterization of HopZ1a activity, are proof of this notion. We 

have demonstrated the existence of phenotypic heterogeneity on the expression of 

bacterial virulence factors. However, we cannot rule out that the heterogeneity found in 

the response of the plant to P. syringae could also originate from phenotypic 

heterogeneity within neighboring plant cells. This heterogeneity would have a different 

origin, since plant cells are distributed in tissues, communicated and specialized. One 

example of phenotypic heterogeneity at this side of the interaction is found during 

callose deposition experiments. Is frequent to find strong differences on callose 

desposition triggered by the peptide flg22 within the same leaf. Indeed, the edges of the 

leaves present less callose deposition than the rest of the tissue (Zhou et al., 2012). 

Furthermore, the ER bodies, structures composed of cisternae derived from the 

endoplasmic reticulum, containing antimicrobial compounds, present a seemingly 

random distribution within the leaf (Nakano et al., 2014; Rufian et al., in preparation-

a). Moreover, Arabidopsis has been shown to undergo epigenetic changes during 

P.  syringae infection, and these changes have been shown to affect the activation of 

defenses, and do not take place in the plant cells of the infected tissue (Yu et al., 2013). 

Although highly speculative, clues provide a tantalizing scenario full of possibilities to 

study the presence of such heterogeneity, its origin and, most importantly, its 

implication in plant resistance. 
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1. The use of mixed infections of P. syringae strains differently labeled with 
fluorescent proteins allows following bacterial colonization of the plant 
apoplast, revealing information such as dynamics of colony establishment or 
development, or interaction and interferences between different strains, not 
accessible through the use of individual infections. 

2. Close proximity to wild type bacteria is required to complement growth 
within the apoplast of a non-pathogenic derivative, lacking a functional type 
III secretion system.  

3. The effector-triggered immunity induced by strain RW60, visualized under a 
confocal microscope as accumulation of autofluorescent phenolic 
compounds on the cell outline, can restrict growth of closely located wild 
type bacteria, but can also be suppressed by them, giving rise to a highly 
heterogeneous scenario. 

4. The expression of hrpL, encoding the type III secretion system 
transcriptional activator,, as well as that of effector gene hopAB1 is bistable 
both in planta and within inducing laboratory medium, providing a 
mechanistic explanation for the phenotypic heterogeneity observed by 
microscopy during bacterial colonization of the plant apoplast. 

5. Bacteria sorted on the basis of differences on the expression of effector gene 
hopAB1 displays differences in virulence. 

6. The HrpV/HrpG double negative regulatory loop acts as a bistable switch 
required for turning the heterogeneous expression of the type III secretion 
genes into bistability, in a process that requires the transcriptional activator 
HrpL, and is enhanced through a positive feedback loop mediated by the 
pilus protein HrpA. 

7. The autoacetylation of residue K289 is important but not essential for 
HopZ1a suppression of effector-triggered immunity and systemic acquired 
resistance. 

8. The HopZ1aK289R mutant induces a strong defense response in both 
Arabidopsis and Nicotiana benthamiana plants. 

9. The plant MAP Kinase Kinase 7 (MKK7) is a positive regulator of the plant 
immune system, implicated in the activation of pattern-triggered immunity, 
effector-triggered immunity and systemic acquired resistance. 

10. HopZ1a suppresses accumulation of PR1 and growth restriction triggered by 
the overexpression of MKK7. 

11. HopZ1a interacts with MKK7 and acetylates its lysine 167, which is 
essential for MKK7 kinase activity in vitro and for defense response 
activation in planta. 
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Durante la interacción planta-patógeno, se producen multitud de eventos moleculares 

que determinarán el resultado de la interacción a favor de la enfermedad o la resistencia 

de la planta. Una completa comprensión de los eventos de evasión, disparo y supresión 

de defensas implicados en esta interacción requieren de un estudio multidisciplinar 

enfocado desde diferentes puntos de vista, y ese es el objetivo general de esta tesis.  

La presente tesis doctoral se estructura alrededor de dos objetivos centrales: (I) Conocer 

a nivel celular el comportamiento individual y poblacional de la bacteria patógena 

Pseudomonas syringae durante el proceso de colonización e interacción de con el 

húesped; (II) Caracterización molecular de la supresión de defensa mediada por el 

efector HopZ1a. Ambos objetivos se desarrollan en los cuatro capítulos que componen 

la tesis doctoral.  

 

Introducción 

Pseudomonas syringae es una bacteria patógena de plantas que ha sido ampliamente 

investigada desde 1980. Las estirpes de P. syringae han sido clasificadas como el 

patógeno bacteriano más importante tanto por su relevancia científica como modelo, 

como por su creciente relevancia económica (Mansfield et al., 2012). P. syringae es una 

bacteria Gram-negativa que coloniza la parte aérea de la planta, incluyendo hojas y 

frutos. Esta bacteria tiene un estilo de vida dual, con una fase inicial epifita en la 

superficie de la planta, y una fase endofítica en el interior de la planta, donde establece 

una población bacteriana con una interacción con el huésped de tipo hemibiotrofo. Este 

patógeno coloniza los espacios intercelulares o apoplasto, donde alcanza su población 

más alta y este proceso no requiere la muerte del tejido colonizado. Sin embargo, 

conforme el proceso infectivo avanza, bien debido a la acción de determinantes de 

virulencia del patógeno o la respuesta de defensa desencadenada frente a ellos en la 

planta, el tejido infectado acaba muriendo y dando lugar a manchas necróticas visibles. 

Este modo de patogénesis difiere de patógenos estrictamente biotrofos, que no producen 

la muerte de la célula huésped durante la infección, y de patógenos necrotrofos, que 

necesitan matar a la célula huésped para obtener nutrientes y colonizar. 

P. syringae es un complejo de especies capaz de causar enfermedad conjuntamente en 

una amplia gama de huéspedes, incluidos cultivos económicamente importantes, plantas 

leñosas y malas hierbas, como la planta modelo Arabidopsis thaliana. No obstante, las 
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plantas son generalmente resistentes a la mayoría de las estirpes, y la capacidad de una 

estirpe dada a causar enfermedad en un huésped es la excepción. Este fenómeno se 

llama rango de huésped, y en base a ello, el complejo P. syringae se divide en más de 

50 patovares (Young, 2010). Además, las estirpes que pertenecen al mismo patovar 

pueden a su vez diferir en capacidad de causar enfermendad en diferentes variedades o 

ecotipos. Sobre la base de estas diferencias, los patovares se pueden subdividir en razas. 

En los últimos años, la obtención y anotación de la secuencia completa de los genomas 

de las tres cepas modelo pertenecientes a diferentes patovares: pv. tomato DC3000 

(Buell et al., 2003), pv. phaseolicola 1448A (Joardar et al., 2005), y pv. syringae B728a 

(Feil et al., 2005) ha proporcionado una gran cantidad de información y herramientas 

que ha representado un notable salto adelante en nuestro conocimiento de este campo. 

P. syringae pv. tomato es el agente causal de la mancha bacteriana del tomate. En 1986, 

Cuppels generó la cepa DC3000, un derivado resistente a la rifampicina de una cepa 

silvestre, que fue utilizado para estudios de auxotrofía y patogenicidad. Algunos años 

más tarde, Whalen y colaboradores (1991) demostró la capacidad de DC3000 para 

causar enfermedad en la planta modelo Arabidopsis thaliana. La capacidad de DC3000 

para infectar tanto tomate como plantas de Arabidopsis atrajo el interés de los 

científicos del campo por esta cepa para su uso como modelo de estudio en el campo de 

la interacción planta-patógenos, y su análisis ha generado conocimiento en el campo de 

la ptaogénesis y la defensa en plantas relevantes para todo tipo de patógenos, 

incluyendo virus, hongos y oomicetos.  

DC3000 es una epífita débil (Boller, 2009), en comparación con cepas de otros 

patovares como B728a. Mientras B728a puede mantener niveles poblacionales altos en 

la superficie de la hoja durante días, la mayoría de la población de DC3000 muere en 

menos de 48h. Por lo tanto, DC3000 necesita entrar en el apoplasto para sobrevivir a 

más largo plazo y proliferar. Uno de los mecanismos de esta cepa para entrar en el 

tejido huésped es la coronatina, una toxina que imita la hormona vegetal metil-

jasmonato (Weiler et al., 1994). Tras la detección de la entrada de bacterias al 

apoplasto, la planta induce el cierre de los estomas para frenar dicha entrada e impedir 

la colonización bacteriana. Sin embargo, la coronatina activa las vías celulares que dan 

lugar a la reapertura de los estomas, permitiendo así la entrada al apoplasto a un mayor 

número de bacterias, suficientes para causar enfermedad en un huésped sensible 

(Melotto et al., 2008). 
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P. syringae pv. phaseolicola es la bacteria responsable de la enfermedad de la grasa de 

la judía (Phaseolus vulgaris). Esta enfermedad se caracteriza por el desarrollo de 

lesiones acuosas en las hojas y vainas de judía, rodeadas de halos cloríticos 

(Burkholder, 1926), y esta muy extendida a nivel mundial. Puesto que este patógeno 

pueden colonizar y sobrevivir en las semillas secas, los campos infectados por P. 

syringae pv. phaseolicola suelen ser destruidos para evitar su dispersión. Una de las 

principales estrategias de control para evitar este tipo de plagas es la rotación de 

cultivares resistentes. Según el tipo de interacción de resistencia/ susceptibilidad que se 

produce entre ocho importantes cultivares de judía y 175 cepas representativas de P. 

syringae pv. phaseolicola, este patovar puede dividirse en nueve razas (Taylor et al., 

1996). Las estirpes que pertenecen a la raza 6, incluyendo la estirpe modelo 1448A, son 

capaces de producir enfermedad en todos los cultivares analizados. 

Pseudomonas syringae pv. syringae es el grupo más heterogéneo entre los patovares  de 

P. syringae. Incluye estirpes que producen enfermedad en cultivos tan dispares como la 

lila, judía, peral, o mango, entre otros. Una de las características compartidas por 

muchas de las cepas de este grupo, incluyendo B728a, es la producción de la toxina 

siringolina A (Ramel et al, 2009). Esta toxina actúa en el interior de la célula vegetal 

como un inhibidor del proteasoma, lo que conlleva a la supresión de las respuestas de 

defensa de la planta, permitiendo así la proliferación bacteriana (Schellenberg et al, 

2010;. Kolodziejel et al., 2011). Además, la siringolina A facilita el movimiento 

sistémico del patógeno desde el sitio de infección primario a través del xilema (Misas-

Villamil et al., 2012). 

Muchas estirpes de P. syringae poseen toxinas que contribuyen a su virulencia. Pero 

todas ellas necesitan un sistema de secreción tipo III (T3SS) para ser patogénica. El 

T3SS es una compleja nanomáquina que exporta proteínas bacterianas directamente al 

citosol de la célula huésped. Los componentes del T3SS se codifican por un grupo de 

genes llamado hrp (hypersensitive and pathogenesis) y están muy conservados entre 

bacterias Gram-negativas portadoras de este sistema. Los genes que codifican las 

proteínas conservadas entre patógenos de animales y plantas se renombraron como hrc 

(hrp conserved). Los genes hrp/hrc se agrupan en islas de patogenicidad ubicadas en el 

genoma. El T3SS no se expresa constitutivamente, sino que se induce bajo condiciones 

de estrés, tales como medio mínimo, o el apoplasto de la planta. El principal regulador 

del sistema es HrpL, un miembro de la familia ECF de factores sigma alternativos que 
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activa la expresión de genes con una secuencia consenso (hrp box) en sus promotores 

(Xiao y Hutcheson 1994; Fouts et al., 2002). El ensamblaje del T3SS es un proceso 

complejo regulado por retroalimentación positivos y negativos (Ortiz-Martin et al, 

2010a;.. Ortiz Martin et al, 2010b) en el que incluso proteínas estructurales, como 

HrpA, puede participar, controlando directa o indirectamente la expresión de HrpL 

(Preston et al., 1998). Las proteínas estructurales forman una jeringuilla compuesta por 

un anillo interior a la membrana, un anillo de membrana externa y un pilus a traves del 

cual las proteínas son secretadas. Además de las proteínas reguladoras y estructurales, 

hay otras proteínas que se pueden considerar parte del sistema, incluyendo harpins, 

chaperonas y efectores. Los harpins son proteínas secretadas, pero no translocadas a la 

célula huésped. Estas proteínas tienen un papel auxiliar en la penetración del pilus en la 

pared celular de la planta y en la translocación de los efectores (Kvitko et al., 2007). Las 

chaperonas son pequeñas proteínas esenciales para el plegamiento apropiado de sus 

dianas, las proteínas translocadas o efectores. Las chaperonas se unen a los efectores en 

el interior del citoplasma bacteriano, protegiéndolos frente a la agregación y la 

degradación, y dirigiéndolos al complejo de la aguja. Finalmente, los efectores son las 

proteínas translocados al citoplasma de la célula de la planta, donde modifican 

diferentes procesos de la misma para favorecer la proliferación bacteriana. 

Las plantas son organismos sésiles, y como tales, se encuentran expuestas a toda clase 

de estreses tanto bióticos como abióticos. Cuando un organismo patógeno entra en 

contacto con la planta, se produce un reconocimiento de patrones moleculares asociados 

al patógeno (PAMPs), que da lugar a una respuesta de defensa llamada PTI (Pattern-

triggered immunity). Esta respuesta es suficiente para frenar el proceso de infección en 

la mayoría de los casos. Sin embargo, el patógeno puede llegar a superar esta respuesta 

de defensa mediante mecanismos de virulencia. En bacterias Gram-negativas, como P. 

syringae, el T3SS es el principal mecanismo de virulencia que permite a la bacteria 

suprimir la respuesta de defensa de la planta mediante la translocación de efectores tipo 

III (T3E). La planta, a su vez, es capaz de detectar a estos efectores, disparando una 

respuesta de defensa llamada ETI (effector-triggered immunity) que da lugar a una 

muerte celular programada conocida como respuesta hipersensible (HR). Sin embargo, 

la ETI también puede ser suprimida por efectores del patógeno, permitiendo el proceso 

de infección. Este proceso de activación/ supresión de defensas fue propuesto por Jones 

y Dangl (2006) y su resultante dará lugar a una interacción compatible (infección) o 
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incompatible (resistencia). Sin embargo, en la naturaleza la interacción planta-patógeno 

se vuelve más complicada, ya que las respuestas de defensa de la planta frente a 

diferentes patógenos puede llegar a ser antagónica. Esta situación se da con la 

activación de respuestas de defensa dependientes de ácido salicílico (SA), típica frente a 

organismos biotrofos o hemibiotrofos. La ruta de defensa dependiente de SA tiene una 

señalización antagónica en algunos puntos a la ruta disparada por ácido jasmónico (JA), 

esencial en la respuesta de defensa frente a patógenos necrotrofos y herbívoros. 

Además, el SA activa una respuesta sistémica adquirida en la planta (SAR) que 

restringe el crecimiento en tejidos distales. Bacterias asociadas a plantas, también 

pueden activar una respuesta sistémica independiente de SA, llamado resistencia 

sistémica inducida (ISR). 

Incluso en el contexto de una infección simple de P. syringae, se producen cambios en 

el genoma que pueden dar lugar a variantes isogénicas dentro de la planta. Un ejemplo 

claro de este tipo de cambios se produce en la estirpe 1302A de P. syringae pv. 

phaseolicola. Esta estirpe dispara ETI dependiente del efector HopAR1 en plantas de 

judía resistentes. En estas condiciones, una subpoblación bacteriana escinde una isla 

genómica (PPHGI-1) en la que se encuentra hopAR1, apagando su expresión. Esta 

nueva subpoblación consigue así evitar el disparo de ETI de la planta (Godfrey et al., 

2011). 

 

Capítulo I: Las dinámicas de crecimiento de poblaciones heterogéneas de P. 

syringae en la planta revelan una diversidad de interacciones. 

En el laboratorio, mediante el uso de infecciones mixtas, se ha comprobado que una 

estirpe patógena puede complementar el crecimiento de otra no patógena, mientras que 

la respuesta de defensa disparada por una estirpe produce un efecto dominante negativo 

sobre el crecimiento de otra (Klement and Lovrekovick, 1961; Omer and Wood, 1969). 

Sin embargo, estas interferencias entre estirpes pueden evitarse utilizando la dosis de 

inóculo y el método de inoculación adecuada en cada caso (Macho et al., 2007). En el 

primer capítulo de esta tesis, hemos marcado con distintas proteínas fluorescentes 

estirpes isogénicas con diferencias en la virulencia, para poder visualizarlas dentro de la 

planta mediante microscopía confocal en el contexto de infecciones mixtas. Tras 

comprobar la mejor combinación de proteínas fluorescentes para visualizar bacterias en 

el interior de la planta (eYFP y eCFP), y que dichas proteínas no tienen efecto en la 
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patogénesis bacteriana, hemos comprobado el impacto de la dosis de inoculación por 

infiltración en la formación de colonias mixtas. Altas dosis de inóculo (5x107 cfu/ml) 

permiten la formación de colonias mixtas desde el inicio de la infección. Inoculaciones 

con dosis más bajas permiten evitar la formación de estas colonias. Sin embargo, el 

crecimiento en tamaño de la micro-colonia puede hacer que dos micro-colonias que en 

origen eran independientes, puedan llegar a contactar. Este tipo de contacto también se 

puede evitar disminuyendo la dosis hasta 5x104 cfu/ml). Para comprobar la interferencia 

por complementación de una estirpe silvestre sobre un mutante incapaz de expresar el 

sistema de secreción, inoculamos ambas estirpes a diferentes dosis. Mediante 

microscopía confocal, observamos que la estirpe deficiente en el sistema de secreción 

solo puede crecer cuando se encuentra pegada a la estirpe silvestre. Inoculaciones a 

altas dosis permiten la proliferación del mutante al mismo nivel que el silvestre, 

mientras que disminuyendo la dosis se evita por completo la complementación. 

Además, encontramos que la interferencia por complementación puede ayudar a una 

estirpe no patógena a colonizar tejido distal, acompañada por una estirpe silvestre. 

Cuando inoculamos una estirpe que produce ETI en la planta (avirulenta), observamos 

un área de autofluorescencia en las células vegetales que rodean la micro-colonia 

bacteriana. Esta autofluorescencia es debida a la liberación de compuestos 

antimicrobianos como resultado de la respuesta de defensa. Al inocular una estirpe 

silvestre con una que dispara ETI, colonias correspondientes a la estirpe silvestre ven 

atenuado su crecimiento por la respuesta disparada por la otra estirpe. Estos datos 

concuerdan con los resultados de crecimiento publicados anteriormente (Macho et al., 

2007). Sin embargo, también observamos situaciones en las que las colonias silvestres 

son capaces de suprimir la respuesta disparada por la estirpe avirulenta. Esto es debido a 

que la estirpe silvestre posee el efector capaz de suprimir esta respuesta de defensa. 

Además observamos colonias de la estirpe avirulenta que, sin tener ninguna colonia 

silvestre cerca, no disparan respuesta de defensa, y colonias silvestres con gran 

diferencia en sus tamaños. Esta heterogeneidad en la interacción puede ser explicada 

por diferencias en el estadio de la infección en el que se encuentre cada micro-colonia. 

Otra explicación posible es que existan diferencias de expresión entre bacterias en 

componentes esenciales para la patogénesis, como es el sistema de secreción. 
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Capítulo II: Heterogeneidad fenotípica y bistabilidad en el sistema de secreción 

tipo III de P. syringae. 

Las poblaciones bacterianas han sido consideradas durante mucho tiempo clonales, y 

como tales, genética y fenotípicamente idénticas. Sin embargo, trabajos realizados 

durante las últimas décadas han demostrado que en condiciones de estrés, como las que 

se encuentra una bacteria fitopatógena en su hospedador, se pueden formar distintas 

subpoblaciones bacterianas, fenómeno conocido como bistabilidad. Estos cambios se 

han asociado en bacterias patógenas de animales a modificaciones epigenéticas que 

causan heterogeneidad fenotípica reversible sin alterar el genotipo (Casadesús y Low, 

2013). Pseudomonas syringae es una bacteria fitopatógena, cuya virulencia es 

dependiente del T3SS. En el segundo capítulo de la tesis, se ha analizado la expresión 

de tres genes del T3SS: un gen que codifica para una proteína estructural (hrcU), un 

regulador general del sistema (hrpL) y un efector (hopAB1). Para llevar a cabo este 

análisis, hemos realizado fusiones transcripcionales a gfp en el genoma de P. syringae 

pv. phaseolicola 1448A bajo el control de los promotores previamente mencionados. 

Posteriormente, hemos analizado la expresión de GFP mediante microscopía de 

fluorescencia y citomentría de flujo. Hemos demostrado que la expresión de los tres 

genes es heterogénea cuando la bacteria crece en medio mínimo (HIM), y esta 

heterogeneidad se convierte en bistabilidad para el caso del efector hopAB1 durante la 

fase de crecimiento exponencial. Además, demostramos que la bistabilidad es un 

proceso reversible, ya las poblaciones aparecen y desaparecen dependiendo de las fases 

de crecimiento del cultivo. Esta diferencia en los niveles de expresión tiene un impacto 

en la planta, ya que la separación de poblaciones bacterianas basada en la expresión de 

hopAB1 y la posterior inoculación en planta demuestra que dichas diferencias en 

expresión tienen un efecto en la virulencia de la bacteria. En el interior de la planta, la 

bistabilidad de hopAB1 se intensifica, y la expresión del regulador hrpL se vuelve 

bistable.  

 

Capítulo III: La auto-acetilación del residuo K289 no es esencial para la supresión 

de defensas mediada por HopZ1a. 

La importancia de los efectores durante la interacción planta-patógeno hizo que nos 

interesáramos por la caracterización de la actividad de HopZ1a, un efector perteneciente 

a la superfamilia YopJ, conservados en muchas especies de bacterias Gram-negativas. 
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En nuestro laboratorio, describimos la supresión de defensas ETI y SAR (Macho et al., 

2010), y más recientemente, se ha descrito que dicho efector también suprime PTI 

(Lewis et al., 2014). HopZ1a presenta actividad acetiltransferasa (Lee et a., 2012), 

dependiente de la autoacetilación en su lisina 289. En el tercer capítulo, realizamos un 

análisis fenotípico de cómo una mutación puntual que afecte a la autoacetilación del 

efector, puede afectar a su virulencia. En primer lugar, realizamos un mutante puntual 

K289R en un plásmido que expresa constitutivamente el efector. La expresión de la 

versión silvestre de HopZ1a desde P. syringae pv. tomato DC3000 suprime la 

acumulación local de PR1 (Pathogeneis-related 1), un marcador de defensas 

dependientes de SA. Cuando expresamos desde DC3000 la versión mutante K289R del 

efector, observamos una disminución en la supresión de acumulación de PR1, indicando 

que el residuo 289 es importante para la actividad del efector. Sin embargo, esta 

supresión no se pierde por completo, como sí ocurre en el mutante catalítico C216A. 

Posteriormente, para analizar el impacto de la autoacetilación en la lisina 289 sobre la 

actividad de supresión de ETI de HopZ1a, realizamos ensayos de COI (Cancelled-Out 

Index) en inoculaciones mixtas con HopZ1a y sus respectivos mutantes, junto con el 

efector AvrRpt2. Como resultado, vemos que mientras que tanto HopZ1a como el 

mutante K289R pueden suprimir la ETI disparada por AvrRpt2, si bien la supresión de 

defensa es más efectiva en la versión silvestre del efector. En el caso de la actividad de 

HopZ1a en la supresión de la activación de respuestas sistémicas, la mutación K289R 

no presenta ningún efecto en los experimentos realizados. Además de analizar el 

impacto de la autoacetilación en la actividad de virulencia del efector, decidimos 

estudiar el efecto de la mutación K289R en la actividad de avirulencia del efector (el 

disparo de defensa en la planta). Para ello, hicimos ensayos de producción de HR en 

Arabidopsis, observando que tanto la versión silvestre de HopZ1a como el mutante 

K289R producen HR. Esta respuesta de defensa es cuantificable por crecimiento 

bacteriano mediante ensayos de índice de competitividad (CI), y también ocurre en la 

planta modelo Nicotiana benthamiana cuando el efector es expresado transitoriamente. 

Una de las características de la respuesta de defensa ETI es la capacidad de frenar los 

síntomas de la infección bacteriana. DC3000 produce amarilleo y necrosis en las hojas, 

y afecta al tamaño de la planta cuando es inoculado por spray. Sin embargo, cuando 

DC3000 expresa HopZ1a, la respuesta de defensa frente al efector protege a la planta de 

la bacteria, y evita la producción de síntomas. En las estas condiciones, el mutante 

afectado en la lisina 289 presenta la misma capacidad de disparar que la versión 
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silvestre, evitando la aparición de los síntomas típicos de DC3000. Por tanto, 

concluimos que la lisina 289 es importante pero no esencial para la actividad de 

HopZ1a. Para comprobar si hay sitios alternativos de acetilación en HopZ1a, realizamos 

un ensayo de acetilación in vitro seguido de un western blot usando un anticuerpo anti 

lisinas acetiladas. Como resultado, observamos que en ausencia de la lisina 289, aun se 

produce autoacetilación en el efector, lo que podría explicar los fenotipos intermedios 

observados. 

 

Capítulo IV: El efector bacteriano HopZ1a acetila MKK7 para suprimir 

respuestas de defensa de la planta. 

El hecho de que HopZ1a suprima respuestas de defensa a distintos niveles (PTI, ETI y 

SAR), hace que el efector resulte atractivo como herramienta para el estudio de los 

sistemas de defensa de la planta. Hasta la fecha, se han encontrado cuatro dianas 

moleculares para HopZ1a (Zhou et al., 2010; Lee at al., 2012; Jiang et al., 2013 y Lewis 

et al., 2013), pero ninguna de ellas es un enlace directo con la actividad de supresión de 

defensas del efector. Una de estas dianas, ZED1, es una pseudoquinasa cuya única 

función es la detección de la actividad de HopZ1a para activar una respuesta de defensa 

(Lewis et al., 2013), lo que nos hizo pensar que el efector puede estar actuando sobre 

proteínas quinasas con efecto en defensa. Además, otros efectores de la familia 

YopJ/HopZ acetilan MAPK quinasas en sus hospedadores. En Arabidopsis existen 10 

MAPK quinasas, una de las cuales, MKK7, está implicada en la activación de defensas 

basales y SAR (Zhang et al., 2007). Este fenotipo nos llevó a proponer a MKK7 como 

candidata a diana molecular mediante la cual HopZ1a suprime defensas. Hemos 

demostrado que la sobreexpresión de MKK7 tiene un efecto sobre la activación de 

defensas frente a DC3000, inhibiendo el crecimiento bacteriano. Además, el tratamiento 

con flagelina (flg22) en plantas que sobreexpresan MKK7 incrementa el disparo de 

especies reactivas de oxígeno (ROS), la activación de MPK, y la deposición de calosa. 

Estos resultados indican que MKK7 es un regulador positivo de PTI. Además, hemos 

comprobado que en plantas en las que MKK7 se encuentra silenciada, la respuesta ETI 

frente a AvrRpt2 se ve comprometida. Curiosamente, en estas mismas plantas, la 

respuesta frente a HopZ1a es igual que en plantas silvestres. Esto indica que MKK7 es 

esencial para la ruta de defensa disparada por AvrRpt2, pero no para la de HopZ1a. 

Ensayos de pull-down in vitro, o co-inmunoprecipitación y BiFC in planta, demuestran 
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que HopZ1a y MKK7 interaccionan. Para comprobar si HopZ1a acetila a MKK7, 

realizamos un ensayo de acetilación in vitro usando como donador de grupo acetilo 14C-

Acetil-CoA. Tras el revelado, observamos una leve banda en MKK7 cuando se 

encuentra con HopZ1a, pero no cuando se encuentra con el mutante catalítico C216A. 

Para identificar los posibles residuos acetilados por HopZ1a, tomamos como referencia 

la secuencia de ZED1, donde HopZ1a acetila una treonina. En el alineamiento de los 

sitios activos de ZED1 y MKK7, la treonina acetilada por HopZ1a en ZED1 coincide 

con una lisina en MKK7, la 167. Un mutante K167R ya no es acetilado en presencia de 

HopZ1a, por lo que la lisina 167 es el residuo acetilado por el efector. Para comprobar 

la importancia de este residuo en la actividad de la proteína, llevamos a cabo un ensayo 

de fosforilación in vitro usando como donador de grupos fosfato 32P-ATP. MKK7 se 

autofosforila y es capaz de trans-fosforilar al sustrato genérico MBP (Myelin Basic 

Protein). Sin embargo, el mutante K167R presenta hasta un 80% menos de 

autofosforilación y pierde por completo la capacidad de trans-fosforilar MBP. Con el 

objetivo de comprobar el efecto de la mutación K167R en la planta, expresamos 

transitoriamente MKK7 y MKK7 K167R en Nicotiana benthamiana. Mientras que la 

expresión transitoria de la proteína silvestre da lugar a la aparición de muerte celular 

debido a la activación de defensas, la expresión de MKK7 K167R no produce ningún 

fenotipo. Por último, para comprobar si la acetilación en el residuo K167 tiene el mismo 

efecto que la mutación, llevamos a cabo un experimento acoplado de acetilación in 

vitro, seguido de fosforilación. Observamos que en presencia de HopZ1a, la acetilación 

de MKK7 disminuye, comparada con la acetilación que presenta en la mezcla con el 

mutante catalítico C216A. Por tanto, concluimos que MKK7 es un componente esencial 

en la respuesta de defensa, es la diana molecular de HopZ1a, y que su acetilación altera 

su función. 
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