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Resumen de la tesis doctoral  

Si bien durante el siglo XIX la mayoría de los avances relativos a la organización de la corteza cerebral se 

centraban en cuestiones anatómicas, durante el siglo pasado las investigaciones se centraron en los aspectos 

funcionales. La morfología cortical ha sido objeto de intenso estudio desde los extraordinarios trabajos de 

Ramón y Cajal, pero la corteza cerebral también es en efecto la región responsable de la mayoría de las 

funciones cognitivas y de procesamiento de orden superior (no en vano, constituye la mayor parte del 

volumen total del cerebro humano). De ahí que, desde el comienzo de la electroencefalografía en 1930, 

una gran parte de los esfuerzos e investigaciones se han centrado en la corteza cerebral y del estudio de la 

actividad generada. 

Gracias a estos avances de la investigación en fisiología, se sabe que la corteza cerebral exhibe una actividad 

espontánea continua, presente aun estando en estado de reposo y hasta en los períodos de sueño. A esta 

actividad espontánea de baja frecuencia se la conoce como fluctuaciones cerebrales espontáneas y, hasta 

no hace mucho tiempo, incluso se consideraba “ruido neuronal”, i.e. actividad que no representaba 

información relevante o que sea proveniente de los registros, derivado de procesos fisiológicos de la 

respiración o actividad cardíaca. Sin embargo, durante las últimas décadas se ha podido confirmar que 

estas fluctuaciones espontáneas de la actividad de baja frecuencia son relevantes para las funciones 

computacionales que van desde la exploración de experiencias sensoriales previas hasta la formación de 

nuevas memorias.  

Se ha mostrado que estas actividades rítmicas lentas son generadas en la corteza cerebral y existen estudios 

que apuntan que se originan como resultado de la conectividad recurrente de la red cortical neuronal 

(Timofeev & Steriade, 1996). Entre estas actividades rítmicas se encuentran las oscilaciones lentas que se 

observan durante el llamado sueño de onda lenta, durante el estado de anestesia inducido por determinadas 

sustancias, y también en registros electrofisiológicos realizados en cortes de corteza in vitro. Las tres 

situaciones tienen en común que la red cortical se halla desconectada de las entradas de estímulos externos. 

Aunque se ha mostrado que las ondas lentas son generadas por la red cortical, se da una activación de la 

red tálamo-cortical reclutando a muchas áreas cerebrales tanto durante el sueño de onda lenta como bajo 

los efectos de la anestesia (Steriade et al., 1993d; McCormick et al., 2003; Sakata and Harris, 2009; Ruiz-

Mejias et al., 2011; Stroh et al., 2013). Estudios recientes postulan que las ondas lentas constituyen la 

actividad por defecto (default) de la red cortical (Sanchez-Vives & Mattia, 2014) y que al estudiar la 

generación y propagación de las oscilaciones lentas en detalle, se puede extraer información relevante, 

sobre cómo funciona la red cortical bajo condiciones controladas o también conocer mejor sus alteraciones 

que se dan en diferentes patologías. 

En este sentido, por ejemplo los resultados en rodajas (slices) corticales in vitro han aportado importantes 

avances sobre las propiedades intrínsecas y sinápticas de varios tipos neuronales y diferentes áreas 

corticales. En concreto, el registro en slices permite el control de la composición iónica de la solución del 

líquido cerebroespinal artificial que las contiene y una buena visualización de los electrodos dentro del 

tejido. Se hizo hincapié en (Chagnac-Amitai y Connors, 1989) que las pequeñas regiones del neocórtex 

podrían mantener la actividad espontánea, pero no se comprobó hasta que Sánchez-Vives y McCormick 

(2000) demostraron en registros in vitro la presencia de oscilaciones lentas estables en cortes corticales 

mantenidos en una solución de líquido cerebroespinal artificial con concentraciones iónicas similares a las 

existentes en el cerebro in situ.  
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La oscilación lenta, registrada durante la etapa de ondas lentas del sueño y bajo anestesia, se presenta en 

forma de un evento estable y sincrónico de la red cortical neuronal tal como se ha podido determinar 

mediante estudios de registro intra- y extracelular tanto in vivo como in vitro. Constituye un acontecimiento 

espontáneo durante el cual las neuronas de la corteza cerebral alternan de manera coherente entre 

intervalos de ausencia de actividad (estados hiperpolarizados o Down states) e intervalos donde suelen 

producirse descargas de potenciales de acción (estados despolarizados o Up states). La actividad generada 

por las redes corticales durante los estados despolarizados o Up states muestra una similitud aparente con 

aquella que se observa en el sujeto despierto, y por lo tanto sugiere que durante estos estados se llevan a 

cabo procesamientos de información similares a aquellos que tienen lugar durante el estado de vigilia.  

Durante el intervalo de hiperpolarización o Down state prácticamente todas las neuronas corticales están 

profundamente hiperpolarizadas y permanecen inactivas por unos pocos cientos de milisegundos hasta 

cambiar al Up state, momento en el que el potencial de membrana sobrepasa los niveles de umbral, todo el 

sistema tálamo-cortical muestra una intensa actividad sináptica, y las neuronas disparan con una frecuencia 

incluso más alta que en el estado de vigilia (Steriade et al., 2001).  

La propagación de las ondas de actividad dentro de las redes corticales es un fenómeno que se puede 

observar bajo muchas condiciones diferentes, desde la fuerte estimulación sensorial en diversas áreas 

sensoriales primarias tales como la corteza barril (Ferezou et al 2006; Petersen et al 2003), la corteza visual 

(Xu et al 2007), y la corteza motora (Rubino et al 2006), así como durante el sueño de ondas lentas 

(Chauvette et al 2010) y la anestesia inducida con actividad de onda lenta (Steriade et al 1993a; 1993b; 

1993c; Takagaki et al 2008).  

Aunque este fenómeno sea tan extendido y exista un fuerte interés en la comprensión de los mecanismos 

subyacentes a la propagación de ondas en la corteza cerebral, el papel fisiológico de las ondas lentas sigue 

siendo poco claro. Tampoco se conocen bien los mecanismos que las generan, ni tampoco el impacto que 

tiene esta lenta alternancia de periodos activos y silentes sobre los mismos circuitos neuronales. Para hallar 

esta información, con frecuencia es necesario emplear herramientas complejas como por ejemplo los 

estudios realizados en la rata anestesiada que se basaron en imágenes de colorantes sensibles al voltaje 

(voltage sensitive dye - VSD) y que lograron demostrar que las ondas de actividad tienden a propagarse en 

direcciones específicas, mostrando incluso la activación modal cruzada (Takagaki et. Al 2008). En relación 

a estos resultados, los estudios de electroencefalografía realizados con sujetos humanos revelaron un origen 

y una dirección preferente de propagación de la onda. Este resultado se repetía en los distintos sujetos 

(Massimini et al 2004; Riedner et al., 2007). En cambio, las imágenes VSD realizados en la corteza barril de 

ratones despiertos mostraron unas direcciones de propagación de las ondas espontáneas variables de un 

ensayo a otro (Ferezou et al. 2006). 

La presente Tesis Doctoral está motivada por el interés de estudiar la estructura espacio-temporal de la 

onda lenta espontánea presente en la corteza somato-sensorial de la rata anestesiada y también en el cómo 

y en qué medida se propaga la actividad por la red cortical. 

Para ello, con el fin de tratar de comprender mejor los patrones de propagación que muestran las ondas 

lentas, es necesario estudiar 

(1) cómo se propagan las oscilaciones lentas (presentes bajo el efecto de ciertos anestésicos) a lo largo de 

una zona cortical pequeña, y  
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(2) cómo correlacionan las oscilaciones de los registros extra- e intracelulares.  

Frente a los registros in vitro, los experimentos in vivo tienen la ventaja de contar con una red cortical 

completa con todas las conexiones aferentes intactas y con la actividad espontánea de fondo. Por lo 

general, estos experimentos se centran en las respuestas celulares a diferentes estímulos sensoriales y con 

animales despiertos, pero éstos últimos muestran una actividad desincronizada en vez de la oscilación lenta 

de la actividad eléctrica del cerebro. Por ello, para estudiar las oscilaciones lentas in vivo se realizan registros 

durante la etapa de sueño o se emplean ciertos anestésicos como son la ketamina, el uretano, fentanil-

isoflurano o halotano. 

Para el trabajo de esta tesis se ha utilizado una matriz con siete electrodos extracelulares para los registros 

extracelulares y los he combinado con un registro intracelular simultáneo. Esta matriz de siete electrodos 

extracelulares se ha posicionado en la corteza somato-sensorial de ratas anestesiadas con uretano y 

ketamina/xilazina. La elección de este tipo de anestesia se debe a que se ha establecido como un modelo 

para el sueño de ondas lentas (Fontanini et al 2003; Sharma et al 2010), ya que conduce a oscilaciones de 

baja frecuencia estables y regulares de la actividad neuronal cortical. Con el fin de obtener datos 

correlacionados y para abarcar una porción muy pequeña (microscópica) de tejido cortical, el electrodo 

intracelular y la matriz multi-electrodo fueron colocados muy cerca el uno del otro (> 1 mm). 

De la principal motivación de esta tesis, que es estudiar la dinámica de la red cortical a través de su actividad 

oscilatoria lenta emergente, se derivan otros objetivos específicos, los cuales son: 

(1) estudiar el comportamiento estereotípico de las transiciones espontáneas entre los intervalos de Up y 

Down presentes en la corteza somato-sensorial de ratas anestesiadas; 

(2) desarrollar herramientas analíticas adecuadas que faciliten el estudio de la propagación espacio-temporal 

de las ondas de actividad, tanto a escala micro como mesoscópica, durante la etapa de ondas lentas. 

El trabajo de tesis realizado comprende en gran parte el desarrollo de estas herramientas analíticas 

complejas y que sirven para estudiar las transiciones espontáneas entre los estados Up y Down, y, además, 

del patrón de propagación de estas oscilaciones lentas.   

En concreto, se presenta en esta tesis 

a) la definición y la implementación de una metodología que permite detectar las oscilaciones lentas en 

registros intracelulares, y  

b) un segundo procedimiento analítico para analizar registros extracelulares múltiples y para medir su 

correlación, y, finalmente para analizar las propiedades de propagación de esta actividad cortical. 

Dichas metodologías analíticas se desarrollaron empleando los datos procedentes de registros intra- y 

extracelulares obtenidos en experimentos realizados in vivo, y también analizando los datos facilitados por 

los colaboradores de esta tesis. Los datos registrados presentan estados de activación neuronal (Up states) 

que se alternan con estados silentes (Down states). Es frecuente que, con el fin de estudiar las propiedades 

sinápticas y de integración de las células corticales que se dan durante las oscilaciones lentas del potencial 

de membrana, se requiera separar y cuantificar los Up y Down States que se observen en datos de registros 

intracelulares procedentes de diferentes áreas corticales in vivo (animales anestesiados) y también en 

preparaciones in vitro (rodajas). Se requiere habitualmente de un procesamiento cuantitativo detallado 
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mediante la caracterización computerizada de los Up y Down states para analizar más específicamente los 

datos registrados.  

De acuerdo a los objetivos previamente descritos, el trabajo de tesis se ha dividido en dos partes, donde la 

primera parte se ha centrado en la definición, la formalización, la ejecución y finalmente en el análisis de 

un método que permite la detección y separación de los estados Up y Down de los registros intracelulares. 

En la segunda parte de la tesis, se describe la metodología experimental para realizar registros intra- y 

extracelulares in vivo y simultáneos utilizando una matriz multi-electrodo, y el tratamiento analítico al que 

se ha sometido los datos electrofisiológicos obtenidos para estudiar la estructura espacio-temporal de la 

oscilación lenta dentro de una pequeña porción de tejido cortical.  

Detección y separación de los estados Up y Down 

En los registros intracelulares se requiere con frecuencia detectar, separar y cuantificar los estados Up y 

Down, a fin de responder a las preguntas sobre las propiedades integradoras o sinápticas de las células 

corticales que muestran fluctuaciones lentas de potencial de membrana. Para realizar el procesamiento de 

registros intracelulares donde los potenciales de membrana muestran la oscilación lenta con Up y Down 

states, algunos métodos analizan los datos de una manera manual, mientras que otros implementan 

procedimientos automatizados básicos. 

Uno de los métodos más ampliamente utilizados se basa en el análisis de la distribución bimodal del 

potencial de membrana. En este histograma, la proporción de superficie bajo cada uno de los picos 

representa la proporción de tiempo transcurrido en cada estado, y por consiguiente la moda de cada pico 

es el potencial de membrana preferente en cada estado. Si bien esto es cierto para los registros muy estables 

y por tanto la identificación y agrupación de los estados Up y Down es relativamente sencilla, los datos 

suelen verse muy afectados por las fluctuaciones debidas a las condiciones eléctricas y fisiológicas. 

De acuerdo a esta propiedad, esta metodología permite la realización de determinadas medidas con el 

histograma bifásico. Una de las operaciones básicas es aquella que permite detectar las transiciones de un 

estado a otro al determinar el potencial de umbral que delimita ambos estados. Para ello se calculan las 

modas de las distribuciones y ya sea el potencial asociado con la barra más baja entre ellos, o el punto 

medio entre los picos si los separa un amplio valle (Wilson y Kawaguchi, 1996). Las transiciones se pueden 

detectar con más fiabilidad mediante el establecimiento de dos umbrales, por ejemplo, a un cuarto y a tres 

cuartos de la distancia entre los picos (Anderson et al., 2000).  

A pesar de la simplicidad y la popularidad de los métodos basados en histograma, a la hora de aplicarlos 

presentan algunas desventajas que son: 

1. Los registros intracelulares del potencial de membrana deben ser estables durante la ventana de tiempo 

utilizada para calcular el histograma. Sin embargo, este escenario ideal se complica frecuentemente por el 

desvío del potencial de membrana de los valores basales debido a los cambios en el sellado del electrodo, 

artefactos de movimiento (por ejemplo, los movimientos respiratorios, latidos del corazón) o de otros 

factores, en particular cuando deben considerarse grandes períodos de tiempo. Estos cambios tienden a 

desdibujar la distribución bimodal de los estados Up y Down, por lo que es difícil separar los dos estados 

mediante un simple método de umbralización. 
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2. A pesar de que el umbral se puede determinar de forma automática, hay una cierta tendencia a realizar 

los ajustes manualmente, es decir se hace de acuerdo a la evaluación por un experto, incluso cuando se 

trata de registros muy estables y el comportamiento bimodal sea bien diferenciado. No obstante, un 

método informatizado fiable, que sirva para identificar los picos en el histograma de potenciales de 

membrana procedentes de registros que no se hayan obtenido en condiciones ideales, puede ser difícil de 

encontrar. 

Son una cantidad cada vez mayor los datos electrofisiológicos "no estándares", es decir procedentes de 

animales anestesiados, registros en cortes corticales, o de registros de larga duración que requieren métodos 

automatizados fiables para la identificación y caracterización de los estados Up y Down. El método 

desarrollado y descrito en esta tesis, denominado MAUDS (de acuerdo a las iniciales del inglés Moving 

Averages Up and Down Separation) es automático y sencillo de usar, capaz de identificar y separar de forma 

fiable los dos estados de potencial de membrana alternantes, característicos del sueño de ondas lentas y 

bajo determinada anestesia incluso en situaciones en las que otros métodos fallan debido a artefactos o 

interferencias. Además, el método ha sido diseñado para que pueda ser usado tanto off- como online, es 

decir en tiempo real durante la sesión de registro, de modo que los estados Up y Down se pueden visualizar 

superpuestos con la señal original, y permite que el diseño del experimento pueda incluir eventos 

desencadenantes (trigger) en función de la inicialización o finalización de los estados Up. También permite 

obtener información inmediata sobre las estadísticas de las transiciones Up a Down frente a los períodos 

en los que se evalúa el comportamiento de toda la red. 

Para identificar los estados Up y Down en registros intracelulares realizados en preparaciones tanto in vitro 

como in vivo de diferentes áreas de la corteza cerebral (corteza visual de gato anestesiado y de hurón, corteza 

cerebral prefrontal de hurón y corteza somatosensorial de rata) se dividieron en fragmentos de segundos. 

Con el fin de identificar los estados alternantes se requiere i) determinar con fiabilidad los intervalos de 

potencial de membrana despolarizados o hiperpolarizados, y ii) identificar con precisión los tiempos en 

los que comienza y finaliza cada intervalo. 

La separación de los Up y Down states se basa en el cruzamiento de dos medias móviles, una metodología 

que es usada con frecuencia en la detección de tendencias en el procesamiento de datos financieros. Las 

transiciones entre los estados alternantes del potencial de membrana durante las oscilaciones lentas pueden 

ser anticipadas mediante el estudio de las dinámicas instantáneas. Cuando se invierte la tendencia del estado 

hiperpolarizado al despolarizado o viceversa en la señal electrofisiológica, esta transición se detecta 

mediante el cruzamiento de medias móviles exponenciales (EMA exponential moving average) con tamaños 

de ventana diferentes cada una. El modelo MAUDS ha sido definido y analizado usando EMA, que se 

basa en los valores previos del potencial de membrana para el cálculo de las medias móviles. Se realiza un 

procesamiento adicional alrededor de los puntos de cruzamiento de las medias móviles que determina con 

más precisión el inicio y la finalización de cada estado. Las dos implementaciones de las medias móviles 

para la separación de estados Up y Down fueron integradas en el software Spike2 usando el lenguaje script 

integrado en Spike2 en forma de un programa ensamblador que se puede ejecutar en el secuenciador 

incluido en el sistema. Estos programas y las implementaciones en MATLAB están disponibles como 

código abierto, y se pueden descargar desde un sitio web (http://www.geb.uma.es/mauds) junto a un 

tutorial, ejemplos, y un foro para los usuarios MAUDS.  

En registros estándares, la comparación de MAUDS frente al método habitual basado en histogramas que 

determinan la distribución bimodal del potencial de membrana determinando el índice de coincidencia ha 

mostrado que MAUDS es capaz de identificar las transiciones entre los estados Up y Down.  

http://www.geb.uma.es/mauds
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Se ha comparado también la robustez del método MAUDS frente a los métodos de representación en 

histogramas de la distribución de los potenciales de membrana en registros que presentaban desviaciones 

de la base de los potenciales de membrana, husos de sueño y otros tipos de interferencias, como son el 

ruido eléctrico y artefactos debido a los movimientos del propio animal en los datos electrofisiológicos 

procedentes de registros de animales anestesiados (pulso cardíaco superpuesto en los datos de potencial 

de membrana registrados, movimientos respiratorios etc.). Aunque el objetivo del que registra datos 

intracelulares sea tomar las medidas experimentales necesarias para evitar todos estos artefactos, con 

frecuencia resulta difícil lograrlo del todo. 

En la separación offline de los estados Up y Down en registros en los que se produce una desviación del 

potencial de membrana y en los que aparecen ciertos artefactos particulares, los resultados obtenidos han 

demostrado que, MAUDS logra detectar intervalos despolarizados o Up states, incluso en los intervalos 

dónde los histogramas de potencial de membrana fallan. 

En el caso de la detección online de los estados alternantes de Up y Down durante los registros intracelulares, 

se ha integrado el método MAUDS en el software de adquisición de datos Spike2 en una versión 

ensamblador. La señal registrada se ha utilizado para disparar diferentes eventos de estímulo en un 

momento dado con una latencia de 1 ms después de detectar la transición para así determinar la robustez 

del método. Así, la versión ensamblador se ha usado para realizar una caracterización y para disparar pulsos 

de estímulos en tiempo real en más de 40 registros intracelulares con oscilaciones lentas de la corteza de 

animales anestesiados in vivo (visual, somatosensorial) y en in vitro (visual y prefrontal). MAUDS ha logrado 

identificar las transiciones entre los estados Up y Down in vivo, incluso en aquellos intervalos de Up states 

que se quedaron por debajo del umbral. En los registros in vitro en corteza, identificados los  Up states,  se 

ha podido estimular con pulsos hiperpolarizantes, y se ha promediado sobre el Up state para conocer el 

tiempo de ascenso del mismo estado.  

La definición del método de identificación de los estados Up y Down basado en medias móviles así como 

los resultados de su implementación y validación han sido publicados con el título  Robust off- and online 

separation of intracellularly recorded Up and Down cortical states en la revista digital PLoS ONE por Seamari et. al 

en 2007. Actualmente, este artículo ha sido referenciado en 16 artículos científicos relacionados con el área 

temática. 

Estudio de la estructura espacio-temporal de la oscilación lenta 

El segundo bloque de esta tesis trata de la realización de registros simultáneos de señales intra- y 

extracelulares utilizando una matriz multi-electrodo y del tratamiento analítico de estos datos. En concreto, 

se definen y se describen los métodos analíticos empleados para estudiar la estructura espacio-temporal de 

la oscilación lenta que se produce dentro de una pequeña porción de tejido cortical detectada por la matriz 

extracelular y usando la señal intracelular como referencia. 

Los registros de datos electrofisiológicos in vivo se han realizado bajo los efectos de una combinación de 

fármacos anestésicos y analgésicos, en concreto una mezcla de uretano, con efecto de larga duración, y 

ketamina-xilazina, que además de mantener el nivel de la anestesia y la analgesia, induce oscilaciones lentas. 

Toda la metodología experimental, es decir la preparación, la cirugía y los registros in vivo, se adecuaron a 

las normativas vigentes y todos los animales utilizados en los registros electrofisiológicos se mantuvieron 

anestesiados durante toda la duración de los experimentos. 
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La matriz multi-electrodo se realizó con siete micro-electrodos de fibra de platino-tungsteno individuales 

y recubiertos de vidrio. Se colocó esta matriz multi-electrodo sobre la superficie del cerebro y se tuvo 

especial cuidado en disponer las puntas de los electrodos en el mismo plano horizontal para así tratar de 

obtener los registros en la medida de lo posible desde una única capa cortical. Los registros intracelulares 

se realizaron con pipetas de vidrio de borosilicato. Durante cada sesión de registro se ha registrado y 

guardado la actividad espontánea de la señal intracelular junto con la actividad multi-unidad, además de 

los potenciales de campo locales usando filtros de paso bajo. 

La matriz de siete electrodos ha permitido el registro extracelular de la actividad de múltiples unidades y 

se puede asumir que dentro de la misma capa cortical. Los electrodos de la matriz estaban dispuestos en 

un mismo plano y colocados con una distancia de 400 µm una de la otra, de forma que se hallaban tres en 

la primera fila, una en el centro, y otras tres en la tercera fila. Además, la matriz se ha posicionado muy 

cerca del electrodo intracelular, lo cual ha permitido asumir que la red cortical que “ve” la matriz 

extracelular sea la misma que la que afecta a la neurona registrada intracelularmente en el mismo instante, 

e incluso sea probable que forme parte de ella. La actividad neuronal registrada con el electrodo 

intracelular, es decir, los tiempos en los que se produce la alternancia entre los estados Up y Down, 

correlacionan en una amplia ventana de tiempo con los intervalos silentes y activos de los registros multi-

unidad y de los potenciales de campo locales. 

Con el fin de ampliar la metodología, en este bloque del trabajo de tesis, en vez del procesamiento con el 

método MAUDS, la identificación y posterior separación de los estados Up y Down se ha realizado 

siguiendo el método basado en la determinación de histogramas del potencial de membrana bimodal. Se 

ha realizado un extenso análisis describiendo la metodología que se ha seguido. Se han podido detectar las 

transiciones entre los estados Up y Down, que fueron aislados para así poder alinear los trenes de disparo 

empleando una función de densidad y métodos no paramétricos reduciendo la variabilidad del tiempo de 

latencia de las transiciones entre los estados Up y Down.  

El alineamiento de los trenes de disparo ha facilitado el análisis de la estructura espacio-temporal de las 

transiciones entre los estados Up y Down. Para ello, se han representado los histogramas de los periodos 

de tiempo de las transiciones del estado Up a Down y Down a Up. Estos mismos intervalos de tiempo se 

localizaron en la actividad multi-unidad registrada con la matriz multi-electrodo. A su vez, se ha 

determinado que las transiciones de estado de la actividad multi-unidad registrada por la matriz extracelular 

sucedían en el mismo instante de tiempo identificado previamente. Se ha observado una gran variabilidad 

en el tiempo de inicio de las transiciones de estado permitiendo inferir que la actividad multi-unidad 

registrada por un electrodo concreto se iniciaba antes que en los electrodos adyacentes. Se representaron 

gráficamente estos desfases del tiempo de inicio de la transición al estado despolarizado en función de la 

posición relativa de los electrodos, se logra inferir una propagación de la actividad que sigue el patrón de 

una onda por la matriz.  

Esta onda de propagación de la actividad muestra una variabilidad considerable respecto a su patrón 

espacio-temporal y aunque se haya podido inferir un único punto de origen y dirección para cada onda, 

no se ha podido confirmar que esto sea cierto para cada sesión de registro, ya que esto podría haberse 

debido por ejemplo a la longitud de cada una de las sesiones de registro extraídas para el análisis. 

En las investigaciones realizadas por Sanchez-Vives y McCormick en 2000, se posicionaron electrodos 

perpendicularmente a la pía, mostrando que la actividad tendía a comenzar en la capa 5 de la corteza 

cerebral, seguido de una breve latencia por la actividad en la capa 6 para llegar finalmente a la capa 2/3, 
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sustentando con ello la observación de que las oscilaciones lentas tengan su origen en las capas corticales 

infragranulares. En la presente tesis se ha querido responder a la pregunta de cómo viajan las oscilaciones 

a lo largo de la corteza. Los estudios realizados por Massimini et al. (2004) demostraron mediante la 

combinación de registros electroencefalográficos y de resonancia magnética durante la etapa de sueño de 

los sujetos que la gran mayoría de los ciclos de oscilación lenta podría caracterizarse por un origen y un 

trayecto continuo de propagación, como sería el caso de una onda que se propague a lo largo de la corteza 

cerebral. De acuerdo con esto, cada oscilación lenta tiene un sitio de origen y dirección de propagación 

definidos, que varían de un ciclo al siguiente. Además, demostraron que la oscilación lenta podría originarse 

en casi cualquier área del cráneo y se propaga en todas las direcciones, aunque prevalecieron más 

frecuentemente ciertos orígenes y direcciones de propagación que otros. Los resultados de mediciones 

más recientes basadas en imágenes de calcio provenientes de roedores mostraron una propagación 

predominante de ventral hacía dorsal (Stroh et al 2013). No obstante, sigue faltando una descripción 

detallada a nivel de micro- y mesoescala. 

Los resultados de esta tesis mostraron que hubo una considerable variabilidad en la mayoría de los registros 

con respecto a la estructura espacio-temporal de las ondas de actividad, tanto en cuanto a origen como en 

cuanto a dirección para todas las muestras de animales incluidos en el estudio. 

No obstante, aunque se ha observado esta variabilidad, en muchos casos, se ha podido determinar una 

dirección preferente de propagación de la actividad durante los períodos de registro. Así, en una sesión de 

registro, con una duración de hasta 12 minutos, el frente de onda ha permanecido relativamente constante, 

lo que sugiere que las ondas de actividad observadas durante el sueño de ondas lentas podrían propagarse 

de manera estereotípica a través de la capa cortical. Esto sería también válido para las ondas de actividad 

registradas bajo los efectos de la anestesia de ketamina / xilazina, es decir que las ondas de oscilaciones 

lentas podrían viajar de una manera estereotípica a lo largo del tejido cortical. Tales patrones estereotípicos 

de actividad podrían estar relacionados con los procesos que conducen a fortalecer las sinapsis activas de 

forma selectiva, lo cual enlaza la actividad de ondas lentas a fenómenos relacionados con el aprendizaje 

como es la consolidación de la memoria durante el sueño de ondas lentas (Marshall et al., 2006). 

Estos últimos experimentos y resultados han formado parte de la publicación en la revista Journal of 

Neurophysiology con el el título Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex 

por Fucke et al. en 2011, siendo la doctoranda co-autora. Este artículo en la actualidad ha sido citado en 

seis otras publicaciones científicas.  

Además, los experimentos y resultados obtenidos han sido publicados y difundidos en seis conferencias 

nacionales e internacionales. 
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1 Introduction 

While during the 19th century most advances concerning the organization of the cerebral cortex were on 

the anatomical level, during the 20th the functional aspects were investigated. Thanks to these advances, it 

has been found out that the cerebral cortex is constantly active. The human brain has about 100 billion 

(1011) neurons and 100 trillion (1014) connections (synapses) between them, forming a complex network 

able to process in a parallel and in an organized manner inputs from all the different senses. It also sends 

information to the body, thereby controlling its reactions. The neocortex, the phylogenetically more recent 

part of the brain, is involved in detailed sensory perception, in performing rapid sequences of fine 

movements, and in learning and intelligent behavior.  

In the rat, a single pyramidal cell, the most characteristic cell type of the neocortex, receives synaptic inputs 

from about 10,000 neurons (Larkman, 1991), each of which fires action potentials at an average rate 

between 1 and 10 per second in vivo (Abeles et al., 1990). As a result, there is a considerable amount of 

ongoing activity in the network, which is known to influence the response characteristics of individual 

neurons (Arieli et al., 1996; Azouz and Gray, 1999; Tsodyks et al., 1999). Understanding the organization 

of the cerebral cortex and how each neuron integrates its synaptic input, and what are the time constants 

involved is crucial for the comprehension of the functioning of the network (Abeles, 1982; König et al., 

1996; Diesmann et al., 1999). 

This introduction tries to give a very brief insight into the organization of the cerebral cortex and 

introduces a part of the dynamics of brain activity known as cortical oscillations and revises the slow 

oscillations. 

1.1 Organization of the cerebral cortex 

The cerebral cortex of mammals is a laminated sheet of grey matter covering the entire outer surface of 

the telencephalic brain vesicles. The discovery of the highly organized structure of the cerebral cortex took 

its origin from observation by Francesco Gennari in 1782, an Italian student of medicine, of a delicate pale 

line (lineola albidior) running in a surface-parallel direction in the middle of the grey cortex in the medial 

surface of the occipital lobe of the brain. This line was observed and illustrated by other authors of the 

period (Vicq d’Azyr 1786; Sommering 1788). Indeed, the characteristic white band in the fourth layer of 

the primary visual cortex is easily observable with the naked eye and still is referred to as the band of Gennari. 

The basic feature of the cortical structure has been described thanks to the introduction of cell-staining 

methods, first by the natural dye, carmine (Berlin, 1858), when the general arrangement of the cortical cells 

in six layers (as opposed to a nuclear collection of cells) was recognized. Although the observation of 

distinct cell types (pyramidal, stellate, fusiform, and granular) was already made, it was not before the 

introduction of Golgi’s (1873) reazione nera (silver chromate precipitation) that the real shape of the cortical 

nerve cells was fully appreciated (Golgi, 1883). 

As published for the first time by Brodmann (1908, 1912, and 1914) the cerebral cortex has multiple 

distinguishable areas. The cytoarchitectonic map elaborated by Brodmann (Fig. 1.1) distinguished more 

than 50 areas and the basic six-layered structure of the neocortex gradually was accepted. The general 

structure of the neocortex is demonstrated most elegantly and clearly in a synthetic diagram by Braak 
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(1984) with a comparison of the lamination nomenclature in the now-traditional sequence from outside 

(pial surface) to inside. 

 

 

Figure 1.1: Cytoarchitectonic Map by Brodmann. Lateral and medial view of human cerebral hemisphere. 
More than 50 cytoarchitectonic areas have been distinguished. The depicted areas are now identified as 
Brodman areas. (From Arbib et al., 1998). 

 

1.1.1 Horizontal layers of the cerebral cortex 

The individual layers have different roles and vary in relative thickness among cortical regions (e.g., a 

sensory region has a thick internal granule layer; a motor area has a thick internal pyramidal cell layer). 

From superficial to deep, the six layers are (Fig. 1.2A, B): 

1. Molecular layer (lamina I) is almost entirely devoid of nerve cells (apart from a few exclusively 

inhibitory neurons), and contains the apical dendrites and the non-specific afferents. 

2. Outer granule cell layer (lamina II) with interneurons with small cell bodies for non-specific afferent 

input.  

3. Outer pyramidal cell layer (lamina III) is the thickest layer of the cortex in primates, presents short 

association output and contains mainly pyramid-shaped small and medium sized cells which appear 

to be arranged in vertical columns; the size of the cell bodies gradually increases toward the depth 

of the layer.  

4. Inner granule cell layer (lamina IV) with relatively small polyhedral cell bodies which are interneurons 

for specific afferent input. This layer is relatively thin in most cortical regions but becomes thicker 

and subdivided into sublayers in the primary sensory cortices. 

5. Inner pyramidal layer (lamina V) made up mainly of pyramidal cell bodies, with the exception of the 

stratum immediately bordering lamina IV, wherein single large polyhedral cell bodies (e.g., Betz and 

Meynert cells) are relatively frequent; the fibers are projection and long association output. 

6. Multiform layer (lamina VI). As the name indicates here are variably shaped cells like vertically 

oriented spindle-shaped and less regular pyramid-shaped cell bodies; conforms a projection and long 

association output. 
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Figure 1.2: Cortical Layers A. Superficial layers of the human frontal cortex drawn 
by Cajal on the basis of Golgi impregnation. The main cell types of the cerebral 
cortex i.e. small and large pyramidal neurons (A, B, C, D, E) and non-pyramidal (F, 
K) cells (interneurons in the modern nomenclature) are outlined. B. Lamination 
nomenclature from outside (pial surface) to inside (white matter). (From Arbib et al., 
1998) 

1.1.2 Predominant neuron types in the neocortex 

While pyramidal cells are the most characteristic cell type of the neocortex (and of some parts of the 

archicortex) and, indeed, of the entire mammalian nervous system, modern taxonomy labels all other cells 

of the cerebral cortex as non-pyramidal. Cells that fall into this category have practically nothing in 

common. Because there is little agreement, the nomenclature is arbitrary and reflects the individual views 

of the authors.  

1. Non-pyramidal neurons 

Three major categories of non-pyramidal neurons are distinguished: long-axon projective neurons, short-

axon projective neurons, and short axon (true) interneurons. If a neuron is an integral part of a neuron 

chain for routing impulses through any particular part of the cortex, it can be considered projective. If it 

is integrated for either feedforward or feedback inhibition (or disinhibition), it is a true interneuron. The 

first class, long-axon projective neurons, can be only reliably found in the visual cortex in which clearly 

non-pyramidal stellate-shaped neurons with spiny dendrites give rise to cortical efferents. These cells were 

described by Ramón y Cajal (1899) for the first time. There exists a special source of ambiguity about the 

fusiform and irregular cells of the lamina VI, many of which are efferent and in the majority directed 

toward the thalamus, if they ought to be considered non-pyramidal cells or genuine but distorted pyramidal 

neurons. Short-axon projective neurons are spiny stellate cells and bipolar neurons. The former cells 

constitute the main target neurons of specific sensory afferents and are located in lamina IV, especially in 

the primary sensory cortical areas (Martin and Whitteridge, 1984). The bipolar neurons with strictly vertical 

orientation have been observed both in lamina II and III of sensory cortices and laminae IV and V.  

All known true interneurons, also referred to as granule cells, are of an inhibitory nature and several types 
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of these inhibitory interneurons were recognized and described on the basis of their characteristic 

arborisation patterns (mainly of the axons) by the classical authors, mainly Ramón y Cajal (1899) (Fig. 

1.2A). Other true interneurons, like the basket cells were studied and defined more recently. The 

interneurons receive input from cortical afferent fibers and form synapses on output neurons (pyramidal 

cells) of the cortex. A recent classification of these complex and heterogeneous cells which includes both 

anatomical and physiological types, as well as molecular features can be found in Ascoli et al. (2008).  

2. Pyramidal neurons 

Pyramidal neurons show a conical cell body (>30 µm in diameter) with apical and basal dendrites and an 

axon that leaves the base of the cell to enter white matter. Pyramidal cells constitute the output cells of the 

cerebral cortex. There is a high variation in size among pyramidal cells and they are found in virtually all 

laminae, with the exception of lamina I of the cortex. The cortical pyramidal cells are arranged in an 

organized way within the cortex, parallel to each other, with their apical dendrites situated perpendicularly 

to the surface of the cortex, which in most cases reaches the border of the two superficial cortical layers, 

I and II, wherein it breaks up into a terminal dendritic tuft. The axon of the pyramidal neuron originates 

at the base of the cell body and pursues a vertically descending course. The vast majority of pyramidal cell 

axons leave the cortex toward the white matter. The arborisations of the pyramidal axon collaterals are 

very specific and arborize profusely in well-defined patches of the neighboring cortical tissue (Kisvárday 

et al., 1986). Most dendrites of the pyramidal neurons are studded with delicate drumstick-shaped 

appendages known as dendritic spines which were already described by Golgi (1883) and Ramón y Cajal 

(1899) using the Golgi procedure (Fig. 1.2A). The density (number per unit length of dendrite) of the 

spines, which are the receptive sites of synapses given by the terminal arborisations of terminal axon 

branches, varies considerably according to species, cortical region, and type of dendrite.  

Pyramidal neurons can express different electrophysiological types. The most frequent ones are regular 

spiking (RS), fast spiking (FS), intrinsically bursting and chattering (or repetitive bursting) neurons (Nowak 

et al. (2003) according to their electrophysiological features.  

1.1.3 Cortical columns 

Scheibel & Scheibel (1958) reported certain spatial regularities in the arborisation both of dendrites and of 

axonal ramification in the lower brainstem, and a vertical columnar organization of the somatosensory 

cortex was identified by Vernon Mountcastle (1957). Nevertheless, the observation by Hubel and Wiesel 

(1959) of the so-called orientation columns in the visual cortex was even more convincing that the entire 

cerebral cortex is organized into functional units. Each unit being a column (about 0.4 mm diameter) 

extending the entire thickness of the cortex (including all six layers). Each vertical column is considered as 

a functional unit because all cells within an individual column are activated by the same particular feature 

of a stimulus. The vertical organization is the result of neuronal connections within a cortical column: Two 

types of afferent projection fibers from the thalamus enter the neocortex. These are the specific afferents 

which drive the modality of specific input and terminate in internal granule cell layer, exciting interneurons 

which excite other neurons of the column. While the non-specific afferents, which terminate in molecular 

layer on distal dendrites of pyramidal cells, are responsible to provide the background excitation to the 

column. Small pyramidal cells send their axons into the white matter to excite nearby cell columns; while 

large pyramidal cells (and multiform cells) send their axons into the white matter to excite distant sites via 

long association fibers, commissural fibers, and corticofugal projection fibers. 
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1.2 Dynamics of the brain activity 

The brain, as a physical device, may be interpreted in terms of a dynamical system and should be considered 

as a system of hierarchically arranged self-organizing structures. Self-organization is a mechanism for 

generating emergent neural structures. There are different qualitative dynamic phenomena, including 

oscillation, which play an important role in implementing different neural functions. The oscillations 

provide a basic dynamical mode of activity in many brain regions. Oscillations may occur at the single-cell 

level due to intrinsic membrane properties or may be emergent network properties resulting from the 

pattern of connections between cells that are not themselves oscillators. Here, we will focus on cortical 

oscillations and more specifically on the slow-wave oscillations. 

1.2.1 Cortical oscillations 

Since Hans Berger in 1923 placed electrodes on the skull of his son and recorded rhythmic 10 Hz frequency 

waves (Berger, 1929), neurophysiological methods have advanced such that cortical oscillations of 

different frequency ranges have been identified. The synchronic neuronal activity of the cerebral cortex, 

which is constantly active and constituted by a huge number of neurons and synaptic connections, is 

directly related to the amplitudes of the EEG waves (Contreras & Steriade, 1997). 

The electroencephalography (EEG), developed by Caton at the end of the 18th century, consists in the 

recording of the electrical potentials which are generated within the extracellular space by the flow of 

electrical current between the interior and the  exterior of the cell during neuronal activity. The EEG 

displays the electrical activity originated by a current flow which is generated by the synaptic potentials of 

the cortical pyramidal cells, as the action potentials are filtered by the own filter properties of the cerebral 

tissue, because of their short duration. The organization of the cortical pyramidal cells, which are placed 

parallel to each other and with their apical dendrites perpendicular to the cortical surface, allows the 

summation of the synaptic pulses, and therefore they can be detected by the EEG electrodes placed on 

the skull.  

1.2.2 Nomenclature of the cortical oscillations 

Rhythmic oscillations are a common behavior of many neural systems. Rhythmicity may arise as the result 

of activity in pacemaker cells endowed with intrinsic oscillatory activity and connected to a population 

with particular resonant characteristics. Alternatively, rhythmic patterns may emerge from cellular 

interactions within a network, even if none of the constituent elements is capable of autorhythmicity. Even 

the isolated neocortex features the network properties to produce rhythmic activity as shown by the in vitro 

recorded cortical oscillations (Sanchez-Vives & McCormick, 2000). To describe the cortical oscillations a 

nomenclature based on frequency bands was established (Fig. 1.3): delta 1-4 Hz, theta 4-8 Hz, alpha 8-14 

Hz, beta 14-30 Hz and gamma 30-50 Hz. The frequency band, the oscillatory activity pattern and the 

topography of these oscillations depend on the behavior, in particular on the state of alertness (Steriade et 

al., 1993, Buzsáki & Draguhn, 2004).  
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Figure 1.3: Brain Waves: EEG tracings. The 

nomenclature of the different cortical oscillations 

is based on the frequency bands as observed in the 

EEG tracings. The frequency band, the oscillatory 

activity pattern and the topography of these 

oscillations depend on the behavior, in particular 

on the state of alertness (Steriade et al., 1993). 

(After Malvivuo and Plonsky, 1995). 

1.2.3 Neural activity pattern during sleep 

Three states of alertness are distinguished: slow wave sleep (SWS), REM-sleep (“paradoxical sleep” in 

animals who do not move eyes) and awake state. The EEG reflects the changes of the neuronal activity 

which take place during the waking state and the sleep cycle. The slow ~1 Hz EEG oscillation and the 

desynchronized EEG have been related to slow wave sleep and alertness respectively (Steriade, 2000; 

Steriade et al. 2001). During the waking and REM-sleep state the neuronal activity oscillates in the beta 

and gamma frequency band (>15 Hz). This kind of oscillation is considered to contribute to the 

information processing of the cerebral cortex.  

The two stages associated with an alert brain are waking and REM. During wakefulness, brain activity is 

characterized by low-voltage EEG activity and alpha waves with membrane potentials ranging between 

20-40 μV occurring at a frequency of approximately 10 Hz. Due to the similar, or even greater discharge 

pattern exhibited by neurons during REM sleep, both REM as well as wakefulness are active forms of 

sleep. REM sleep is not only characterized by the rapid eye movements but also by a complete inhibition 

of muscle tone. In contrast, non-REM sleep consists of four different stages, named stages 1-4, where 

stage 1 is the transition from wakefulness to the onset of sleep, lasting only several minutes.  

During both the REM-sleep and the natural waking state, rapid oscillations with small amplitudes are 

generated in the beta- and gamma frequency band (40 Hz), while high amplitude oscillations appear during 

the SWS showing a synchronous pattern along extent cortical areas. The activation of certain oscillatory 

activity is triggered from the nuclei structures of the brainstem and the basal forebrain directly or through 

the thalamus to the cortex (Steriade, 1996; Barth & MacDonald, 1996). During non-REM  (NREM) sleep, 

which constitutes the vast majority of sleep, neural activity is reflected in the EEG as a succession of K-

complexes, sleep spindles, and slow waves (Steriade, 2000).  

Hence, the state of sleep is dominated by three major types of brain rhythms: spindles (7-14 Hz) occurring 

prevalently during early stages, δ waves (1-4 Hz) appearing during later stages of sleep and slow (<1 Hz) 

oscillations that are present throughout resting sleep (Steriade, 1993). The stages 2 and 3-4 of the slow-

wave-sleep (SWS) (Rechtschaffen and Kales, 1968) are characterized by oscillations in the delta frequency 

band (<4 Hz), sleep spindles and K-complexes (KC) which interact leading to the characteristic EEG 

pattern of the SWS. The spike rate during SWS descends representing a change of how the information is 

processed. The activity of the thalamocortical system filters the flow of information to the cerebral cortex 

and neuronal groups synchronize. Nevertheless, the central nervous system (CNS) continues to be alert to 
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external sensory stimuli. 

The δ rhythm consists of at least two components. The cortical one is present after thalamectomy 

(Villablanca, 1974; Steriade et al., 1993). The second component is due to the capacity of thalamocortical 

cells, recorded from distantly located and functionally different thalamic nuclei, to generate an intrinsic 

oscillation within the δ frequency range through the interplay between two of their voltage-gated currents 

and was described both in vitro (McCormick & Pape, 1990; Leresche et al., 1991) and in vivo (Steriade et al., 

1991; Curro Dossi et al., 1992). The clocklike, stereotyped δ oscillation of single thalamic cells is dissimilar 

from the irregular, polymorphous EEG δ waves (the slow cortical rhythm) during natural sleep or 

anesthesia which was described in intracellular recordings from a variety of sensory, motor, and 

associational areas, even after extensive thalamic lesions (Steriade et al., 1993) providing evidence that the 

slow oscillation is generalized at the level of the neocortex.  

It was postulated that the cortical slow rhythm groups the thalamically generated (spindle and δ) 

oscillations within slowly recurring wave sequences (Steriade et al., 1993). Furthermore, it was 

demonstrated that thalamic spindles survive in decorticated and brainstem-transected animals (Morison 

and Bassett, 1945, von Krosigk et al., 1993) and that the reticular thalamic (RE) nucleus plays a pivotal 

role in their genesis and synchronization (Steriade et al., 1985, 1987). 

During sleep stage 2 of spontaneous sleep and also during anesthesia with barbiturates appear the spindles 

of sleep which are represented as oscillating activity at 7-14 Hz lasting for 1-2 s. The pacemaker of the 

oscillating sleep spindles is situated in the reticular thalamic nucleus. The neurotransmitter released by the 

neurons of the reticular thalamic nucleus is GABA, hence they are inhibitory neurons, generating 

rhythmical IPSP’s in the thalamic projection neurons. The repolarization of the IPSP’s leads the thalamic 

projection neurons to generate low threshold Ca2+ action potentials. The rhythmic low threshold Ca2+ 

action potentials in the rebound of the repolarization of the membrane potential during the IPSP event 

transmit the rhythm to the cerebral cortex by generating rhythmic EPSP’s  and AP’s with the same 

frequency as seen in the sleep spindles and which finally can be detected by the EEG recording. 

1.2.4 Slow oscillations during slow wave sleep 

The slow (< 1 Hz) oscillation, as described in cortical neurons of naturally sleeping (Steriade et al., 1993; 

1996) and anesthetized (Steriade et al., 1993; Cowan & Wilson, 1994; Lampl et al., 1999; Stern et al., 1997) 

cats, as well as in the sleep EEG and magnetoencephalograms of humans (Achermann & Borbely, 1997; 

Amzica & Steriade, 1997; Simon et al., 2000) comprises a periodic fluctuation between a hyperpolarized 

membrane potential or Down state, characterized by the absence of network activity, and a depolarized 

membrane potential, or Up state where action potentials use to occur. 

During the hyperpolarization phase or Down state virtually all cortical neurons are deeply hyperpolarized 

and remain silent for a few hundred milliseconds. Whereas during the Up state, the membrane potential 

surges back to firing threshold, the entire thalamocortical system is seized by intense synaptic activity, and 

neurons fire at rates that are even higher than in quiet wakefulness (Steriade et al., 2001). 

The Up state is hence associated with the arrival of a barrage of excitatory and inhibitory postsynaptic 

potentials leading to the discharge of both excitatory and inhibitory neurons. The Down state periodically 

interrupts the Up state with membrane potentials ~10.4 ± 4.94 mV more hyperpolarized compared to the 

active Up state. 
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Because of the absence of any network activity during this Down state, it is also known as the quiescent 

period and is associated with a disfacillitation of the network (Sanchez-Vives & McCormick, 2000; 

Massimini & Amzica, 2001). The changes in membrane potential as well as firing pattern during 

wakefulness, SWS and REM are nicely depicted in Fig. 1.4. 

 

Figure 1.4 Changes in membrane potential during different stages of alertness. Awake, SWS, and 
REM sleep for a regular-spiking neuron located within the suprasylvain gyrus (area 21) of the cat. 
Simultaneous EEG and EMG recordings from area 5 are also shown. The horizontal bars below the 
intracellular trace indicate the time intervals expanded underneath. Noticeable are the tonic firing rates during 
both the waking state and REM sleep, whereas during SWS, characteristic cyclic hyperpolarizations associated 
with depth-positive field potentials in the EEG, make this phase unique. (From Steriade et al. 2001) 

 

The mechanisms ruling the switch between these two states are still poorly understood but has been 

described in virtually all cortical neurons (Massimini & Amzica, 2001; Volgushev et al., 2006) and shows a 

frequency between 0.5 and 0.8 Hz (Sanchez-Vives & McCormick, 2000). Both phases of the slow 

oscillation are synchronous over large cortical territories (Amzica & Steriade, 1995). The persistent 

depolarization’s reflecting synchronous excitations within large neuronal populations are reflected 

extracellularly as negative field potentials (Contreras & Steriade, 1995). The vertical disposition of apical 

dendrites belonging to pyramidal neurons makes these deep currents revert at the cortical surface. Thus, 

the depolarizing phase of the slow oscillation is associated with a superficial positive wave of the EEG, 

which is the first component of the KC, i.e. it is associated with the arrival of a barrage of excitatory and 

inhibitory postsynaptic potentials leading to the discharge of both excitatory and inhibitory neurons. The 

second component of the slow oscillation during which the membrane potential of cortical neurons is 

hyperpolarized, is due to the progressive decrease of extracellular Ca2+ concentration (Massimini & 

Amzica, 2001) inducing diminished synaptic efficacy and general disfacilitation in the cortical network 

(Contreras et al., 1996). The synchronous hyperpolarization of the neurons is reflected in the depth field 

potential as a positive wave and at the cortical surface as a negative wave (Contreras & Steriade, 1995). 

Hence, the KC’s appear rhythmically with a frequency of >1Hz (mainly 0.6-0.9 Hz). 

The slow oscillation is cortically generated (Steriade et al., 1993b) and takes place as a stable synchronous 

network event as demonstrated by multiple intra- and extracellular recordings in the intact brain (Amzica 

& Steriade, 1995; Massimini et al., 2004; Volgushev et al., 2006). Its generation by the cortical network is 
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supported by the fact that it is also generated in deafferented cortical slabs (Timofeev et al., 2000) and in 

cortical slices maintained in vitro (Sanchez-Vives & McCormick, 2000). Thus, the low oscillation is initiated, 

maintained and terminated through the interplay of intrinsic currents and network interactions, as shown 

by studies in vivo (Timofeev et al., 2000; Ruiz-Mejias et al., 2011), in vitro (Sanchez-Vives & McCormick, 

2000), and in computo (Bazhenov et al., 2002; Compte et al., 2003; Mattia & Sanchez-Vives, 2012). It can be 

generated and sustained by the cerebral cortex alone (Steriade et al., 1993b; Timofeev & Steriade, 1996; 

Timofeev et al., 2000; Shu et al., 2003) and is disrupted by disconnection of intracortical pathways (Amzica 

& Steriade, 1995). A large number of studies have been published in recent years dealing with the cellular 

and network mechanisms underlying this slow rhythm and other related aspects, such as the effect of Up 

and Down states on synaptic transmission and excitability (Azouz & Gray, 1999; Crochet et al., 2005; 

Haider et al., 2006; McCormick et al., 2003; Petersen et al., 2003; Sachdev et al., 2004; Timofeev et al., 

1996; Reig et al., 2015; Reig & Sanchez-Vives, 2007). 

Compte et al. (2003) proposed a possible mechanism for how the slow oscillation is generated, and which 

is schematically illustrated in Fig. 1.5. In the network model designed by Compte and colleagues, the 

oscillations are caused by an “… interplay between neuronal spontaneous firing amplified by recurrent 

excitation, and a negative feedback due to slow activity-dependent K+ currents.” In the model, some 

neurons have a tendency to fire spontaneously at very low frequencies. On occasion, this activity will lead 

to the recruitment of a group of cells within a subregion of the network, bringing them into the Up state 

of the slow oscillation. As these cells fire, there is a slow accumulation of activity-dependent K+ currents, 

in this case IKNa, in response to the increases in [Na+]i, that gradually reduces the excitability of these 

pyramidal neurons. This activation of IKNa, will eventually lead to a transition to the silent state, or Down 

state, by means of a slow afterhyperpolarization (AHP), whose length determines the periodic nature of 

the slow oscillation. 
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Figure 1.5: Possible mechanism for the slow oscillation. Possible mechanism for the slow oscillation. 
Starting at A in the depicted schematic, due to a lower firing threshold, some neurons will fire spontaneously. 
This spontaneous activity can lead to the recruitment of additional neurons and thus a transition into the Up 
state as seen in B. During the Up state, the IKNa current gradually builds-up until neuronal excitability has 
decreased to such an extent that the Up state cannot be maintained and a switch to the Down state is made, 
C. The length of the AHP, determines the periodicity of the slow oscillation. (From Compte et al. 2003) 

 

Hence, the authors assumed that the activity dependent slow IKNa current is actually the agent responsible 

for the switching between the Up and the Down states. They tested their prediction by blocking the time-

varying Na+-dependent K+ channels and substituting their activity by injecting constant hyperpolarizing 

current pulses. Indeed, the network was found to exhibit two stable states. During the Up state, IKNa slowly 

accumulates leading the pyramidal neurons to experience a hyperpolarization that will cause a sudden 

transition to the Down state due to the loss of network stability. As IKNa gradually recovers, this enables 

the network to transition to the Up state once again and driven by the kinetics of the activity-dependent 

K+ currents, the so-called bi-stability loop emerges. 

In summary, it has been shown that in the emergent oscillatory activity of the cerebral cortex excitation 

and inhibition (Shu et al., 2003; Compte et al., 2009) and activity-dependent adaptation mechanisms 

(Compte et al., 2003; Sanchez-Vives et al., 2010; Mattia & Sanchez-Vives, 2012) determine that levels of 

activity are maintained during cortical function. Precisely, Mattia & Sanchez-Vives showed that three 

critical elements in a model network characterized by mean-field approximation characterizes this 

emergent property. These key elements are i) synaptic reverberation in neuronal networks together with 

nonlinear amplification, ii) two attractor states of low and high firing rate that embody intrinsic fluctuations 

and iii) additional activity-dependent mechanism of self-inhibition. The balanced interplay of these three 

key elements eventually yield to a so-called “relaxation oscillator” capable to fit experimental evidence and 

representing the slow oscillation as a dynamical regime of the cortical tissue in which episodes of stable 

network states (Up and Down states), emerge for short time periods, as shown in Fig. 1.6.  

  

 

Figure 1.6: Slow oscillations between stable 
network states as a relaxation oscillator. Black curve 
depicts the firing rates at the fixed points (circles) of 
the attractor dynamics. The solid and dotted 
branches correspond to stable or unstable fixed 
points.  Recurrent stable (solid branches) and 
unstable (dotted branch) asymptotic states of firing 
rate (v) at different fatigue levels are represented as 
effective changes in the input current ΔI to the 
neurons in the network. The gray line is the nullcline 
where the fatigue level is expected to be fixed in 
time and provides the amount of self-inhibition. 
(Figure adapted from Mattia & Sanchez-Vives, 
2012) 

 

It is well known that several neuromodulators are involved in the regulation of the brain’s state of vigilance 

and that the transition from sleep to wakefulness depends critically on the activation of ascendent 

activating systems, including acetylcholine (ACh), norepinephrine, and serotonin (McCormick 1992; 
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Steriade et al., 1997). The activation of certain neuromodulatory systems, such as increasing the level of 

ACh can reduce the K+ conductances, including the Na+-dependent K+ conductance,  reverting the 

oscillating network activity with less marked periodicity, longer Up states and shorter Down states until 

the state of tonic firing resembling the voltage traces of the waking state. In the model depicted in Fig. 

1.6 the characteristic neurophysiological differences between the SWS and the waking states could only be 

resembled closely by changing different parameters of excitation and inhibition (Shu et al., 2003; Compte 

et al., 2009) and activity-dependent adaptation mechanisms (Compte et al., 2003; Sanchez-Vives et al., 

2010; Mattia & Sanchez-Vives, 2012). Nevertheless, the enhancement of the neuromodulatory effect 

enters the network eventually into a tonic firing state with no large-scale spatio-temporal coherence, 

reminiscent of typical cortical activity in the awake state (Destexhe et al., 1999; Steriade et al. 1996), recently 

observed also in a thalamocortical network model of slow oscillations (Bazhenov et al., 2002). 

An additional point of interest is that the periodic fluctuations in membrane potential occurring during 

SWS do also conduct to fluctuating changes in the ionic composition both within the extracellular as well 

as the intracellular medium. Intracellular calcium concentrations are usually kept very low (1-1.3 mM), thus 

even small changes in its concentration can lead to large effects. Extracellular measurements using an ion-

sensitive microelectrode showed phasic fluctuations in [Ca2+]out (Massimini & Amzica, 2001).  The 

minimum concentration (~0.9 mM) coincided with the end of the depolarizing phase followed by an 

almost linear increase after onset of the hyperpolarizing phase, reaching values of about 1.2 mM. The 

authors in this study believe, that because of the periodic depletions of [Ca2+]out, synaptic depression is 

caused and a concomitant transition to the Down state, while during the silent phase the resting levels of 

calcium are restored and with it the synaptic efficacy. 

It remains still to be determined, whether the calcium balance or the kinetics of Na+-dependent K+ 

conductance are responsible for the switching between active and silent states but evidence points toward 

a combination of the two as the most likely scenario (Volgushev et al., 2005). 

During the Up state, external calcium levels are depleted (by almost 20%) due to the possible inflow of 

the divalent cation via N-type Ca2+ channels located near the active zones (Kandel et al., 2000). This 

contributes to the gradual decrease in conductance, thus a simultaneous increase in the input resistance 

(Rin) during the Up state. While the overall conductance is decreasing, IKNa currents start building Up with 

only minimal effects on the overall conductance. Due to a loss of network stability, neurons will not be 

excitable enough to maintain the Up state and thus a sharp transition to the Down state is made. Whereas 

during this hyperpolarized state, [Ca2+]out can be restored and recurrent excitation is able to drive the 

network into the Up state once again (Compte et al., 2003). 

1.2.5 Functional role of slow oscillations 

Another interesting question that remains to be answered is, what is the functional significance of the 

persistent slow oscillating activity in the cortical network? Most authors propose that the high rates of 

firing during the active states of slow wave sleep, which lead to a bombardment of target neurons by both 

rhythmic spike trains as well as spike bursts, may lead to spike-dependent synaptic plasticity processes 

(Steriade et al., 2001; Massimini et al., 2004). Slow oscillation could thus be essential for memory 

consolidation whereby memory traces acquired during wakefulness are preferentially processed (Mukovski 

et al., 2007; Steriade et al., 2001). 

Memory is classified into two fundamental forms: explicit (also termed declarative) and implicit (also 
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termed non-declarative), respectively (Stickgold & Walker, 2005). The first involves consciously accessible 

memories of fact-based information, i.e. knowing “what”, and contains several subcategories, including 

episodic memory (memory for events in one’s past) and semantic memory (memory for general 

knowledge). By contrast, non-declarative memory includes all non-conscious memories, and has 

subcategories such as conditioning, implicit memory and procedural memory (i.e. knowing “how”). Or 

said shortly; it’s the memory of how a certain task or skill is performed, such as hitting a tennis ball. Thus, 

during different phases of sleep, traces of these different memory types, declarative as well as non-

declarative are differentially processed leading to synaptic consolidation or downscaling (Mukovski et al., 

2007; Steriade et al., 2001). Evidence of sleep-dependent plasticity at both local and system levels suggests 

that sleep has a crucial role in consolidation processes leading to memory enhancement (Stickgold & 

Walker, 2005). 

Another approach for the functional role of slow oscillations determined using computational models, has 

been that they might be responsible for the persistent activity of neurons in the prefrontal cortex of 

primates while they are performing delayed-response memory tasks. In the primary visual cortex, where 

this spontaneous activity has been investigated in detail in cortical slices of the ferret, it might be that this 

activity; at least in some cell types, is important for the generation of receptive field properties (Sanchez-

Vives & McCormick, 2000).  

The precise function role of these alternating states still remains an enigma and the approaches mentioned 

above still need to be investigated further. This gives rise to the question, how can we elicit these rhythmic 

alternations in membrane potential artificially so that it can be studied more easily? 

1.2.6 The effect of anesthesia on the neuronal activity and the slow oscillation pattern 

Due to the wide interest in the function; both on a cellular as well as a mechanistic level, of slow oscillations 

in humans as well as animals, two methods enable us to artificially induce this rhythm (<1 Hz) both under 

in vitro as well as in vivo conditions. Traditional slice bathing mediums (2 mM Ca2+, 2 mM Mg2+ and 2.5 mM 

K+) used to maintain cortical slices under in vitro conditions do not show spontaneous rhythmic 

oscillations. However, when changing the ionic concentrations of the ACSF such that they resemble more 

closely the composition of the brain interstitial fluid (1-1.2 mM Ca2+, 1 mM Mg2+ and 3.5 mM K+), these 

spontaneous slow oscillations appear. The membrane potential distribution again showed the characteristic 

bimodality, with Up states exhibiting spiking frequencies of 2-10 Hz and Down states occurring 

approximately every 3.4 s (Compte et al., 2003; Sanchez-Vives & McCormick, 2000). 

It has been shown that activity in cortical cells is critically dependent on the type of anesthesia, i.e. different 

anesthetics inducing distinctive cortical rhythms mimicking different sleep stages (Steriade, 1997). Hence, 

concerning anesthesia during electrophysiological experiments there is often the need to find a 

compromise between a sufficient depth of anesthesia and the alteration of the neuronal activity. The depth 

of anesthesia is controlled by monitoring different parameters like: the breath and pulse frequency, the 

EEG, the involuntary responses of the muscles to stimulations like pain and the opening of the pupil. 

Under certain anesthetics, the neuronal activity shows slow oscillations similar to that observed during 

slow wave sleep. These anesthetics are ketamine, urethane and halothane.  

As discussed in the former section, slow oscillation consists of long-lasting depolarizations with 

superimposed action potentials, separated by long periods of neuronal silence which is closely related with 

a similar rhythm of EEG waves. These slow cortical potentials are similar to the slow oscillations present 

throughout resting sleep in mammals and in urethane or ketamine-xylazine-anesthetized cats (Steriade, 
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1993; Steriade et al., 1993a, 1993b; Contreras & Steriade, 1995) and could be observed under all (but deep 

barbiturate) anesthetic conditions, as well as in high brainstem-transected undrugged preparations. Mahon 

et al. (2001) performed a study in vivo where the three different anesthetics used induced EEG waves that 

were associated with dissimilar patterns of activity in cortico-striatal (CS) neurons. The different patterns 

of cortical activity described by Mahon et al., 2001 did not result from an anesthetic dependent alteration 

in intrinsic membrane properties of cortical neurons and no significant difference in the basic electrical 

features of CS cells recorded under the different anesthetics could be observed. 

The basic difference between neuronal oscillations recorded under urethane and those under ketamine 

was the frequency of the rhythm. Thus, under urethane anesthesia mainly slow oscillations with a 

frequencies in the range of 0.3 to 0.4Hz with overwhelming pattern of spindling activity were presented 

while ketamine showed mostly 0.6-1 Hz, i.e. a pronounced shift toward higher frequencies.  

1.2.7 Effect of ketamine anesthesia 

Ketamine (Ketanest®) belongs to the dissociative anesthetics producing hypnotic, analgesic and amnesic 

effects, i.e. it is sleep producing, pain relieving and causes a short term memory loss. These effects are 

conducted without the actual loss of consciousness but leading to a state of cataleptic immobility. 

Ketamine and other dissociative anesthetics selectively block the NMDA subtype of excitatory aminoacid 

receptor (MacDonald et al., 1991), thus, selectively decreasing synaptic transmission at terminals of 

excitatory neurons. The mechanism of action is the blocking of ion channels of non-competitive N-

methyl-D-aspartate (NMDA) (Anis et al., 1983) receptors without substantial alteration of the function of 

γ-aminobutyric acid type A (GABAA), glycine, and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid receptors (AMPA). Ketamine increases the monoaminergic transmission and induces the inhibition 

of voltage-gated sodium channels by agonistic effects on the opiate receptors. EEG records exhibit a slow 

rhythm at ~ 1Hz.  

Dissociative anesthesia is a stage whereby somatic analgesia is combined with a light plane of 

unconsciousness, but the animal seems dissociated from its environment. During the dissociative 

anesthesia, the respiratory function remains stable and the animal maintains its pharyngeal, laryngeal, 

corneal, palpebral and swallowing reflexes. The eyes remain open. Dissociative anesthetic agents increase 

muscle tone and spontaneous involuntary muscle movements (occasionally seizure) are common due to 

its poor muscle relaxant properties and variable analgesia. Salivation and lacrimation are also increased. 

Ketamine has potent sympathomimetic effects like hypertension, increase of the heart pulse frequency and 

myocardial consumption of oxygen as well as bronchodilatation. At recommended dosages, ketamine 

causes minimal depression of the respiratory and cardiovascular systems, but is a poor muscle relaxant in 

most species. When used in guinea pigs (at a dosage of 55 mg/kg i.p.), however, ketamine alone may 

provide muscle relaxation sufficient for restraint and manipulation for procedures which impart minimal 

pain to the animal. This is one of the few situations in which ketamine, alone, is a suitable anesthetic in 

rodents. The onset of action when applied via intravenous (i.v.) occurs after seconds, while it takes about 

5 minutes when applied via injection into the muscle. Due to its poor muscle relaxant properties in other 

species of rodents, ketamine is often combined with tranquillizers, such as xylazine, acetylpromazine, 

diazepam, and butorphenol to facilitate muscle relaxation. The ketamine-xylazine combination provides 

better analgesia than does ketamine-diazepam or ketamine-acetylpromazine. Ketamine-xylazine should be 

used with caution at high dosages, however, because it produces respiratory and cardiovascular depression, 
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hypothermia, and can produce muscle necrosis when injected by the i.m. route. 

1.2.8 Effect of xylazine anesthesia 

Xylazine is an alpha-2 adrenergic agonist (Nicoll et al., 1990) acting at alpha-2 adrenoreceptors to inhibit 

neurotransmitter release at sympathetic and parasympathetic nerve endings. It is used as a sedative, 

analgesic, and muscle relaxantin veterinary medicine. Its sedative and analgesic properties are related to 

nervous system depression, acting on presynaptic and postsynaptic receptors of the central and peripheral 

nervous systems. Its effects include bradycardia, hypotension due to activation of alpha-2 adrenoreceptors 

in medullary pressor centers and resulting depression of sympathetic outflow from these centers, and 

inhibition of the effects of postganglionic nerve stimulation. Overall it produces respiratory and 

cardiovascular depression and hypothermia. In veterinary anesthesia, xylazine and ketamine are often used 

in combination. Ketamine, unlike xylazine, is used in both humans and other animals. When xylazine is 

used in combination with ketamine it may cause muscle necrosis at the i.m. injection site, therefore, i.p. 

injection is recommended. 

1.2.9 Effect of urethane anesthesia 

Urethane (ethyl carbamate) is a water-soluble compound widely used as an anesthetic in animal 

experiments. It is also a carcinogen, which precludes its use as a human anesthetic. The advantages of 

urethane in animal anesthesia are that it can be administrated by several parenteral routes, produces a long-

lasting steady level of surgical anesthesia, and has minimal effects on autonomic and cardiovascular 

systems. Recent studies in rodents have shown that it has a rapid onset after i.p. administration, which is 

followed by hypotension, hypothermia, bradycardia and metabolic acidosis with partial respiratory 

compensation. Advantages of urethane anesthesia are that it produces good muscle relaxation and 

analgesia sufficient for surgical manipulations. Urethane has also been shown to produce sedation and 

ataxia following topical administration to rodents. The primary disadvantages of urethane are that it is a 

proven carcinogen and mutagen in rodents, therefore, its use is strongly discouraged unless strict 

precautions are taken (e.g. gloves, face masks, mixing under a fume hood) to protect personnel. Due to its 

mutagenic and carcinogenic potential, use of urethane should be limited to non-survival procedures. 

Urethane has been reported to affect both inhibitory and excitatory neurotransmission systems and the 

magnitude of the change is less than that seen with anesthetics that are more selective for one system (e.g., 

ketamine and NMDA receptor). The functions of GABAA and glycine receptors are enhanced while the 

NMDA and AMPA receptors are inhibited by the action of urethane (Hara & Harris, 2002).  Furthermore, 

urethane interestingly enhances the function of the nACh receptor.  
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2 Objectives 

The general objective of this thesis is to learn about the dynamics of the cortical network through its 

slow oscillatory emergent activity. 

In order to achieve this objective, I have devoted a large part of the efforts in this thesis to the development 

of methodological tools that allow myself and others to identify and explore the properties of oscillations. 

In an approach to this objective, three more specific objectives can be resumed as follows: 

- To develop a method that allows the detection and idenfication of cortical Up and Down states in 

intracellular recordings. 

- To investigate the spatiotemporal properties of wave propagation during slow wave activity on a 

micro- to mesoscopic scale by developing adequate analytical tools.  

- To examine the stereotypical behavior of spontaneous transitions between Up and Down states in 

the somatosensory cortex of anesthetized rats. 



Objectives 

16   

2.1 Aims and organization of this thesis 

In order to tackle these specific objectives this thesis is divided into two blocks:  

1. The first block refers to the definition, formalization, implementation and analysis of an easy to use 

method for Up and Down states detection and identification in intracellular recordings. 

 

2. The second block describes the information obtained from simultaneously recorded intra- and 

extracellular signals using a multi-electrode array and analyzes the spatiotemporal structure of the 

slow oscillation within a small portion of cortical tissue covered by the extracellular matrix and 

triggering on the intracellular signal. In particular, the analytical tools developed and applied for this 

study are emphasized and described in detail. 

 

2.1.1  Detection and Identification of Up and Down states 

Once the simultaneous intra- and extracellular data have been recorded, we proceeded to correctly and 

reliably detect and identify the Up and Down states of the slow cortical oscillations. For further detailed 

data analysis, it is often required to detect, identify and quantify the Up and Down states, in order to 

respond to questions regarding the integrative or synaptic properties of cortical cells during slow 

membrane potential fluctuations. To achieve this processing of intracellularly recorded membrane 

potential fluctuations some methods deal with the data in a manual fashion, while others implement basic 

automated procedures. 

Metherate and Ashe (1993) first carried out the quantification of the two-state behavior based on the 

membrane potential distribution. That graphical tool operates on the characteristic bimodal distribution 

of the membrane potential, best fitted to a dual Gaussian function, and has been extensively used since 

then (Sanchez-Vives & McCormick, 2000; Petersen et al., 2003; Anderson et al., 2000; Benucci et al., 2004; 

Crochet et al., 2004; Fuentealba & Steriade, 2005; Holcman & Tsodyks, 2006; Kasanetz et al., 2002; Lewis 

and O’Donnell, 2000; Mahon et el., 2003; Peters et al., 2004; Timofeev et al., 2001; Tseng et al., 2001). A 

peak at the hyperpolarized membrane potential values identifies the Down state, separated from the 

depolarized Up state by a well-defined central valley, indicative of fast transitions between the two states. 

Recently, a moving average of the membrane potential and its standard deviation (StD) has been presented 

(Volgushev et al., 2006) to separate the two states. In this case the Down state presents a sharp peak at 

hyperpolarized potentials with low StD values, while the Up state shows a broader hill at more depolarized 

potentials and higher StD values. A different approach based on the spectral difference of the local field 

potential (LFP) signal has been recently proposed to distinguish between Up and Down states (Mukovski 

et el., 2007). This method also relies on the bimodal distribution of the membrane potential. 

The basic assumption underlying the approaches based on the bimodal distribution of the membrane 

potential is that the proportion of the area of the histogram under each of the peaks represents the 

proportion of time spent in each state, and consequently the mode of each peak is the preferred membrane 

potential in each state. While this is true for very stable recordings, data is typically affected by fluctuating 

electrical and physiological conditions. 

According to this property, these approaches proceed by performing certain measurements on the biphasic 

histogram. A basic operation is to determine the threshold potential that delimits both states. This is 

obtained by computing the modes of the distributions (or, alternatively, visually identifying the peaks) and 
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finding either the potential associated with the lowest bar between them, or the midpoint between the 

peaks if a broad valley separates them (Wilson & Kawaguchi, 1996). More reliable transitions can be 

performed by setting two thresholds, e.g., at one fourth and three fourths of the distance between the 

peaks (Anderson et al., 2000).  The areas separated by these delimiting values are a good estimation of the 

time spent in each mode.  

Despite the simplicity and popularity of the histogram-based methods, there are some disadvantages 

related to its use: 

1. The intracellular membrane potential recordings must be stable over the time window used to 

compute the histogram. However, this ideal scenario is frequently complicated by membrane 

potential drift, changes in the electrode seal, movement artifacts (e.g. respiratory movements, 

heartbeat) or other factors, particularly when large time spans are to be considered. These changes 

will tend to blur the standard bimodal distribution of Up and Down states, making it hard to 

separate the two states based simply on threshold. 

 

2. Although the threshold can be automatically determined, there is a certain tendency to establish 

the settings manually according to the expert assessment, even when dealing with very stable 

recordings and well-differentiated bimodal behavior. A reliable computerized method for peak 

identification in the histogram of membrane potentials from recordings that are not obtained in 

ideal conditions could be hard to find. 

An increasing amount of “non-standard” electrophysiological data (from anesthetized animals and slice 

recordings) and in addition long duration recordings demand automated and reliable methods for Up and 

Down states identification and characterization.  We present an automatic and easy-to-use method that is 

able to identify and to reliably separate the two states of membrane potential, characteristic of slow wave 

sleep and under certain anesthesia: MAUDS (for Moving Averages for Up and Down Separation). 

Furthermore, the method has been engineered to be used online, in such a way that the Up and Down 

states can be visualized in real-time superimposed to the original signal, and the experiment design can 

include triggering events. It also provides immediate information on the statistics of the Up versus Down 

periods to evaluate the behavior of the network. 
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2.1.2 Spatiotemporal structure of the slow-wave oscillation by simultaneous intra- and 

extracellular recordings in vivo using a horizontal multi-electrode-array 

Propagating waves of activity within neocortical networks are a phenomenon that can be observed under 

many different conditions, from strong sensory stimulation in various primary sensory areas such as barrel 

cortex (Ferezou et al. 2006; Petersen et al. 2003), visual cortex (Xu et al. 2007), and motor cortices (Rubino 

et al. 2006), as well as during the slow-wave sleep (Chauvette et al. 2010) and anesthesia-induced slow-

wave activity (Steriade et al. 1993a; 1993b; 1993c; Takagaki et al. 2008). Although this phenomena is so 

widespread, there is a strong interest in understanding the mechanisms underlying wave propagation in 

the neocortex while the functional role of the traveling waves still remains unclear. 

The results from in vitro cortical slices have achieved important insights in the intrinsic and synaptic 

properties of various neuronal types and different cortical areas.  Slice preparations permit a complete 

control of the ionic composition of the bath solution and a good visualization of the electrodes within the 

tissue. It was emphasized (Chagnac-Amitai & Connors, 1989) that small regions of neocortex could sustain 

synchronous activity, but it was not proven until Sanchez-Vives & McCormick (2000) demonstrated that 

maintaining the ionic concentration of the ACSF bath solution for the slices in situ-like sustained slow 

oscillation can be observed. However, inevitably many dendrites are lopped when the slice is prepared and 

in vitro preparations lack a complete cortical network. 

Experiments in vivo assure a complete cortical network with all inputs and background activity. Usually 

they are focused on cellular responses to different sensory modalities and during alert preparations, thus 

requiring alert preparations, which does not show slow oscillation of the brain electrical activity. Thus, to 

get slow oscillations in vivo it is required to record either during sleep of the subject or using certain 

anesthetics like ketamine, urethane, fentanyl or halothane. The slow oscillation, recorded under slow wave 

sleep and under anesthesia, represents a spontaneous event during which cortical neurons are alternately 

silent and active for a fraction of a second. 

Because traveling waves generate spatiotemporal patterns during slow-wave activity, we were interested 

on the spatiotemporal structure of the spontaneous slow-wave in the rat’s somatosensorial neocortex 

under ketamine/xylazine anesthesia and on how and to what extent the activity spread through the 

neocortical network. Studies performed in the anesthetized rat implementing voltage-sensitive dye (VSD) 

imaging have shown that activity waves have a tendency to propagate along specific paths, even showing 

cross-modal activation (Takagaki et al. 2008). EEG studies in humans also revealed an origin and 

preferable direction of wave propagation that was consistent across subjects (Massimini et al. 2004; Riedner 

et al. 2007). On the other hand, VSD imaging performed in the barrel cortex of awake mice indicated that 

spontaneous waves varied their direction from one trial to the next (Ferezou et al. 2006). 

In order to shed light to this matter, we first need to investigate how slow oscillations, present during 

certain anesthetics, propagate along a small cortical area. Subsequently, we need to answer the question of 

how the extra- and intracellular signals of these oscillations correlate with each other. With that purpose, 

we carried out extracellular recordings using a spatially defined array of seven extracellular electrodes in 

combination with one intracellular electrode and recorded from the somatosensory cortex of rats 

anesthetized with urethane and ketamine/xylazine. This kind of anesthesia has been established as a model 

for slow-wave sleep (Fontanini et al. 2003; Sharma et al. 2010) and leads to stable and regular low-frequency 

oscillations in the neocortex. In order to get correlated data and to cover a very small (microscopic) portion 

of cortical tissue, the intracellular electrode and the multi-electrode array were positioned close to each 
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3 Methods 

We used intra- and extracellular data obtained by recordings in different cortical areas and preparations. A 

part of the data used for implementation and analysis of the developed method MAUDS were kindly 

provided by the Laboratory of Prof. M.V. Sanchez-Vives (slice preparations and the majority of the in vivo 

recordings in rat barrel cortex) at the Institute of Neuroscience of Alicante, University Miguel-Hernández-

CSIC, Spain. The methods followed to record this data are described briefly in the following section and 

were published in PLOS One (2007) which is attached in the appendix section of this thesis (Seamari et al., 

2007). 

The experimental procedure followed by the author of the present thesis at Albrecht-Ludwigs-University of 

Freiburg, Germany, in order to obtain combined extra-intracellular recordings at the rat’s somatosensorial 

cortex is described below in detail and was carried out by the author of this thesis. The legends of all 

figures indicate the origin of data. The experimental setup, implementation and part of the results described 

in this thesis were published in Journal of Neurophysiology (2011), paper which is attached to this document 

(Fucke et al., 2011).  

3.1 Detection and Identification of Up and Down states 

3.1.1 Experimental methods 

For the detection and identification of Up/Down states, data from three different preparations were used: 

brain slices, cat visual cortex and rat barrel cortex. 

Animals were cared for and used in accordance with the Spanish regulatory laws (BOE 256; 25-10-1990) 

which comply with the EU guidelines on protection of vertebrates used for experimentation (Strasbourg 

3/18/1986). 

Slices preparation 

The cortical slices were prepared from 2- to 6-month-old ferrets of either sex that were deeply anesthetized 

with sodium pentobarbital (40 mg/kg) and decapitated. Four hundred-micrometer-thick coronal slices of 

the visual cortex were cut on a vibratome. After preparation, slices were placed in an interface-style 

recording chamber and bathed in ACSF containing (in mM): NaCl, 124; KCl, 2.5; MgSO4, 2; NaHPO4, 

1.25; CaCl2, 2; NaHCO3, 26; and dextrose, 10, and was aerated with 95% O2, 5%CO2 to a final pH of 7.4. 

Bath temperature was maintained at 34–35ºC. Intracellular recordings were initiated after 2 hour of 

recovery. In order to induce spontaneous rhythmic activity, the solution was switched to ACSF containing 

(in mM): NaCl, 124; KCl, 3.5; MgSO4, 1; NaHPO4, 1.25; CaCl2, 1–1.2; NaHCO3, 26; and dextrose, 10 

(Sanchez-Vives & McCormick, 2000). 

Intra- and extracellular recordings were obtained from the slices as described below: 

Animal preparation for in vivo recording 

For the intracellular recordings in vivo from the primary visual cortex, adult cats were anesthetized 

with ketamine (12–15 mg/kg, i.m.) and xylazine (1 mg/kg, i.m.) and then mounted in a stereotaxic frame. 
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A craniotomy (3–4 mm wide) was made overlying the representation of the area centralis of area 17. To 

minimize pulsation arising from the heartbeat and respiration a cisternal drainage and a bilateral 

pneumothorax were performed, and the animal was suspended by the rib cage to the stereotaxic frame. 

During recording, anesthesia was maintained with i.m. injections of both ketamine (7 mg/kg) and xylazine 

(0.5 mg/kg) every 20–30 min. The heart rate, expiratory CO2 concentration, rectal temperature, and blood 

O2 concentration were monitored throughout the experiment and maintained at 140–180 bpm, 3–4%, 37–

38ºC, and  >95%, respectively. The EEG and the absence of reaction to noxious stimuli were regularly 

checked to insure an adequate depth of anesthesia. After the recording session, the animal was given a 

lethal injection of sodium pentobarbital.  

Rat barrel cortex 

Adult Wistar rats (250–300 g) were used for recordings in somatosensory cortex S1. Anesthesia was 

induced by intraperitoneal injection of ketamine (100 mg/kg) and xylazine (8–10 mg/kg). The animals 

were not paralyzed. Maintenance dose of ketamine was 75 mg/kg/h.  Anesthesia levels were monitored 

by the recording of low-frequency electroencephalogram (EEG) and the absence of reflexes. Rectal 

temperature was maintained at 37ºC. Once in the stereotaxic apparatus, a craniotomy (262 mm) was made 

at coordinates AP –1 to 23 mm from bregma, L 4.5–6.5 mm. After opening the dura, extracellular 

recordings were obtained with a tungsten electrode (FHC, Bowdoinham, ME, USA). Extracellular 

recordings were used to adjust whisker stimulation (not shown) and to monitor the occurrence of slow 

oscillations. Intracellular recordings were obtained within 1 mm from the extracellular recording electrode.  

Recordings and stimulation 

Sharp intracellular recording electrodes were formed on a Sutter Instruments (Novato, CA) P-97 

micropipette puller from medium-walled glass and beveled to final resistances of 50–100 MΩ. 

Micropipettes were filled with 2 potassium acetate. Recordings were digitized, acquired and analyzed using 

a data acquisition system (Power 1401; Cambridge Electronic Design, Cambridge, UK) and its software 

(Spike 2). Two different implementations of MAUDS where integrated in Spike 2: (1) using its built-in 

script language, and (2) as an assembler program that can be run on the sequencer included in the system. 

The functioning of these implementations has been tested and is further discussed in the results section. 

These programs, as well as MATLAB (The MathWorks, Inc.) implementations, are distributed as open 

source, and can be fetched from a web site (http://www.geb.uma.es/mauds), where a tutorial, examples, 

and a forum for MAUDS users are also available. 

Whisker stimulation 

A puff of air given through a 1 mm tube placed in front of the whiskers (10–15 mm) was used for 

stimulation. The air puff (10 ms) was controlled by a stimulator and delivered by a Picopump (WPI, 

Sarasota, FL). Its pressure was adjusted such that it would evoke a response that was of 50–100 mV in the 

extracellular recordings and between 5 and 10 mV in the intracellular recordings.  

 

3.1.2 Analytical methods 

Data cropping procedure 

Data cropping is the task that follows a recording session. Cropping is done on the temporal domain (what 

periods of time show stable data) as well as on the set of electrodes (what signals meet the previously 

http://www.geb.uma.es/mauds
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mentioned prerequisites to be analyzed). Once data cropping has been performed, data is sampled and the 

resulting files are available for data processing. Sampling and loading of data is done with the specific 

MATLAB® programs.  

The result of this task is a text file for every session (samples file) with pointers to the useful data, arranged 

in a number of records with the following format:  name start end electrode1 channel1 … electrodeN channelN, 

where name is the name of the sample (blanks are not allowed), start and end are indexes to relative time 

since the beginning of the session (in ms), and the electrode is an index from 0 (intracellular) to the number 

of extracellular electrodes used in the recording, and the channel addresses the type of channel to be 

retrieved (MPT for membrane potential, LFP for local field potentials, and ALL for both).  Every line in 

this text file represents a sample, and will be extracted and stored in a separate file when the MakeSample 

command is executed for that session (Illustration 1). The samples obtained can overlap, although the data 

is sorted in different samples for convenience. 

The following is an example of samples file: 

 % SAMPLE STAR END ELECTRODES 

 UpDownStates  10 300 0 MPT  2 ALL  5 LFP 

 Clusters 250 500 5 ALL  6 LFP  7 MPT  8 ALL 

 

The MakeSample command extracts (in real units) the intervals, and stores every electrode in a single Matlab 

file, as a record with the following structure: 

 

Experiment  (date in YYMMDD format) 

Session  (number) 

Interval  (vector with the beginning and end time of the session) 

Sampling rate  (in Hz) 

Electrode  (index) 

Channel  (MPT, LFP, ALL) 

Signal  (vector of data, in mV). 

This file is named with the sample name, the electrode number and the channel name.  Examples of files 

for the above sample file are: UpDownStates_0_MPT.mat, UpDownStates_2_ALL.mat. 
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% CONFIGURATION 
% -------------------------------------------------------------------------------------- 
% 
% GENERAL COMMENTS 
% 
% 
%  
% EXTRACELLULAR 
% 
% Sampling frequency: 25 KHz 
% Depth level:  
% Lesion:  
% Photo: 
%  
% 
% INTRACELLULAR 
% 
% Filter cut-off frequencies 
% 
%       LOW  HIGH 
%   I   ___   ___  
%   V   ___   ___  
% 
% Membrane resistance:  
% Electrode offset potential:  
% Staining: 
% 
% LAYOUT 
% -------------------------------------------------------------------------------------- 
% INTRACELLULAR     | EXTRACELLULAR       01 02 03 04 
% ELECTRODE         | ARRAY               05 06 07 08 
%                   |                     09 10 11 12 
%                   |                     13 14 15 16 

 
% Preamplification factor 
% 
%        A1  A2  A3    01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  
% -------------------------------------------------------------------------------------- 
        1.0 1.0 1.0   1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  
% High-pass filter 
        1.0 1.0 1.0   1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  
% Low-pass filter 
% Hardware channels 
% 
%                     MUA     MUA REF MUA MUA MUA     MUA     MUA ECG 
%       MPT CUR 50H   LFP     LFP REF LFP LFP LFP     LFP     LFP ECG 
%        A1  A2  A3    01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  
% -------------------------------------------------------------------------------------- 
          1   1   0    39   0  38  40  37  36  35   0  34   0  33  42   0   0   0   0  
% High-pass filter 
          0   0   0    07   0  06  08  05  04  03   0  02   0  01  10   0   0   0   0  
% Low-pass filter 

 
% SAMPLES 
% -------------------------------------------------------------------------------------- 
%                 A    01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16 
% Start    End   123   HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL  HL      

% Description 
% -------------------------------------------------------------------------------------- 
      1    100   110   00  00  01  00  10  00  00  00  00  00  00  00  00  00  00  00   
%01 UDS before waking up 
      1    100   000   00  00  00  00  11  00  00  00  00  00  00  00  00  00  00  00  
%02 Highly correlated LFP 
    200    300   100   10  00  00  00  00  11  00  00  00  00  00  00  00  00  00  00  
%03 Channels for MUA 

 
Illustration 1: Example of all the data included in a cropping procedure and how this data is organized for 

posterior easier handling during analysis. 
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Up And Down States Characterization 

The proposed strategy for characterizing Up and Down states in electrophysiological data is based on a 

method widely used in financial data analysis: crossover of moving averages. 

Methods for financial time series forecasting often involve the linear transformation (averaging) of past 

data in order to track trends and predict trend reversals (Ellinger, 1971). Transitions between Up and 

Down membrane regimes can be anticipated in a similar way: current and previous dynamics can predict 

a forthcoming change to a depolarized or hyperpolarized membrane. In the field of signal processing such 

systems are referred to as real-time smoothers, and its implementation is equivalent to a low-pass filtering 

with two cut-off frequencies. 

We consider a time series of intracellular membrane potential samples.  xi represents a sample in mV of 

membrane potential values. This signal is smoothed by computing for each sample a value that averages 

the membrane potential through a given time window. 

In forecasting systems, the standard form of a moving average over the last n values is given at time t by 

the following expression: 

 

(

1) 

A family of implementations can be obtained when the terms in the summation are scaled according to 

some weighting function.  One of such functions weights each value with a constant that decreases 

exponentially with the distance to the current value.  The main property of this exponential weighting is 

that it gives a greater importance to recent values, while integrating over a wide temporal window. The 

price is a higher computational cost. This shortcoming must be taken into account when filtering 

physiological data recorded for a large period of time at a high sample rate.  In such cases, the window size 

could extend along more than one hundred thousand values (2-3 s depending on the acquisition 

frequency). However, the implementation of exponential weighting with a first-order difference equation 

solves this computational problem.  Equation (2) computes the exponential moving average of the last n 

values.  It proceeds by combining the contribution from the previously averaged value, and the current 

value of the signal. 

 
(

2) 

where , and then  (note that α ∈ [0,1), i.e. 1 is excluded). 

The recursion reduces the complexity of the original loop to an order of magnitude (two products and 

one addition).  This expression allows the smoothing of large data vectors in real time on a conventional 

computer. 

Higher values of n will expand the range of past values that influence the current value, strengthening the 

smoothing effect of the average. Parameter n is adjusted according to the dynamics of the signal. For 

example, in trading applications, trend tracking indicators use wide and narrow averaging windows for 

highly volatile and non-volatile prices, respectively. 
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Periods where a signal keeps its tendency to increase or decrease (trending periods) can be tracked with 

fitted exponential moving averages (EMAs), while changes in this trending behavior (trend reversal) is 

detected by crossing over two EMAs with different window sizes.  In the financial world these two curves 

that follow the signal are generally termed short-term (or fast) and long-term (or slow) averages.  For 

example, a short-term EMA integrates something like the last two weeks of the signal (say a commodity’s 

price), while the long-term EMA averages the last three months.  Crossings of the short-term EMA from 

values above the long-term curve to values below it indicate a possible change from the current trend to 

increase (a positive slope characteristic of buying periods) to a new decreasing period (negative slope, or 

selling cycle), while changes from below to above the long-term EMA indicates a change from the 

decreasing trend to an increasing one (negative to positive slope). 

The dynamics of the electrophysiological signal that we intend to characterize depends on several factors: 

cortical region, level of anesthesia, depolarizing or hyperpolarizing currents, etc. While the expected 

frequency is about 1 Hz, in practice (including in vitro and in vivo recordings) this variable ranges between 

0.2 and 1 Hz.  This variability makes it necessary to adjust the method to the dynamics of each particular 

signal. A broad estimation of the frequency of the recorded signal suffices to compute suitable values for 

the window sizes of both EMAs. Expressed in seconds, the size of the windows for the slow average (Ws) 

and the fast average (Wf) are given by the following equations: 

 

 (

3) 

 

(3) 

 
(4) 

Where p is the estimated period (the inverse of the frequency) of the wave to be characterized. Here, 

equation (3) is defined such that the period of the wave is expected to fall below four seconds (or 

frequencies higher than 0.25 Hz).  In a standard situation (frequency around 1 Hz) the slow EMA will be 

six times faster than the original signal. 

The crossing points of the two EMAs are good approximations of the transitions between Up and Down 

states (i.e. of both, Up and Down initiation). However, some extra processing around these points can 

determine more precisely the onsets and offsets. The results clearly improve by analyzing the slope of the 

signal with a simple momentum operation. The momentum is another indicator widely used in the financial 

world to measure market’s sentiment. It is defined as the difference between the current value of the signal 

and a previous value, with respect to the time difference between them. It operates, therefore, as an 

estimate of the slope. More precisely, equation (5) shows this relation. 

 

(5) 

Where k is the time difference, and f is the sampling frequency. For example, if the membrane potential 

recorded at time t is –70 mV, and the value that was sampled 125,000 steps before was –60 mV, a frequency 

of 25 kHz would give a momentum of –20 mV/s, which means that around time t the membrane tends 

to hyperpolarize at a rate of some –20 mV every second. 
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This estimation of the slope is an indicator of the shape of the curve where the transition takes place. 

When the tendency to become hyperpolarized slows down at the end of an Up state, we enter the flat 

hyperpolarized region of the Down state.  In terms of potential’s slope, this is like moving from low 

(negative) values to a zero slope. The reverse is true for entering the Up state: the slope increases as the 

membrane depolarizes. Transitions are therefore computed as the precise moments around the crossing 

points where the momentum raises over a certain threshold.  This limit value is negative when transition 

is made from Up to Down, and positive for Down to Up transitions. 

Finally, those excursions of the membrane potential (identified by the method as Up or Down states) with 

duration shorter than 40ms were filtered out, as in (Volgushev et al., 2006; Mukovski et al., 2007). 

The combination of these two methods (EMAs overcrossing, and a fine analysis of membrane potential 

around the crossing points) reliably characterizes data in ideal and noisy conditions, even in situations 

where the histogram-based approach might fail.  In the rest of this thesis the proposed method will be 

referred as MAUDS and its performance will be tested against the traditional method in differently shaped 

intracellular bi-state data. Blue boxes have been used in the figures to highlight the detected Up states. 
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3.1.3 Spatiotemporal structure of the slow-wave oscillation by simultaneous intra- and 

extracellular recording in vivo using a horizontal multi-electrode-array 

The electrophysiological data we present here, were recorded using a combination of anesthetic and 

analgesic drugs combining the long-lasting urethane with ketamine-xylazine to maintain the level of 

anesthesia and analgesia and to induce slow oscillations. The animals were kept anesthetized during the 

preparation, surgery and in vivo electrophysiological recordings. 

Experimental methods 

All animal experiments were carried out with accordance to the Freiburg University’s and German national 

guidelines as well as with the Spanish regulatory laws (BOE 256; 25-10-1990) which comply with the EU 

guidelines on protection of vertebrates used for experimentation (Strasbourg 3/18/1986). The rats were 

housed in groups of three to four and maintained under standard laboratory conditions, i.e. 12 hour light-

dark cycle; room temperature; ad libitum access to food pellets and tap water. 

Animal preparation for in vivo recordings 

The acute experiments were conducted on adult male Sprague-Dawley rats (400 – 600 g body weight). 

Animals were initially anesthetized with a 20% urethane solution (0.6 ml per 100g body weight, i.p.). 

Urethane is a long-acting (8-10h) anesthetic drug used for long procedures in rodents, which implies 

minimal cardiopulmonary depression and, therefore, no artificial respiration is required. However, it is 

carcinogenic and is only allowed to be used for acute (non-survival) procedures. Furthermore, in order to 

reach a balanced state of anesthesia and analgesia, supplemental doses of ketamine-xylazine hydrochloride 

(10% Ketamine®, 1% Rompun®) were used (20 mg per kg and 2 mg per kg body weight, respectively, i.p.) 

to maintain a surgical level of anesthesia during preparation and subsequent recordings. The depth of 

anesthesia was controlled constantly during surgery and recordings and confirmed by the absence of 

corneal reflex, vibrissal movements and responses to pain stimuli (no hind limb pinch withdrawal reflex). 

To further eliminate painful stimuli, all incised and pressure points were infiltered s.c. with lidocaine 

hydrochloride (Xylocaine®) before surgery initiation. 

After shaving the head and both anterior extremities and the left posterior extremity, the rat was placed 

on a water circulating heating pad and covered with a towel to reduce heat loss, such that along the whole 

experiment the body temperature was maintained within the range of 37ºC to 39ºC and monitored via a 

rectal thermometer. The animal was fixed in a common stereotaxic holder for rodents. For these surgeries, 

the rat’s head is fixed using a tooth bar, nose clamp and ear bar. The head are brought into stereotaxic 

plane by moving the tooth bar assembly and by centering the ear bars. 

With the aid of a homemade three-lead ECG which was connected to the shaved extremities the heart rate 

was controlled all over the experiment. Because under ketamine anesthesia the eyes of the animal remain 

open, these were saved for drying using a fatty ointment (Bepanthen®). In order to compensate the fluid 

loss and to avoid dehydration due to surgery and physiological need during the long term experiment, the 

rat was injected with saline 0.9% s.c. regularly (roughly 2 ml every 2 hours). 

All rats continued to breathe without artificial respiration, and their body were suspended by a clamp at 

the tail to minimize artefacts during the electrophysiological recordings due to respiration movements 

which are transmitted to the brain and, hence, to stabilize the recordings. In some cases, when the 

recordings showed persistent heartbeat or breathing artefacts, resulting in compromised intracellular 
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recording stability, the cisterna magna was punctured in order to drain cerebrospinal fluid (CSF) in order to 

relieve intracranial pressure. 

To disinfect the surgical area, Betadine® was applied with a cotton pad on the shaved part of the head. For 

the visual control of all further fine procedures a surgical microscope (Zeiss OPMI I) was used. The skull 

of the rat was cut with a single incision beginning nostral close to the midline until the end of the head 

bone. Fat and muscular tissue was removed from the periosteum using blunt surgical tools. 

On the counterpart of the recording side, a hole was drilled carefully posterior to lambda above the 

cerebellar area. A clockmaker screw was fixed in this hole in order to serve as a fixation point for the acryl 

cement which is applied later on the head bone.  

For the extracellular recordings a small bone window (about 4x4 mm) was drilled carefully 2 – 3 mm 

posterior to Bregma, and about 5 mm lateral to midline over the left somatosensory cortex medial to the 

barrel field (Fig. 3.1A and B). Without removing the bone window, a funnel of dental acryl cement was 

built around it and filled with HEPES buffered ACSF (artificial cerebrospinal fluid to prevent pH shifts) 

or saline 0.9% to prevent desiccation of the brain tissue. 

For intracellular recordings a second narrow and longish opening was made as close as possible to the 

craniotomy site for extracellular recordings. A dental acryl cement funnel was built around this second 

craniotomy (Fig. 3.1A). After removing the bone, the Dura was resected with eye scissors over the 

recording areas and HEPES buffered ACSF was applied to keep the brain tissue moist. 

The micromanipulators with the electrode holders were fixed/mounted on the oscillation-free table in 

front of each other such that they formed a right angle. 

Multi-electrode-array for extracellular recordings 

For the multi-electrode array mainly seven glass-coated, single platinum–tungsten fiber microelectrodes 

were used (Thomas Recording GmbH, Giessen, Germany) with an impedance of app. 0.5 MΩ and ground 

tip. The outer shank diameter of each electrode fiber was 80 μm and 20 μm for the diameter of the metal 

core. Each electrode fiber was strengthened with a steel tube and were inserted into a grid composed of 

3x3 cut syringe tubes of 400 μm diameter each (Fig. 3.1B and C). Three electrodes were positioned in the 

upper, one in the center and further three electrodes in the bottom row. The distance between two adjacent 

electrodes was 400 μm and the grid dimensions consisted of 1.2x1.2mm. 

Electrophysiological recordings 

Extracellular recordings 

The multi-electrode array (Fig. 3.1D, E, and F) was placed parallel onto the brain surface and special care 

was taken to arrange the tips of the electrodes within the same horizontal plane to ensure recording from 

the same cortical layer. After removing the Dura, the array was slowly lowered perpendicularly to the pial 

surface about 0.5 to 1mm into the brain tissue. To avoid recordings from subcortical structures, electrodes 

were never lowered more than 1.55 mm into the tissue. The movement of the multi-electrode array was 

stopped when clear spike signals on all electrode channels showed a good signal-to-noise ratio. The multi-

electrode-array was then maintained in the same position for the whole experiment. The exposed cortex 

(Fig. 3.1F) was covered with a low-melting-point paraffin wax to provide stabilization and to reduce brain 
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pulsations or, in few cases, just maintained moisture with ACSF.  

The extracellular activity was recorded using a custom made split-box (Multi Channel Systems, Reutlingen, 

Germany) including a band-pass filter for local field potentials (<500 Hz for LFP) and spikes (500 Hz to 

5 kHz). The spike activity and the local field potentials were amplified 8000 times and 5000 times, 

respectively and sampled at 25 kHz together with the intracellular data using a Multi Channel System (Multi 

Channel Systems, Reutlingen, Germany) data acquisition system. After digital filtering, spikes were detected 

on extracellular signal using a simple threshold criterion (MatLab®, Mathworks Inc., Natick, USA) described 

below. No attempt was made to achieve spike sorting as network activity could be estimated from the 

multi-unit activity. 

Intracellular recordings 

Intracellular recordings were performed with glass micropipettes pulled from borosilicate glass 

(Hilgenberg, Malsfeld, Germany) on a horizontal Flaming/Brown puller (P97; Sutter Instruments, Novato, 

USA). The pipettes were filled with a solution containing 1 M potassium acetate and 4% Neurobiotin® 

(Vector Laboratories, Burlingame, CA, USA) for histological cell identification. The electrode resistances 

ranged from 60 – 120 MΩ. The intracellular electrode was positioned medially in close vicinity (~1mm) 

to the extracellular multi-electrode assembly. For this, the two micromanipulators were placed in front of 

each other in a right angle and advanced 1.5 – 2.5 mm into the brain tissue. Recordings and injections of 

currents were made using a high-impedance bridge amplifier (SEC-05L, npi electronic, Germany) and low-

pass filtered at 5 kHz. A reference electrode was fixed within the neck tissue. The ECG was pre-amplified 

and connected to the split-box. All signals were viewed on an oscilloscope and in the Spike2 software 

environment in order to control the stability of the recordings and the signal-to-noise ratio.  
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Figure 3.1: Positioning of craniotomy and recording sites. 
A. Rat skull diagram where the red rectangle indicates the approximate position of the craniotomy site for 
intracellular recording and the blue one corresponds to the extracellular recording site. B. Schematic disposition of 
the intracellular electrode on the left side and the multi-electrode-array on the right above the somatosensory area 
of the left hemisphere. C. Recording electrodes layout. Layout of intra- and extracellular electrodes for the 
experiments. D. Top-View of the 7-electrode array. A 3x3 grid, thus consisting of 9 electrodes in total, with 7 
functional ones. Three in the top row, one in the center, and three in the bottom row. The inter-electrode distance 
for this array was ~400 µm, covering a total cortical area of 1.44 mm2. On the tips black colored remains of 
Neurobiotin® are visible. E. Photograph of the before mentioned electrode grid; left intracellular electrode holder, 
right multi-electrode-array-holder. F. Extracellular electrode tips of the multi-electrode-array over the craniotomy 
site. The cortex surface with blood-vessels is visible. 

During each recording session the spontaneous activity of the intracellular signal together with multi-unit-

activity and local field potentials were recorded simultaneously. The conditions for starting a recording 

session and for data analysis were: multi-electrode-array is stable within the cortex and there is good 

spontaneous activity on all electrode channels,  all intracellular recorded cells show a stable membrane 

potential (Vm) during more than 1 h and more negative than ≤-55mV; stable electrophysiological 

properties without the use of “retaining” i.e. hyperpolarizing current and the ability to generate repetitive 

APs in response to depolarizing current pulses, additionally input resistance >20MOhm was determined 

(offline:). For the bridge compensation within the cell asymmetric pulses of 0.1nA amplitude and 2ms 

duration were used. In order to record subthreshold activity hyperpolarizing current was injected into the 

intracellularly recorded neuron and the negative current was increased until the neuron stopped to spike. 

Further asymmetric hyperpolarizing and depolarizing current pulses of 0.2nA amplitude and 200ms 

duration were included in the protocol of a recording session. 

Histological preparation and reconstruction 

Depolarizing current pulses (1nA, 200ms, 1Hz) were passed through the electrode for 5 minutes after each 

recording session. At the end of experiments, animals were injected with a Ketamine/Xylazine overdose 

and some rats were perfused intracardially with 50 ml 0.9% saline followed by 400 ml of 4% PFA in 0.1M 

phosphate buffer (PBS, +4ºC, pH 7.4). After removal, the brains were postfixed in the same fixative 

overnight and then transferred to 0.1 M PBS for at least 24 hours. The brains were sliced with a vibrotome 

in 100 μm thick frontal sections. The brain sections were incubated in an avidin-biotin-peroxidase complex 

solution (ABC Elite Kit, Vector Labs) and processed for further standard intracellular peroxidase staining. 

After peroxidase staining and mounting on microscope slides, the neuron is reconstructed (Fig. 3.2). 

E F 
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Figure 3.2: Reconstruction of a pyramidal cell filled with Neurobiotin and posterior DAB staining. The 
intracellularly recorded pyramidal neuron after finishing the recording session. It is the same neuron as the one 
of which a 16 s trace of membrane potential fluctuation is depicted in Fig. 4.7. The neuron localized in layer V 
was filled with Neurobiotin at the end of the recording using depolarizing current steps of 1nA during at least 5 
minutes. After transcardial perfusion and removal of the brain, the tissue was histologically prepared with DAB 
staining and reconstructed using a standard light microscopy (LM) and Neurolucida System (MicroBrightField, 
Inc.). The neurons morphology is traced: the soma with typical pyramidal shape, basal axon and abundant apical 
dendrites are clearly distinguishable. Here only one plane of the several traced ones is depicted. 
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4 Results 

4.1 Up and Down states identification using moving averages 

Up and Down states were identified in intracellular recordings obtained from the cerebral 

cortex of both in vitro and in vivo preparations from different areas of the cortex (visual, 

prefrontal and somatosensory). In the first part of the results we describe the properties of 

MAUDS analyzing the recordings with the MATLAB® scripts in an offline fashion. In the 

second part of the results we demonstrate how this method can also be used online, thus 

being useful to exploit the signals that it generates to trigger other events or to obtain 

immediate statistics of time distribution of Up versus Down states under different conditions.  

4.1.1 Properties of MAUDS analyzing the Up and Down states 

The characteristic shape of neuronal membrane potential during slow oscillations shows two 

clearly differentiated states of membrane potential: a depolarized membrane (Up states) and 

a hyperpolarized one (Down states), with relatively fast transitions between them. As said 

before, in short recordings, Up and Down states are often identified by thresholding the 

membrane potential. However, this method frequently fails in long recordings due to 

membrane potential drifting, presence of spindles, and other types of interferences like 

electronic noise or movement artefacts while in vivo (heartbeat pulsation, respiratory 

movements, etc). Even when the aim of the experimentalists should be to eliminate all these 

artefacts, we will exploit them here in order to test the robustness of the described method 

against others commonly used. 

Two problems have to be solved for a good characterization of the states: (1) determining 

the periods where depolarized (Up state) or hyperpolarized (Down state) membrane 

potential take place, and (2) identifying the precise points in time where these states actually 

start and end.  As explained in the methods section, MAUDS tackles these problems with 

an initial broad identification of the Down states by over-crossing two moving averages, and 

a later refinement of the initiation and termination points by a discrete processing of the 

membrane potential evolution in the transition interval.  In general, we have observed that 

MAUDS performs well for any value of the long-term EMA in a wide range.  On the other 

hand, the characterization is slightly more sensitive to the fast EMA.  An optimum window 

size would smooth efficiently the high frequency changes of the membrane potential 

(isolated spikes and artefacts), being also quick enough to detect fast excursions of the signal 

to highly hyperpolarized regions. 

We studied periods of 900 seconds of intracellular fluctuations in recordings from neurons 

in the visual cortex of the anesthetized cat, from neurons in the somatosensorial cortex in 

the anesthetized rat, and from neurons recorded in oscillating ferret cortical slices obtained 
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from prefrontal or visual cortices from the ferret (n = 20).  The traces in (Fig. 4.1A, and 

4.1B) were recorded from two different animals and show the standard state transition 

behavior.  These states are efficiently separated for a wide range of fast and slow EMAs.  

Under these recording conditions, the histograms show two different distributions of 

membrane potentials (Fig. 4.1C and D).  Therefore, a simple thresholding is expected to 

reliably separate Up and Down states.  (Overshadowing blue boxes show the precise limits 

of the Up states found by MAUDS, in this and the following figures.) 

 

Figure 4.1: Offline identification of standard Up and Down states.  
A. Intracellular recording in vivo from a neuron in cat primary visual cortex. Time marks in the horizontal axes 
of the traces indicate 1 second interval (relative labels not shown for clarity). A fast EMA is represented as a 
green line and a slow EMA in red line. The points of crossing between both of them have been used to calculate 
the beginning and end of Up states, highlighted with a blue box. Same in B. B. Intracellular recording in vitro 
from a supragranular neuron in a prefrontal cortex slice from the ferret. C. Histogram of the membrane potential 
values corresponding to the trace in A. It shows two clearly differentiated states separated by a transitional valley 
(see Gaussian fit in green superimposed to the histograms, with parameters -76.6 and -67.0 for the mean, 0.8 
and 5.3 for the standard deviation). D. Histogram of the membrane potential values corresponding to the trace 
in B (fitting curves with parameters -64.6 and -57.0 for the mean, 0.5 and 7.6 for the standard deviation). 

Non-standard Up and Down states arise when the recording scenario departs from these 

ideal conditions. The periodicity and homogeneity of the standard Up and Down states 

disappears, yielding either irregular fluctuations (induced for example by noise or respiratory 

if in vivo), or high frequencies that blur the transitions (especially in the Down states 

initiation). While MAUDS can still deal with these situations (traces and superimposed 

EMAs in Fig. 4.2, A and B), the resulting histogram rapidly loses the bimodal shape (Fig. 
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4.2C and D), making it harder to decide where the right threshold should be located.  Since 

the duration of Up and Down states presents a large variability, it is also difficult to filter 

false transitions according to this feature. The histograms performed over longer recording 

sessions simply showed a smoothed shape, but failed to better define the two-peaks picture.  

Another undesired artefact is signal drifting, caused by changes in the junction potential. In 

principle this effect can be prevented (chloriding silver electrodes, using an agar bridge, etc.) 

and compensated by commercial amplifiers, but it is usual to obtain long sequences of data 

where slow shifts (e.g. Fig, 4.2A) or fast excursions of the membrane potentials can be 

observed.  These variations in the apparent membrane potential do not necessarily reflect 

any change in the current flowing through the membrane but an offset of the membrane 

potential value. Therefore, the bistable fluctuation of the membrane potential during 

rhythmic activity remains, allowing it to be studied in spite of the unstable wave it is resting 

on (Fig. 4.2). 
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Figure 4.2. Offline Up and Down states identification in drifted recordings. A. In vivo intracellular 

recording from a neuron in the primary visual cortex from the cat. A drift in the membrane potential is 

illustrated. B. Intracellular recording in vitro from a neuron in the prefrontal cortex of the ferret. The slow EMA 

follows the average membrane potential, providing a value of reference that discriminates the Up and Down 

levels. See the high frequencies detailed in the inset. Time marks in the horizontal axes of the traces indicate 1 

second interval. C and D. Histograms corresponding the A and B traces respectively. Note that in the drifted 

recordings the bimodality of the Vm values is not as clear as in stable recordings like in Fig. 3.1. 

In addition to drifted recordings, the proposed method correctly separates Up and Down 

states where special events take place, such as the absence of spiking activity in a 

hyperpolarized membrane with subthreshold oscillations (Fig. 4.3, A and B traces), the 

presence of isolated synaptic potentials (or even spikes) along well-defined Down states (Fig. 

4.3C shows a synaptic potential between the first and second Up states), frustrated Down 

state initiations that might generate misclassifications (Fig. 4.3D), or recordings during 

respiratory or other movement artifacts (Fig. 4.4A), where the underlying slow oscillation is 

still present (detailed in Fig. 4.4B).  

 
Figure 4.3. Offline detection of Up and Down states by MAUDS in special situations. A and B. Correctly 
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identifying Up states where no action potentials occur in highly hyperpolarized neurons recorded in vitro in 
prefrontal cortex from the ferret. Note that in B there is correct detection of Down states in spite of the 
repetitive occurrence of short lasting sharp events. C. Filtering isolated synaptic events occurring in the middle 
of a Down state. D. Sorting suspicious Down states intermingled into long-lasting Up states (third Up state). C 
and D correspond to intracellular recordings obtained in vivo from cat’s primary visual cortex. In all panels time 
marks in the horizontal axes of the traces indicate 1 second interval. 

 

The histograms of membrane potential show that some bimodal distribution remains (Fig. 

4.4D) over stable intervals, but it vanishes when applied to a few seconds interval (Fig. 4.4C 

shows the histogram for the trace on Fig. 4.4A). 

  

 
Figure 4.4. Offline identification of Up and Down states in intracellular recordings with artifacts. A. 
Intracellular recording from primary visual cortex of the cat in vivo. There is a respiratory movement artifact that 
generates rhythmic drifts of the membrane potential.  B. Detail of a portion of the membrane potential shown 
in A (second 15, 16, 17). Time marks in the horizontal axes of the traces indicate 1 second interval. C and D. 
The distributions of membrane potentials in panels A and B, respectively. 

 

In order to compare the performance of MAUDS with that of the histogram method, 5 

recordings containing standard slow oscillation were selected (for an overall time of 145 s) 

and the corresponding transitions were obtained based on the histogram (best manual fitting) 

and with MAUDS, where a broad estimation of the oscillation frequency parameterized the 
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slow and fast EMAs.  With regard to effectivity, both methods correctly identified all the Up 

and Down states present in the recordings. On the other hand, the precision of MAUDS 

was compared to the histogram-based characterization according to the Coincidence Index 

(CoIn) described by Mukovski et al. (2007) which provides a quantitative measure for the 

degree of overlap in the occurrence of states in several signal channels and depends only on 

the length of their timing but not on the total length of recording. The mean degree of 

overlap computed between the two series of Up and Down states was 91.7 ± 0.8%, with a 

97.7 ± 1.6% CoIn for the Up states, and a 85.7 ± 2.8% for the Down states.  This value 

shows that MAUDS has a high precision in determining the transitions with respect to the 

traditional histogram approach. 

Although the histogram method performs similarly in characterizing standard oscillations, 

the previous examples show that a fixed threshold will not characterize well the underlying 

slow oscillation in non-standard recordings. Determining the threshold for standard Up and 

Down states can easily be done in a manual way, but a criterion to deal with non-standard 

behavior (as in the previous examples) has not been proposed yet in the literature.  For this 

reason, MAUDS performance cannot be compared to a histogram-based characterization of 

non-standard slow oscillations. 

In order to use MAUDS for the online analysis of intracellular recordings, the script was 

integrated in the Spike 2 (Cambridge Electronic Design, Ltd.) data acquisition software.  As 

described in the Methods section, two different implementations have been coded and tested 

for online characterization. While the characterization of the electrophysiological signal is 

equivalent in both versions, the computational resources and times used differ significantly.  

The script version has the advantage of being coded in a high-level programming language, 

which is easy to understand and update by potential users. In contrast, the assembly version 

results extremely cryptic and is not suited for further modification by users. On the other 

hand, the script runs on the computer’s processor, which means that it shares the resources 

with the recording process (that has a higher priority) resulting in characterization times that 

do not allow real-time triggering (around 1 s on a Pentium IV processor).  Furthermore, the 

assembly language runs on the sequencer (see Methods for details), and has the advantage of 

a processing time that is completely independent of the computational resources, the 

system’s load, and the recording process itself.  The sequencer processes 20 instructions per 

millisecond, allowing a real-time interaction with the experiment: stimuli can be triggered 1 

ms after the transition has been detected. 

The assembly version was used to perform online characterization and pulse triggering. The 

detection of the transitions between Up and Down states was set to generate a 1-bit digital 

signal, differentiating the current Up or Down state present in the voltage recordings. This 

signal was recorded and used externally to trigger events by connecting it to other equipment. 

Online analysis of Up and Down states was performed in more than 40 intracellular 

recordings during slow oscillations occurring in the cortex of anesthetized animals in vivo 

(visual, somatosensory) and in vitro (visual, prefrontal). The results of the online analysis are 

illustrated in Figs. 4.5 and 4.6. Figure 4.5 represents the detection of Up states during three 
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different intracellular recording in vivo: supra- and subthreshold Up states of different 

durations and amplitudes are equally detected during the recording. Identification of Up and 

Down states during recording from a fast spiking neuron (Fig. 4.5A) in primary visual cortex, 

during a drifted recording from a regular spiking cell (Fig. 4.5B) or subthreshold Up states 

recorded from rat barrel cortex (Fig. 4.5C) are illustrated. Online analyzed drifted recordings 

(Fig. 4.5B) were still well identified. In Fig. 4.5B a small depolarization remained 

undetected. However, this depolarization could hardly be defined as Up states even by visual 

inspection and manual classification.  

 
Figure 4.5. Online detection during intracellular recordings in vivo. A. Up states recorded in a fast spiking 
neuron in the primary visual cortex of the cat. B. Online detection of Up and Down states in an intracellular 
recording in cat primary visual cortex during subthreshold and suprathreshold Up states in a drifted recording 
(note that due to the drift the suprathreshold Up states seem to be more hyperpolarized than the subthreshold 
ones). In A and B spikes have been truncated. C. Online detection of Up states recorded in the barrel cortex of 
a rat. In all these cases the animals were anesthetized with ketamine and xylazine (see Methods). In all panels 
time marks in the horizontal axes of the traces indicate 1 second interval. 

 

In vitro recordings were also analyzed online (Fig. 4.6A and B), and subthreshold Up states 

are displayed, along with the population activity reflected in the multiunit recording in close 

vicinity of the intracellularly recorded cell. In a different neuron (Fig. 4.6B), the signal 

generated by the detection of the initiation of the Up states was fed into the intracellular 

amplifier (Axoclamp 2B, Molecular Devices Co.) in order to generate a step of hyperpolarizing 
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current. By regulating the delay of occurrence of the current injection, the input resistance 

of the neuron could be measured at different times with respect to the initiation of the Up 

states. This signal could have been used equally for the triggering of other events of 

stimulation or analysis. 

 
Figure 4.6: Online detection of Up states and their use as triggers. A. Online detection of Up states during 
in vitro intracellular recordings in primary visual cortical slices from the ferret. Bottom trace: extracellular 
multiunit recording representing the population firing in the vicinity from the intracellular recorded neuron. B. 
Online detection of Up states in a recording from ferret oscillatory slices, primary visual cortex. In this case the 
beginning of the Up state has been used to trigger a hyperpolarizing pulse (-0.2 nA) at different times with 
respect to the occurrence of the Up state in order to estimate changes in the input resistance. C. Slow oscillations 
in the barrel cortex of the ketamine anesthetized rat. Unfiltered local field potential (top) and intracellular 
suprathreshold recording (bottom). D. Averaged Up states (n=20) using the detection of initiation of Up state 
as a point of reference with online MAUDS analysis, LFP (top) and intracellular recording (bottom). E. 
Subthreshold oscillations. F. Averaged intracellular responses to a puff of air to the whiskers (n=20). The 
sensory response is highlighted with a yellow box. Same in G. G. Averaged Up states while giving the whisker 
stimulation at regular intervals after the initiation of the Up state (5 in each case), four intervals are represented. 

Online detection of Up states was also used to average Up states and thus determine the 

shape of the Up state rising time, as it was done for slow oscillations recorded in the barrel 

cortex of the ketamine-anesthetized rat (Fig. 4.6 C, D). A puff of air delivered to the 

whiskers induced a consistent sensory response that was recorded intracellularly in the barrel 
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cortex (Fig. 4.6F). The signal generated by the online detection of the Up states’ initiation 

was also used to trigger the sensory responses at particular intervals after the initiation of the 

Up states, thus allowing systematic average of different trials (Fig. 3.6G).  
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4.2 Spatiotemporal structure of spontaneous slow-wave oscillations in 

the neocortex 

By combining seven extracellular recordings with one simultaneous intracellular recording, 

we investigated the spatio-temporal structure of slow-wave activity in vivo in the rat 

somatosensorial neocortex under ketamine/xylazine anesthesia.  

To monitor the spatio-temporal pattern of cortical state-transitions in a tangential plane, a 

planar array of 7 extracellular electrodes distributed on a 3x3 grid, as shown in Fig. 3.2A and 

Fig. 3.2C, was used including differential filtering for multi-unit-activity (MUA) and local 

field potential (LFP) signals (Fig. 4.7). All electrodes were protruded together into the 

somatosensory cortex medial to the barrel field (Fig. 3.2A, B and C). Recording depth was 

less than 1.5 mm. After successful positioning of the extracellular electrode array, a stable 

intracellular recording in the vicinity of the array (distance of <1 mm) was established. The 

intracellular recording was used as a point of reference to detect the state transitions of the 

slow-wave oscillations based on synaptic activity. Triggered on these state transitions, 

multiple episodes of spike activity were extracted from the extracellular electrodes and the 

state transition was determined for each of the individual electrodes from the averaged 

episodes. The emerging spatiotemporal pattern was then tested for pattern consistency and 

variability across repeated activity waves employing single trial rate estimates. 

While in the previous section (section 4.1) the MAUDS method was described and discussed, 

in this section the common histogram based analysis was performed in order to study the 

spatio-temporal structure of spontaneous slow-wave oscillation. Furthermore, the data 

analysis of the recordings involving the 7-electrode array (3 x 3 grid), positioned parallel to 

the pial surface, is detailed. 

4.2.1 Down-to-Up transition 

During a recording session, as described previously in the Methods section data was recorded 

only when several conditions were met. First, at least 5 out of the 7 electrodes in the array 

had to show some type of multi-unit activity. Second, the membrane potential of the 

intracellular electrode had to be stable and hyperpolarized to at least - 65 mV. Recording 

times ranged between 90-620 seconds depending on the stability of the intracellular 

membrane potential. Prior to starting the actual data analysis, the raw data was carefully 

looked over to pre-select which data had the desired characteristics. These included clear Up 

and Down states in the intracellular data, increased multi-unit activity in the extracellular data 

approximately coinciding with the Up state in the intracellular recording, good signal to noise 

ratio and no artifacts such as 50 Hz noise. See Fig. 4.1 for examples of raw data that full-

filled these requirements. Five intracellular recordings from 4 rats were included in the 

analysis. 
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As previously mentioned, the anesthetics urethane in combination with ketamine/xylazine 

leads to fluctuations in membrane potential, namely Up and Down states. The first part of 

the analysis involved the detection of both the onset and offset of these two states, which 

can be carried out using different techniques as previously mentioned. One proposed 

technique uses the spectral differences in recorded local field potentials (LFPs) during active 

and silent states for their detection method (Mukovski et al., 2007). Given that LFPs are 

lowpass filtered extracellular recordings, this would justify the use of extracellular MUA for 

the extraction of state transitions, a principle we made use of in our later analysis. Other 

techniques for the identification of active and silent states required the use of simultaneously 

recorded electroencephalogram (EEG) or electrocorticogram (ECoG) (Waters and 

Helmchen, 2006).  

Two additional methods, based on the simultaneous intracellular recording, can be 

performed in two slightly different ways. In the first method, a three-dimensional plot was 

constructed consisting of the mean and standard deviation determined for a 50 ms running 

window. As seen in Fig. 4.8, the Down states are represented by a sharp peak at 

hyperpolarized membrane potentials (~-69 mV) and very small standard deviations (~0.6). 

The Up state on the other hand is not as clearly discernable, only a broader peak centered at 

a membrane potential of about -58 mV and a standard deviation of about 6.3 give hints on 

the position of the Up state. The pseudocolor plot underneath the histogram is a slightly 

better depiction of the two states. Here, the Up state region is outlined in red and the Down 

state region in orange. 

A second method for the identification of the two states is to plot the membrane potential 

distributions and by the resulting bimodality of the plot, which is due to the presence of the 

membrane fluctuations, the two states can be separated. The Fig. 4.9B shows the bimodal 

distribution of a 20 s intracellular data recording. The peak located at more hyperpolarized 

levels represents the Down states, whereas the somewhat broader, smaller amplitude peak 

represents the Up states. Not in all cases were the peaks this clearly separable. Occasionally 

the smaller peak was absent and an approximation had to be made regarding its location. 
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Figure 4.7: Intracellular, extracellular and LFP raw data. Upper trace: 16 s of raw data of intracellular and 
extracellular data recorded from seven electrodes in somatosensory cortex from rat. Depicted as it comes out 
of a recording session, before any analysis is applied. The first row corresponds to the intracellular membrane 
potential fluctuations of a neuron situated in the left somatosensorial neocortex of the rat. The MUA recorded 
with each of the 7 extracellular electrodes situated in close vicinity to the intracellular electrode is shown below. 
The membrane potential shows regular state transitions fluctuating between hyperpolarized (Down state) and 
depolarized (Up state) Vm values with action potentials occurring during the Up state. The membrane 
potential fluctuations during the Up state show a higher variability than during the Down state. The Up and 
Down states of the intracellular data correlate on a coarse time scale with the silent and active states of the 
MUA. Middle trace: Same time window (16 s) as in the upper trace (MUA), raw data of intracellular recorded 
data and LFP recorded with the same electrode and lowpass filtered signals. Bottom trace: A. This trace shows 
the first 10 s of intracellular raw data. The Up and Down state transitions are visually easily detected, with the 
Up states characterized by the occurrence of action potentials, whereas during the Vm remains hyperpolarized, 
-62mV. B. and C. Extracellular multi-unit-activity (MUA). In C the signal-to-noise ratio is slightly better 
compared to C. The occurrence of an Up state in the intracellular recording approximately coincides with an 
increase in activity in the extracellular recordings. 

This usually tended to occur when the ketamine-xylazine anesthetic effect had almost worn 

off and the Up and Down states became indistinct. Once the rat was re-injected, normal 

state transitions re-appeared within 6-10 minutes. 

 
Figure 4.8: Mean membrane potential and STD. During Up and Down states, two parameters can vary, 
the Vm and its variability. For the above plot the mean Vm potential and the standard deviation (STD) for 
a 50 ms running window were calculated. The sharp peak with the rather low STDs is formed by the Down 
states, whereas the smaller, broader peak at higher STD values, represents the Up states. The outlined regions 
in the pseudocolor plot underneath mark the Up and Down State regions. (Adapted from Volgushev et al. 
2006) 

For the detection of the two states, both of the above mentioned methods work well. In this 

present case, the latter method was implemented, excluding an analysis of the variability of 

the membrane potential. Thus, after the detection of the two peaks in the membrane 

potential distribution, the interval between them was divided into four equal segments. 

Starting from left to right, the line separating the first from the second segment was used as 

a threshold for the detection of the Down states, whereas the line separating the third from 
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the fourth segment was used as a threshold for the detection of the Up states. 

 

 
Figure 4.9: Up and Down Detection using 
histogram based method. A. Traces of 3.5 s of 
intracellular raw data with threshold levels used 
for the state detection. The upper blue dashed 
line is the threshold for the detection of Up states 
while the lower one is the threshold for the 
Down states detection.  

B. Plotting the Vm distribution allowed for the detection of two peaks. The distance between them was 
determined and 25% of this value added to the VM value of the Down peak, then subtracted from the Up 
peak. These values were then used as thresholds, as seen in the raw data segment in A. C. Expanded view of 
the segment marked with the bar in A showing how the distance between the state transitions and the first 
(STD_Up) or the last detected spike (STD_Down)  were determined for the entire data segment. 

Fig. 4.9A shows a short time interval of intracellular raw data with the corresponding 

threshold levels for the detection of the state transitions. Occasionally, peaks would cross 

the upper threshold level and could be wrongly identified as Up states. To avoid this type of 

problem, we defined Up states as having a duration of at least 200 ms. An additional analysis 

done at this point was to determine two different parameters, the average delay and variability 

of (1) the first spike with respect to the onset of the Up state, and (2) the last spike with 

respect to the offset of the Up state. Once these delays were found, we also determined their 

standard deviation, as seen in Table 1. The results for eight intracellularly recorded neurons 

are shown. On average, the time interval for the Down transitions was slightly higher 

compared to the Up transition. Hence, we can conclude the onset of spiking in the Up state 

represents more faithfully the state transitions times compared to the offset of spiking. This 

result contradicts the findings reported by Volgushev et al. (2006). They found that the 

Down state transitions begin more synchronously compared to the Up states, due to the 

activation of inhibitory interneurons towards the end of the Up state. 

4.2.2 Detection of extracellular spikes 

At this point, the transition times were obtained from the intracellular data, which defined 

where an Up or Down state was occurring. These times could now be used as triggers to 

detect spikes within the extracellular data. A 400 ms stretch of extracellular data was used to 

search for spikes (200 ms before and 200 ms after the intracellular transition). For the 
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extracellular spike detection, the raw data was first low-pass filtered at 1 kHz and 

subsequently rectified. We then determined the median of this rectified data, plotted the first 

two seconds worth of filtered raw data and superimposed four possible threshold levels. 

These threshold levels were set to “4· median”, “6· median, “8· median” and “10· median”.  

 

The median instead of the mean was taken because it gave a more robust estimate and was 

less sensitive to spikes.  In order to make this analysis as automated as possible, we chose 

the threshold level by going through these plots one by one for each extracellular channel. 

Fig 4.10 shows two examples of such plots.  

 

 

Figure 4.10: Extracellular spike extraction. A. The black trace represents the raw data while the green 
trace corresponds to the low-pass filtered data. By plotting various threshold levels as multiples of the 
median, the most appropriate threshold for the analysis could be determined. The colored vertical lines 
located on top of the traces are the spikes detected using the corresponding median. For this particular trace, 
the green threshold, thus 6·median would have still worked satisfactory for the detection of most units. But 
as depicted in B., this threshold level detects very few spikes because of the “grassy” signal. While using 
4·median, spike extraction results feasible, even in cases where, like in B, the signal to noise ratio is low and 
thus MUA is more difficult to distinguish. 
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In this study “4· median” was used as threshold for extracting extracellular spikes to detect 

as many units of the multi-unit activity as possible, without detecting any noisy fluctuations 

possibly found within the Down state phases of the extracellular data. A higher set threshold 

would have meant that only a few or even no spikes would have been detected in any raw 

data with a low signal to noise ratio. In this case the best fitting was the threshold level 4· 

median, which was allowed to detect spikes in cases where the signal to noise ratio was good 

and also when it was not as good. 

4.2.3 Estimation of the neuronal firing rates 

Depending on the number of state transitions, either Up-to-Down or Down-to-Up, found 

within the intracellular recording, a corresponding number of spike trains were extracted 

from the extracellular recordings. These spike trains were then used to calculate single-trial 

rate estimates by applying the so-called kernel approach. This is a way to estimate the 

neuronal firing rates and involves the convolution of the spike trains using specific kernel 

functions. A detailed description of this method has been described in Nawrot et al. (1999). 

Each spike train extracted can be described by the following rate function:  

𝜆(𝑡) ≔ ∑ 𝐾(𝑡 − 𝑡𝑖)
𝑛
𝑖=𝑡  ; ti represents spike times 

K(t) is the kernel function used and in this case a symmetric, triangular kernel described by 

the following parameters was applied:  

𝐾(𝑡, 𝜎) =
1

6𝜎
(√6𝜎 − |𝑡|) 

σ is the width of the kernel and can also be seen as the smoothing parameter because it 

specifies the temporal resolution of the resulting rate estimate. The success of the rate 

estimation method depends critically on this particular parameter (Nawrot et al., 1999). A 

specially written MATLAB® function was used to derive this optimal kernel width for each 

spike train individually. Then the median of these calculated widths was used as the kernel 

width of choice and the single-trial rate estimates could be determined using above 

mentioned equation. The Fig. 4.11A shows 15 individual superimposed spike trains and in 

the plot below the corresponding 15 single-trial rate profiles. Clearly, for these Down-to-Up 

transitions, the rates tend to almost uniformly increase after the transition occurs within the 

intracellular data, which in these plots occurs at 0 ms. 
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Figure 4.11: Single trial-rate estimation. A. An example of 15 superimposed spike trains. The time 
window is 400 ms, centered on the Down-to-Up transitions occurring within the intracellular data. 
In B. the individual convoluted trials are seen as indicated by the blue curves, whereas the thicker 
represents the mean of these trials. 

 

Nevertheless, it is important to point out that not every extracellular spike train showed an 

increase in activity during the Up state. Instead, sometimes within the 400 ms time window 

no spikes would occur at all, or the Up state would have no detectable spikes. These incidents 

were removed prior to any further analysis by performing a nonparametric test of the null 

hypothesis (Mann-Whitney U test) by comparing the inter-spike intervals of the 200 ms time 

interval before the state transition to the 200 ms time interval after the transition. Depending 

on whether we were interested in the Down-to-Up or Up-to-Down transitions, two of the 

four possible scenarios were removed. 

For the next step of the analysis, the convoluted trials were used to find the minimum and 

maximum of each curve and then half of this distance was calculated. Then we searched for 

this rate value starting from the maximum and moving leftward. The first value found was 

taken, even if further searching leads to additional values. The resulting answer was in units 

of milliseconds which was the time required by this particular extracellular spike train to 

reach a firing rate defined by the previously mentioned threshold level. A histogram was then 

plotted using these times placed in bins of 10 ms size. Figure 4.12 shows data of 480 s length 

in which a total of 565 transitions from Down-to-Up were detected, the spike trains 

convoluted and the threshold time determined.  The peak of this histogram lies very close to 

zero and constitutes the intracellular state transition time, which means that this particular 

extracellular electrode crosses the threshold rate at the same time the state transition is 

crossed. 
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To get a better picture of what these histograms and rate functions look like for all 

extracellularly recorded channels the results were represented in one single plot and arranged 

each to correspond to its position within the 7-electrode array (Fig. 4.13). Each extracellular 

electrode records the activity from a multitude of neurons located either close to the 

electrode tip, indicated by spike waveforms with large deflections, or further away, as 

indicated by smaller waveform deflections. A sorting procedure via template matching for 

example would distinguish these waveforms and indicate approximately from how many 

neurons activity was recorded. No such spike sorting was performed for this analysis, so that 

each electrode records the activity from a population of cells, hence delivering the so-called 

multi-unit-activity (MUA) mentioned before.  

 
Figure 4.12: Threshold rate histogram. The threshold rates of 565 individually 
convoluted spike trains are depicted. The threshold was defined as the maximum minus 
the minimum of the spike rate estimation curve and then divided by two. The obtained 
times were placed in bins of 10ms size and represented in histograms as shown here. 
The red vertical line represents the state transition within the intracellular recording.  

Within each of the plots of Fig. 4.13, the peak of the histogram, representing the time at 

which the rate crossed a certain threshold value (max.-min./2), has the tendency to be 

situated close to 0 ms coinciding with the time of the intracellularly determined state 

transition. This means that the population of neurons recorded by each of the 7 electrodes, 

increase their activity simultaneously centered at the state transition, in this case the Down-

to-Up transition. 

In order to offer a better visual representation of this data, a pseudo-color plot was 

implemented. On the abscissa we plotted the transitions and on the ordinate, the electrode 

number or channel. Each electrode at each transition has a particular threshold crossing time, 

which is color-coded here with respect to the state transition within the intracellular 

electrode, as indicated by the color bar. The Fig. 4.14A shows the pseudo-color plot for a 

Down-to-Up transition.  Looking at each electrode independently, a considerable variability 

in the responses is observed, ranging all the way from –200 ms to 200 ms, as indicated by 
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the different colors. Any transition left blank, or white, corresponded to trials removed via 

the Mann-Whitney U test. Comparing the threshold crossing times between electrodes, in 

this representation of the data, the variability is such that there is no unique pattern in the 

activity spreading across the electrodes. 

 

 
Figure 4.13: Spike train alignments to the Down-to-Up transitions. The single trial rate estimations 
for 565 Down-to-Up transitions are depicted in light gray curves. The threshold crossing of each of these 
rate estimations are represented by the histograms (bin size 10ms). The average of the 565 individual rate 
estimation profiles (mean) is depicted by the blue curve. These seven plots (Ch1-7 according to seven 
recording channels) correspond to the recordings of each of the seven extracellular microelectrodes as 
located in the 7-electrode array. The arrangement thus is equivalent to the position of the electrodes in this 
particular array. In all recording channels, the histogram peak is located around 0 ms, indicating that all 
electrodes tend to cross the threshold simultaneous to the state transition occurring in the intracellular 
recoding (red vertical line). Hence, the recorded MUA from a total of seven electrodes positioned within 
a cortical area of size 400x400 µm increases at the same time coinciding with the state transitions detected 
in the intracellular recorded neuron.    

For a further analysis of this data and determine if there is a pattern in the spreading activity, 

the average (mean) threshold crossing time and its corresponding standard deviation was 

calculated (Fig. 4.14B) observing that electrode 3, in this example, has the smallest average 

value, meaning that, in comparison to the other electrodes, its MUA increases the earliest. 

Based on the hypothesis that the discharge caused in this electrode is due to a propagating 

wave front, an approximation regarding its direction can be made: The propagating wave 

front has its origin at electrode 3, travels onward to electrodes 4 and 7, then passing electrode 

2 and 1. 
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Figure 4.14: Down-to-Up state transition times of MUA. A. Pseudo-colored plot depicts the threshold 
crossing times of all seven electrodes in the array, where each color represents a specific time (ranging from 
-200 to 200ms) being 0 ms the state transition as determined by the intracellularly recorded neuron. All 
values are thus compared to this state transition. In this representation of data, within a single electrode, the 
threshold crossing times show a high variability not allowing to elucidate any pattern. Nevertheless, 
additional analysis depicted in B, where the mean threshold crossing times for each electrode and the 
standard deviation (StD) were determined, show that electrode 3 tends to cross threshold first followed by 
electrodes 4, and 7, passing to electrode 2 and then electrodes 1 and 6, being electrode 5 the last to cross 
state transition threshold.  

Finally, the activity reaches electrodes 6 and 5. This rather unusual direction of propagation 

can be pointed out by averaging not only the individual threshold crossing time values but 

also their corresponding color (Fig. 4.15). 

 
Figure 4.15: Spreading activity in the Down-to-Up transition. Wave propagation analysis for the 
Down-to-Up transitions. Each square represents the average color of the threshold crossing times and 
its location, the position of the electrodes in the array. Upon visual inspection, the direction of activity 
propagation starts in the lower electrode row and moves diagonally, ending in the upper right corner 
of the array as indicated by the arrow.  
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In this Fig. 4.15, each colored square represents the averaged threshold crossing time, and 

their arrangement shows the position of each of the 7 electrodes in the array. Both a specific 

origin as well as a direction of propagation can now be determined. Another way of better 

representing this threshold data was to, instead of plotting the pseudocolor plot, simply make 

a scatter plot of the threshold values. The result obtained for all 7 electrodes was the same 

as the observed in the pseudo-color plot (Fig. 4.16). The variability seen in Fig. 4.14 is 

observed here, too, but no additional information regarding the data can be extracted from 

this representation.  

 

Figure 4.16: Dot display of Down-to-Up state transition times of MUA. The dot display depicts the 
same information as the pseudo-colored plot except that the threshold crossing times are not in different 
colors but in simple dots showing the scatter with the variability in the transition times. 

In order to determine whether there is any correlation and dependence, meaning a statistical 

relationship between the activities recorded by the electrodes, a cross correlation was 

performed for all electrodes (Fig.  4.17). The scatter of the MUA recorded by each electrode 

(lower left diagonal in Fig. 4.17) was plotted against their corresponding sample correlation 

coefficients (Pearson coefficients, upper right diagonal in  Fig. 4.17). Each square in the 

lower left diagonal thus corresponds to its mirror-image in the upper right, for example the 

correlation coefficient for electrode 1 cross-correlated with electrode 3 is equal to 0.27. The 

term correlation is defined as ”…the departure of two variables from independence.” If the 

variables, i.e. the threshold crossing times, are independent then the correlation coefficient 
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is 0. If, on the other hand, the correlation coefficient is near 1, the variables will be correlated 

and the scatter plots will show a linear relationship. As indicated by the plots as well as the 

coefficients, there is no apparent correlation between any of the electrode pairs. Electrode 5 

and 6 seem to be the most correlated, with a value of 0.45. On average the correlation 

coefficient for this data is at 0.23 ± 0.11, it must be assumed there is no correlation. 

 
Figure 4.17: Cross correlation of all 7 electrodes in the array. The total recording time was 480 s with a 
total of 565 Down-to-Up transitions detected. The cloud of MUA tends to be centered around 0 ms, but 
none of the pairs of electrodes seem to be correlated to one another, as indicted by the corresponding 
correlation coefficients. The pair with the highest value is electrode 5 and electrode 6 with r=0.45. 

However, as observed in the single trial-rate estimation (Fig. 4.11) analysis not all spike trains 

increase their rate at the same time. In addition, this rate increase does not always coincide 

with the state transition of the intracellular recording. This latter characteristic is termed 

response latency. This response latency variability can be eliminated applying a nonparametric 

method in order to better determine the temporal relation between the transitions states and 

the extracellular responses. The method uses the single-trial rate estimates and maximizes 

their total pair-wise correlations by shifting them aptly. It is a multi-step process that starts 

out by determining single-trial rate estimations for all spike trains, identical to the procedure 

described before. Then, in order to obtain an “optimal” alignment of the spike trains, the 

cross-correlation between each trial is calculated via the following equation:  

𝐶𝑖𝑗(𝜏𝑗 − 𝜏𝑖) = ∫𝜆𝑖 (𝜏 − 𝑠)𝜆𝑗(𝜏𝑗 − 𝑠) 𝑑𝑠 

Where i and j represent any pair of trials. A parabolic function is then fitted to each of the 

cross-correlation functions at the point where it is maximal. Then the sum of all parabolas is 
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taken, which turns out to be a quadratic function with a so-called global maximum. This 

value then is used to determine the exact shifts required for the alignment as detailed by 

Nawrot et al. (2003), Baker and Gerstein, (2001), and Ventura (2004). 

In order to get a better picture of what occurs during this shifting procedure, a raster display 

of spike event for 28 trials or transitions is shown in Fig. 4.18, both before the shifting and 

after, in so called spike raster diagrams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Spike raster diagrams. The diagrams show spike trains before alignment A and after alignment 

in B. The light red shaded region in A restricts the time interval used by the shifting algorithm, while in B the 

individual shifts for each spike train. Comparing the 2 raster displays, it can be observed that although shifts 

were applied, the alignment is not very clear due to the large kernel width used in this example (σ was 90ms). 

In Fig. 4.18 both raster plots tend to look very similar and upon closer inspection of both 

these plots, it became clear that the alignment algorithm had not done what it was meant to 

do. A first approach to explain this is in having used a wrong time window, such that the 

algorithm “is run over”. Therefore, instead of looking at the entire 400 ms time interval, the 

time window was reduced by 100 ms from either end. But this attempt turned out that the 

raster plots looked the same as before concluding that the shifting algorithm was causing the 

problem. A second approach was to think that the unclear alignment was due to the 

determination of the rate estimates, thus the convoluted single-trials. If a spike train only 

contains a few spikes, thus a very low firing frequency, the kernel used in such a case should 

be rather wide, meaning that σ should be quite large. 
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On the other hand, if the firing frequency is high, the kernel used for the rate estimation 

should be small. A kernel width was determined for each spike train separately and 

subsequently the median taken which was used as the optimal kernel width. For the particular 

example shown in Fig. 4.18, this width was calculated to be at 90 ms.  This value was quite 

large, especially due to the very high firing rates seen in certain trials. Consequently, fixed 

kernel widths were implemented starting at 50 ms, 30 ms, 20 ms, 10 ms and 5 ms. The 

resulting raster displays are seen in Fig. 4.19. The smaller the kernel width gets the better the 

alignments with an optimal σ lying somewhere between 10-20 ms. According to the previous, 

instead of applying the MATLAB® function that estimated the optimal kernel width, fixed 

kernel widths could deliver a more suitable analysis of the present kind of data. Resulting 

from this estimation, all further data analysis shown was calculated using a kernel width of 

10 ms if not noted otherwise.  

 
Figure 4.19: Raster displays of shifted spike trains using kernel widths of various length. In A, a 
kernel width of 40 ms was used and the spikes still appear scattered, i.e. not clearly aligned. Comparing this 
result to D, with a kernel width of 5 ms an improvement in the alignment can be observed and 
consequently the optimal kernel width was estimated to be between 10 to 20 ms. 

After having determined the shifts using the rate profiles, the spike train data was placed in 

one single vector and a peri-stimulus time histogram (PSTH) of the spike trains to visualize 

the rate and timing using a bin size of 1 ms, which was passed over the 400 ms data resulting 

in a cumulative spike train over all trials (Fig. 4.20A). For this cumulative spike train its 

empirical rate function was calculated (Fig. 4.20B), using a kernel that was not fixed but 

could be optimally determined because of the fact that in this case it was only one single 

spike train and not multiple. Because of the rather high firing rate seen in this average train, 

the kernel width was correspondingly small in the range of 10-15 ms. The rate profile was 

used to determine the half maximum; in case of bimodality, i.e. if more than one value was 

found to cross this threshold value, only the first one was used. 
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Figure 4.20: Cummulative spike train and resulting rate estimation. A, PSTH of the 
cumulative spike train. A total of 93 spike trains were used for the histogram from 100 s raw data. 
B, based on the cumulative spike train the single trial rate profile was calculated (red curve). Kernel 
width was 11 ms. Dashed red horizontal line shows the location of half the maximum.   

Once the shifts and the time indicating the extracellular onset were determined, a more 

reliable alignment could be achieved in order to minimize the variability in the latency 

response. For this, these shifts were subtracted from the onset value to obtain the times at 

which the individually shifted spike trains reached the desired threshold of half the 

maximum. As was done with the threshold values prior to the alignment, the times were 

again plotted in a histogram using a bin size of 10 ms. Compared to the results shown in 

Fig. 4.13, a different histogram curve is observed. Indeed, as seen in Fig. 4.21, the histogram 

was not as broad as in Fig. 3.11 and due to the alignment procedure, the peak has shifted to 

the left and thus was not centered at 0 ms anymore. Hence, the MUA increased its rate 

approximately 10-50 ms prior to the state transition. 
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Figure 4.21: Threshold rate histogram after subtraction of shifts. A sharp and narrow peak can 
be observed after the alignment of 565 spike trains. All tend to reach the threshold 10-50 ms prior 
to the intracellular transition indicated by the red vertical line centered at 0ms. 

In order to see if this pattern was also observed in the other 6 extracellular recordings all 7 

electrodes were plotted as previously shown in Fig. 4.13. The blue vertical line is located at 

the extracellular onset (Fig. 4.22), thus the time at which the threshold of half the maximum 

is reached within that particular channel. By comparing its location with that of the 

intracellular transition, here located at 0 ms, it can be determined at what time, either before 

or after the state transition, the extracellular activity reached threshold. Electrodes 5, 6, and 

7 show the peak close to the state transition, whereas electrodes 1, 2, 3 and 4 peak 10-50 ms 

prior to the onset of the state transition. This behavior was also revealed in the pseudo-

colored plot shown in Fig. 4.23A and is clearer in Fig. 4.23B, where we can determine from 

the average and its standard deviation that electrodes 1 through 4 reach threshold about 35 

ms prior to the transition within the intracellular recording and electrodes 5 through 7 slightly 

later about 16 ms before the transition occurs. Finally, what effect did this alignment have on 

the direction of wave propagation? Did it lead to a complete change in direction or did it 

become more apparent?  

The representation of wave front propagation in Fig. 4.24 reveals that the overall direction 

did not change; only the average color (time when threshold of state transition was crossed) 

of each electrode has increased, due to the shifting. 
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Figure 4.22: Rate estimation of cumulative spike train after elimination of response 
variability and histogram of threshold crossing times. The rate estimation of the cumulative 
spike train is represented by the blue curve and the location of half the maximum of this rate is 
depicted by the vertical blue line. The shifts determined by the alignment were subtracted from the 
half maximum. The resulting times were represented in histograms with bins of size 10 ms. 
Comparing this histograms with the previously shown in Fig. 3.12, the peaks tend to be narrow and 
not centered around 0 ms.  

Now, the question that comes up is why before the alignment the peak of the histogram 

occurs near the state transition, whereas after the alignment, for some electrodes, the peak is 

shifted? The reason for this is that the alignment algorithm does not align with respect to the 

trigger, in this case the state transition, but instead it “…provides a new internal trigger … 

independent of experiment time.” (Nawrot et al. 2003) Thus, due to the alignment, the true 

behavior of the spike trains, or MUA are revealed. 
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Figure 4.23: A Pseudo-colored plot of the shifted threshold crossing times. Each color 
represents a different time according to the color code indicated by the right color bar. As 
already seen in the histograms, electrodes 1, 2, 3 and 4 reach threshold in close proximity to 
the transition. In B. where the mean threshold crossing times for each electrode and the 
standard deviation (StD) were determined, more precise values can be determined. Here the 
first four electrodes reach threshold ~35 before the transition while the last three reach 
threshold on average 16 ms before the transition. In comparison to the values before the 
shifting, where threshold was reached at the same time the state transition occurred, this plot 
reveals that not all extracellular electrodes act synchronously. Some do increase their activity 
independently from the others, thus not in phase with the state transitions. 

 

The scatter plots of the threshold crossing times (Fig. 4.25) show that the alignment has 

decreased the amount of scatter that occurs in each electrode as seen by the almost straight 

line especially electrode 7. 

 

 

Figure 4.24: Wave propagation analysis. After the alignment, the wave propagation analysis shows that 

the general direction of the wave front did not change considerably compared to the result prior to the 

alignment. The average color (time when threshold of state transition was crossed) increased by ~10 units 

as a result of the aligned spike trains. 

Interesting in this Fig. 4.25 is that for some electrodes, in this case 5 and 6, they seem to 

pick up activity from two different populations of cells, ones that reach the threshold level 

about 50 ms before the state transition is detected in the intracellular recording and ones 

that reach threshold in unison with the transition. Finally, neither before nor after this 

shifting procedure, does the cross-correlation reveal any significant correlation between 

any of the pairs of electrodes, see Figure 3.24. The mean correlation coefficient in this 

case was 0.31 ± 0.19, which was slightly higher than before the shifting but this increase 

was trivial. As mentioned before, the pseudo-colored plots that depicted the threshold 

crossing times for each extracellular electrode for each state transition, were all plotted 
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relative to the intracellular recording, meaning relative to 0 ms. 

 

 

Figure 4.25: Scatter plot (left) showing the threshold crossing times after the alignment procedure and 
crosscorrelation (right). In the scatter plot after the alignment procedure the amount of scatter decreased 
compared to Fig. 4.15. Electrodes 5 and 6 seem to record activity from two different populations of cells, 
ones that reach threshold at ~50 ms before the state transition, the other reach threshold simultaneous to 
the state transition. In the crosscorrelogram the lower left depicts the scatter plots of each electrode pair and 
the upper right their corresponding correlation coefficient. Electrode pair with the highest correlation: 
electrode 2 and 3, r=0.74. Mean correlation coefficient is 0.31±0.19, slightly higher than before shifting, i.e. 
no significant correlation between any of the pairs of electrodes in this seven electrode array. 
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4.2.4 Up-to-Down transition 

In the previous section a detailed description was given of the step-by-step analysis of the 

data, by focusing on the Down-to-Up transitions. In this section, a less descriptive analysis 

will explain the results obtained for the Up-to-Down transitions, which involved an identical 

analysis. In comparison to the Down-to-Up transition, where the time between the transition 

and the first spike usually is no more than 190 ms, this distance is quite a lot longer in the 

case of the Up-to-Down transition. Here we measure values of 250 ms, which was due to 

the much greater variability in the number of spikes occurring towards the end of an Up 

state, especially due to the adaptation that is characteristic for this state. This is probably, 

why in Fig. 4.26A, we see a rather broad distribution of the histogram representing the 

threshold crossing times within the time interval prior to the state transition. Looking back 

on the Down- to-Up transition plots of Fig. 4.11, where a distinct peak was centered around 

the transition, here, the peak is spread out over a larger time period with an abrupt decrease 

as it crosses the Up- to-Down transition point. 

The pseudo-colored plot (Fig. 4.26B), where the threshold crossing times are represented by 

different colors, shows a very monotone color distribution mostly in the dark blue to light 

blue range. The mean plus/minus the standard deviation plot reveals this to be approximately 

–107 ± 60.16 ms., meaning that on average , all electrodes fall to the pre-defined threshold 

rate 107 ms prior to the actual observed Down-to-Up transition within the intracellular 

recording. But again, as observed previously, the standard deviation is quite large for each 

electrode, reconfirming the fact that the end of a Down state is not as clear cut as the 

beginning of an Up state. Fig. 4.26C shows the same data as a scatter plot. The cross-

correlation in Fig. 4.26D, shows no significant correlation between any pairs of electrodes. 

On average the correlation coefficient was at 0.24 ± 0.14. 

The shifting algorithm was then applied again in order to reduce the response latency 

variability. Thus, for each electrode we constructed a cumulative spike train using the 

individual spike train, we performed a rate estimation using an optimally determined kernel 

width. The half maximum from this curve was then found and the shift values were subtracted. 

The histogram in Fig. 4.27A shows the effect this shifting had on the threshold crossing 

times, such that the spread had been drastically reduced exposing a marked peak. This peak 

was not centered at 0 ms, i.e. the time of state transition, but rather in close proximity to the 

extracellular offset, which is the time at which half the maximum is reached.  Though its 

position was still some distance away from the state transition time point, it was not as far as 

it was prior to the shifting. Again, Fig. 4.27B depicted that the first four electrodes tend to 

reach threshold earlier compared the last three electrodes.  The same pattern was observed in 

the Down-to-Up transition analysis as well, meaning that electrodes 1, 2, 3 and 4 consistently 

reached the threshold rate tens of milliseconds prior to the Up state transition and also fell to 

the threshold rate tens of milliseconds prior to the Down state transition. On average these 

four electrodes reached threshold 45.8 ± 29.17 ms before the state transition, whereas the last 

three reach threshold 26.7 ± 22.3 ms before the state transition, thus much later. The 

alignment algorithm uncovered again the existence of two groups of electrodes, each group 
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recording multi-unit activity at two different time intervals before the actual occurrence of the 

Down state transition. The mean cross-correlation coefficients calculated from the values in 

Fig. 4.27D were at 0.48 ± 0.16, which is about twice as high as before the shifting, but still 

there is no significant correlation between any of the pairs of electrodes. In the Down-to-Up 

analysis we were able to observe a propagating wave front passing through the cortical tissue, 

starting out at a specific point of origin and moving in a specific direction. Will this also be 

seen for the Up-to-Down transitions? The answer is yes, but it is not as distinct, which is 

possibly due to the asynchronous nature of the Down state onset (Fig. 4.28). 
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Figure 4.28: Wave propagation analysis before – A and after - B alignment for Up-to-Down 

transitions. In both cases the direction of the wave front is difficult to decipher, possible caused by the 

asynchronous nature of the onset of the Down state. In B according to the color code the most likely 

direction is the one indicated by the arrow. 
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Figure 4.26: Up-to-Down transition analysis. A As previously explained, each plot depicts the rate estimates for each state transition, here Up to Down drawn as gray curves. The histograms 

shows the threshold crossing times with respect to the intracellularly detected transition (red vertical line). The blue curve line is the mean of the convoluted single trial rate estimates. 

Comparing this to the Down to Up analysis before, the histogram in this case does not have a sharp peak, but a rather broad distribution spread all along the Up state time interval (-200-0 ms). 

The arrangement of the seven plots illustrates the position of the 7 electrodes in the extracellular array. B The pseudo-colored plot “color-codes” the threshold crossing times depicting the 

variability in the spike firing at the end of an Up state, the electrodes tend to decrease their firing rate 90-125 ms prior to the actual state transition 
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Figure 4.27: Up-to-Down transition analysis. A As previously explained, each plot depicts the cumulative rate estimation curve (blue line) and the threshold crossing times placed in bins of 

10 ms size (histogram), for each electrode. The blue vertical line is positioned at half the maximum of the rate estimation curve. The rate decreases clearly as this transition is crossed. The peak 

of the histogram, as seen before in the Down-to-Up transition, has a tendency not to be located exactly at the intracellularly determined state transition time, but rather between 20-80 ms prior 

to this transition, indicating that the Up state ends before the intracellular state transition occurs. This same trend is observed in the pseudo-colored plot in B. Electrodes 1 through 4 (the bluish 

color) reach threshold 60-80 ms before the intracellular state transition, whereas electrodes 5,6 and 7 reach this threshold later, i.e. 40-60 ms before state transition. The mean threshold crossing 

time is depicted in the figure to the right. Again, the scatter plots in C depict the fine time structure of these threshold times, but no distinct pattern is observed. Lastly, the cross correlation 

analysis performed between all pairs of electrodes in D reveals a definite increase in the average correlation coefficient value of 0,48±0.17 compared to 0.24±0.14. 
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5 Discussion 

Slow waves are generated by the cortical network and they recruit the thalamo-cortical loop, 

engaging many brain areas during both slow wave sleep and anesthesia (Steriade et al., 1993d; 

McCormick et al., 2003; Sakata and Harris, 2009; Ruiz-Mejias et al., 2011; Stroh et al., 2013). 

Slow waves can be considered the default activity of the cortical network (Sanchez-Vives & 

Mattia, 2014) and by exploring in detail the generation and propagation properties of the 

slow oscillations, we can extract information about how the cortical network functions under 

control conditions or in models of disease. The process of extracting information from the 

physiology requires sophisticated analytical tools. This Thesis consisted in a large part in the 

development of such analytical tools: one to detect slow oscillations in intracellular 

recordings and the other one to analyze an array of multiple recordings and measure 

correlation and propagation properties of the activity. In order to test the methods I made 

use of data collected by collaborators and data obtained from my own in vivo experiments. 

 

5.1 Robust off- and online identification of intracellularly recorded 

Up and Down cortical states 

Identifying the transitions between Up and Down cortical states is sometimes difficult and 

has to rely on the subjective opinion of the researcher.  For example, it is not clear when a 

short depolarization should be wide enough to be considered an Up state or when the 

absence of spikes is a necessary condition to determine the presence of a Down state. 

Understanding the cellular and network mechanisms that generate the two-state behavior 

generated by the cortical network demands a robust and reliable method for Up and Down 

states identification. Here we have demonstrated that the traditional histogram-based 

approach originally described by Metherate and Ashe (1993) and extensively used afterwards 

(e.g. Sanchez-Vives et al., 2000; Petersen et al., 2003; Anderson et al., 2000; Benucci et al, 

2004; Crochet et al., 2004; Fuentealba & Steriade, 2005; Kasanetz et al., 2002; Lewis & 

O’Donnell, 2000; Mahon et al., 2003; Peters et al., 2004; Timofeev et al., 2001; Tseng et al., 

2001) while being an efficient graphical tool for manual threshold determination under ideal 

conditions, lacks the adaptive computational properties to deal with fuzzy transitions, 

occurring during recordings that are not stable, or drifting, that develops quite often over 

long recordings. 

Trend-following techniques of financial trading applications combined with problem-

specific knowledge yields a method that robustly separates Up and Down states, in both ideal 

and fuzzy situations. This thesis formalizes such a method and analyses its performance in 

different situations characteristic of ill-defined biphasic behavior: (1) irregular shape of Up 

and Down states –variations in amplitude, frequency– (Fig. 4.3) (2) imprecise Down state 

initiation, (3) signal drifting (caused by changes in the liquid junction potential at the 
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electrode tip), or (4) artifacts due to movements during in vivo recordings, such as respiratory 

movements or heartbeat (Fig. 2).  

The experiments carried out for Up and Down state identification show that histogram-

based methods will perform well in ideal situations (as widely reported in the literature), but 

will fail if the signal differs from this harmonic, well-defined and non-trended behavior. On 

the other hand, MAUDS efficiently separates Up and Down states in ideal (closely fitting the 

best histogram-based characterization) as well as in irregular oscillation.  The cases studied 

in this work are common in most intracellular recordings, and can be analyzed with an 

adaptive method of the sort of MAUDS. 

Well-defined Up and Down states have been widely studied in the past, but how this bi-

stable behavior departs from ideal conditions has not been reported in the literature, perhaps 

because of the lack of objective methods to characterize irregular situations.  Such a method 

will allow formal quantification of these excursions, and must be based on an extended 

definition of the Up and Down states that meets conflicting experimenters’ criteria. An 

algorithmic approach similar to the one presented here would definitely be a good starting 

point in this direction. 

In order to integrate the online and offline versions, the model has been defined and tested 

with EMAs that compute only previous values. This is at the cost of a delay in the turning 

points obtained, which affects the overall performance. An offline version based on EMAs 

that average past and future intervals of time for each value would improve the results shown 

here. In spite of this delay, the predictive character of the online version has been used 

experimentally to trigger stimuli and to manipulate cell membrane voltage at specific times 

along the oscillation. This is of great interest for experimentalists studying the responses to 

sensory stimulation during Up or Down states.  Exponential weighting has proved to 

perform well, since it reacts faster, minimizing the lag between the predictive moving average 

and the actual data. The method is also expected to perform well in this type of interactive 

experiments, since the presence of sensory stimuli, current injection, or other manipulations 

interspersed with the oscillation will not interfere with the turning points.  Only the presence 

of short Down states might be problematic, since the artifacts might cut them. The general 

approach exposed here would be easily fitted to the conditions of particular experimental 

settings. 

The method formalized in this paper has been coded as a Spike2 script, an assembly program, 

and also embedded in a MATLAB® toolbox. All these programs are available online as an 

open-source code. The MATLAB® implementation exploits fast matrix operations and the 

powerful graphical capabilities of this programming language, and can analyze 

electrophysiological raw data formatted as ASCII or MATLAB® binary files. The code has 

been optimized and computes more than a million membrane potential samples per second 

on a PIV 2.8GHz with 0.5GB memory (this computer processes a file containing 10 minutes 

of intracellular membrane potential sampled at 25 kHz in some 13 seconds). On the other 

hand, the Spike 2 implementations are designed for online data processing, allowing real-
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time characterization and visualization (script version), and triggering of stimuli (sequencer 

version). 

Further work has to be done in order to improve two different aspects of MAUDS: (1) the 

adaptive capabilities of the proposed method, by automatically setting the window size of 

the fast EMA, that can be done based on local membrane potential variability, or exploring 

ranges of values where the identification remains stable; and (2) a complete validation of 

MAUDS over an extensive set of intracellular data recorded in different cortical areas. While 

a good general performance is expected, even with minor changes in the parameter set, the 

forum set up in the MAUDS website is expected to feedback about this question, as more 

experimenters report on the application of MAUDS to recorded datasets. 
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5.2 Spatio-temporal structure of spontaneous slow-wave oscillations 

in the neocortex 

As said above, the slow oscillation recorded during slow wave sleep or during certain 

anesthetics represents a spontaneous event during which cortical neurons are alternately 

silent and active for a fraction of a second. These spontaneous state transitions of neocortical 

activity are characterized by fast changes between epochs of intense network activity (Up 

states), and quiescent periods, where spiking activity is virtually absent (Down states). In 

single cells, Up states are characterized by massive synaptic input, leading to a strongly 

fluctuating, depolarizing membrane potential, while in Down states, the membrane potential 

shows only few fluctuations at a hyperpolarized level.  

The final objective of my research was to unveil the spatio-temporal structure of 

spontaneous slow-wave oscillations in the rat somatosensory cortex. With that purpose, we 

firstly tried to determine whether the characteristic slow oscillations observed during slow-

wave sleep (SWS) lead to the induction of propagating wave fronts that start out at a specific 

origin and travel in a given direction through the cortical tissue. The velocity of this traveling 

wave depends on the complexity of the network circuitry. For this study, we implemented a 

spatially defined array of seven extracellular electrodes in combination with one intracellular 

electrode and recorded from the somatosensory cortex of rats anesthetized with a 

combination of urethane and ketamine/xylazine. This kind of anesthesia has been 

established as a model for slow-wave sleep (Fontanini et al. 2003; Sharma et al. 2010) and 

leads to stable and regular low-frequency oscillations in the neocortex. Although the state 

transitions also occur under urethane anesthesia alone, the use of ketamine enhances and 

stabilizes the appearance of Up and Down states. 

The extracellular recordings using arrays consisting of 7 electrodes, made it possible to 

measure multi-unit activity ideally within a cortical layer. It was found that these propagating 

waves of activity show considerable variability with regard to their spatiotemporal pattern. 

However, a unique point of origin and direction could be identified for at least each wave. 

Whether this is true for each recording session cannot be asserted as this might at least 

depend on the length of each of these recording sessions. 

Regarding the laminar distribution, both in vitro and in vivo recordings position the origin of 

oscillations in deep (layers 5 and 6) layers. Sanchez-Vives & McCormick (2000), positioning 

their electrodes perpendicular to the pia, observed that activity tended to start in layer 5, 

followed within a short delay (~32 ms) by activity in layer 6, and finally reaching layer 2/3. 

In vivo recordings agree in the observation of an initiation of slow oscillations in the 

infragranular or deep cortical layers (Sakata & Harris, 2009; Chauvette et al., 2010). But, how 

do oscillations travel across the cortex? 

Massimini et al. (2004) demonstrated by combining sleep-EEG recordings and MRI that the 
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vast majority of the slow oscillation cycles could be characterized by an origin and a 

continuous pathway of propagation, as it is the case for a travelling wave all over the cortex. 

According to this, each slow oscillation has a definite site of origin and direction of 

propagation, which vary from one cycle to the next. Furthermore, it was shown that the slow 

oscillation could originate from almost any area of the scalp and propagates in every 

direction, although certain origins and directions of propagation occurred more frequently 

than others. More recent measurements by means of calcium imaging in rodents also find a 

predominant front to back propagation (Stroh et al 2013). Still, a detailed description bridging 

micro and mesoscales was missing. 

The results of this Thesis showed that in most recordings there was considerable variability 

with respect to the precise spatio-temporal structure of activity waves (Fig. 5.1A). These 

plots illustrate the variability of the wave front, both in origin and direction for different 

animals. 

However, in many cases a preferred direction of activity spread could be identified during 

limited recording periods. Within a single recording session though, lasting up to 12 minutes, 

the wave front tended to remain quite constant, which suggests that the waves of activity 

seen during SWS travel in a stereotypic manner through the cortical layer.  This also indicates 

that under ketamine/xylazine anesthesia, activity waves may travel in a stereotypic manner 

over the neocortical tissue. Such stereotypic patterns of activity might lead to selective 

strengthening of active synapses, linking slow-wave activity to learning-related phenomena 

like memory consolidation during slow-wave sleep (Marshall et al., 2006)  
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Figure 5.1: Wave propagation and mean standard deviation. Data was recorded during 5 different 

recording sessions form different rats. A. Each square represents one electrode and the arrangement 

indicates the position of the 7 electrodes in the array. The transition times are depicted according a color 

code helping to illustrate the propagation of activity within the cortical network. The direction of the 

arrows are indicative of the preferred direction of the wave front. B. These plots reveal that each wave 

of activity has a specific origin indicated by the electrode that discharged first in response to the 

propagating wave.  
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Similar to the presented results, Marshall et al. (2006) found that there tended to be a 

dominant direction of propagation, with only occasional reversals observed, seen when 

comparing the individual threshold crossing times in the pseudo-color plots with the average 

for all electrodes. As mentioned in the introduction, in the in vitro slice preparation, the slow 

oscillation propagates horizontally at a rate (~11 mm/s) (Sanchez-Vives & McCormick, 

2000) that is considerably slower than axon conduction velocities (Nowak & Bullier, 1997), 

while recordings of the slow oscillation in vivo reveal that it occurs throughout the cerebral 

cortex and may propagate at a considerably higher rate (approximately 100 mm/s) (Amzica 

& Steriade, 1995), owing to extensive corticocortical connections. As a comparison, 

peripheral nervous system myelinated fibers conduction velocity ranges between 5 and 120 

m/s (Nicholls et al. 2001). The slow oscillatory waves propagate through the cortical layer 

via synaptic connections and its velocity depends critically on the way synaptic connections 

are made. Fig. 5.3 shows three possible means a network can be connected to elicit 

propagation speeds either less than, equal, or much greater than the conduction velocity of 

these myelinated fibers. A velocity of 11 mm/s hints on the first connection pathway shown.  

Sanchez-Vives & McCormick (2000) showed that slow oscillations in ferret slices either 

propagate backwards or forwards, but because of the arrangement of the electrodes (all 

aligned in one row, i.e. horizontally), and the subsequent lack of that additional dimension, 

only a part of the wave propagation was detected (Fig. 5.2). The recordings presented in 

this thesis were performed in one additional dimension, for which the actual propagation 

could be observed.  

 

Figure 5.2: Schematic diagram depicting a cortical 

slab containing the location of the 7-electrode array. 

The tips are represented by the circular tubes. The 

height of this slab is equal to the thickness of the cortex 

as indicates by the cortical layers. Sanchez-Vives & 

McCormick (2000) observed wave propagation in 

cortical slices (gray outline), which only depicted 

forward and occasional backward movement (see gray 

arrow. The recordings presented in this thesis were 

performed in one additional dimension, for which the 

actual propagation of the wave front could be seen 

(black arrow). 
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Figure 5.3: Schematic diagram depicting three possible networks. The conduction velocity for 

peripheral myelinated fibers ranges between 5 and 120 m/s. The propagation speed of the slow 

oscillatory wave front is dependent on the neuroanatomical connectivity and can either be faster, slower 

or similar to the axonal conduction velocity. The scheme above shows three different ways that the 

network can be connected and which can be expected to lead to three different propagation speeds. The 

first possible network connection is shown with black-colored traces. In this the pyramidal neuron within 

the cortex receives direct synaptic connections from the origin of the activity, shown as a large circle. 

This would mean that the rate of propagation would be much faster than the axonal conduction velocity. 

In the second connectivity scheme, in orange, the first neuron receives input from the origin and this 

then further propagates the information to the next neuron and so on. The velocity of the resulting wave 

front should be similar to the axonal conduction velocity. Finally, the connectivity seen in light purple, 

increases the complexity of the network by involving additional neurons in the cycle of propagation, 

thus decreasing the conduction velocity below the axonal conduction velocity. 

5.2.1 Constraints in experimental methodology 

The presented analysis showed some weak points which should be discussed: 
 

1) The width of the kernel used to determine the single trial rate estimates, 

significantly affects the optimal temporal alignment of the trials, which in turn alters 

the outcome of the wave propagation analysis. As previously mentioned in the results 

section, a fixed kernel width of 10 ms was implemented, a small value, which could 

lead to inaccurate rate estimates especially when the spiking rate is very low. An more 

adequate method would be of course to optimize the kernel width σ for each spike 

train, a method that was used in the beginning of the presented analysis, but was 

found to estimate values of σ that were too high for the used data. The reason for 

this could be that the firing rate in our recorded spike trains was too variable, meaning 

that the optimal kernel width was determined correctly for each spike train, but when 

applying the mean as the optimal kernel width to use, this value was too high. 

2) Another weakness in our analysis is the percentage of trials that are removed via 

the response detection method. On average about 49 % of all trials were discarded 

as a consequence of the rules shown in Table 3. Hence, in 51 % of all cases, there 

were either no spikes before or after the trigger, or there were spikes observed within 
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the Down state. One way to possibly circumvent this problem could be to increase 

the time interval used as a cut-out, so instead of 200 ms before and after the trigger, 

300 ms might have been be a better value. But in the latter case, might create another 

problem, i.e. detecting spikes belonging to the previous Up state, or even the 

subsequent one.  This is rather unlikely because our estimates of both the durations 

of the Up and Down states show that both have a dwell time ranging between 360 

and 480 ms. 

3) The somatosensory cortex of the rat is located at 1.25 mm - 7.2 mm medial to 

lateral and rostral to caudal from bregma 2.7 mm - bregma -4.52 mm. To consistently 

record from the same location, these stereotactic coordinates should have been used. 

In these experiments we made an estimated guess on the location. This inconsistency 

means that there might have been differences in the location of the recording for 

each session. If the variability in the spatio-temporal pattern observed in our 7-

electrode array recordings were only unique for that particular location of the 

somatosensory cortex, it could mean that there are numerous focal points where this 

activity is initiated; it then travels a certain distance (maybe up to 2 mm) and direction, 

then tapers off. Thus, instead of there being one large activity wave spreading over 

the cortex, there would be many different wave fronts, with their own characteristic 

focal point and direction. It is very doubtful that the locations we recorded from were 

that different, but if these smaller wave fronts overlapped, the overall vector 

describing the activity wave would also change and result in findings similar to ours. 

4) Furthermore, the intensity of the state transitions depended on the depth of the 

anesthesia. We monitored this depth by checking sporadically for the pinch 

withdrawal reflex as well as vibrissal movements. If required an additional dose of 

ketamine-xylazine was administered. The timing between the injection and the start 

of a recording session fluctuated, meaning that on some occasions it had been an 

hour since the last injection, while on other occasions it had only been a few minutes. 

The number of individual units detected by the extracellular array increased 

dramatically in response to the administration of the ketamine-xylazine. This effect 

wore off after some time and so some of our recordings may show more multi-unit 

activity then others, again due to a lack of consistency in our experimental 

procedures.  

5) Due to the dimension and rigidity of the 7-electrode extracellular array, the slow 

oscillatory activity might have been caused or altered because of tissue damage caused 

by the array. Its insertion into the brain tissue required the initial removal of the dura. 

This procedure did not entirely prevent the problem of dimpling, which occurred 

because of the large surface area (~1.12 mm2) of the array pushing against the very 

thin, but quite stabile pia. This dimpling effect gradually disappeared as the tissue 

gave way to the continual pressure put on it by the array. Both the outer quartz mantle 

and the metal core of the electrode fibers are tapering down to very small dimensions. 

The passage between the glass isolation and the core of these electrode fibers is very 
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smooth. The result is that there will be not so much tissue damage during electrode 

penetration. Due to their smooth shape and their small dimensions, the used 

microelectrodes cause only minimal tissue damage. In fact, tissue damage is so small 

that electrode tracks could not be verified with standard histological techniques. With 

this 7-electrode array, due to the alignment of the tips, it was only possible to position 

it in one specific layer of the somatosensory cortex, thus parallel to the layering of 

the cortex. 
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6 Conclusions 

 

1. In the somatosensory cortex of anesthetized rats and the visual cortex of anesthetized cats the 

emergent slow oscillations were analyzed by means of intracellular and/or multiple extracellular 

recordings. 

 

2. A new algorithm for detection of slow waves, MAUDS (Moving Averages for Up and Down 

Separation), a simple but robust method to detect cortical waves is described. MAUDS can be 

applied in real time during the recording and also for offline processing of large amounts of 

recorded data on conventional computers. 

 

3. We tested and demonstrated that MAUDS efficiently separates Up and Down states in ideal as 

well as in irregular oscillations for further analysis of cortical dynamics. 

 

4. The stereotypical behavior of spontaneous transitions between the detected Up and Down states 

in the somatosensory cortex of anesthetized rats is examined. 

 

5. Waves of cortical activity under ketamine/xylazine anesthesia show considerable variability with 

respect to their spatio-temporal pattern.  

 

6. However, the results indicate that activity propagation in most animals showed a preferred 

direction travelling in wave fronts across the cortex.  

 

7. This suggests, that during slow wave sleep, activity waves may travel in a stereotypic manner over 

the cortical tissues thereby sequentially activating neighboring cortical columns.
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8 Appendix 

8.1 Protocol for in vivo experiments 

- Switch on the heating pad, prepare surgery place and tools which were all previously 
sterilized. 

- Prepare fresh Urethane 20% (2 mg Urethane in 8ml NaCl 0.9%). Urethane is highly 
carcinogenic, therefore handle with care and wear the impermeable nitrile gloves.  

- Pick up the rat from the animal facilities.  

- Weight the rat in order to determine the injection amount of Urethane. 

- Inject the rat with Urethane 20% i.p (0.5 ml/100 g body weight) helping yourself with the 
slipper to fix the rat, cover the rat cage, dim the lights, wait at least ½ hour till the rat is 
anesthetized. 

- During that standby time: preparation of Ketamine/Xylazine mixture, Lidocaine, potassium 
acetate 1M, filter it. Get prepared the razor. 

- Check status of anesthesia: Rat is moving when trying to touch it? Whiskering? Blinking? 
Rat’s hindlimb withdrawal reflex is still present? 

- If yes: Reinject with 10% initial Urethane dose and wait circa further 15 minutes, check 
again the status. 

- If no: Reinject with 0.1 ml Ket/Xyl. 

- Shave the head fur for the surgery. Shave also the left hindlimb and both forelimbs to assure 
contact between ECG electrodes and rat skin. Place the rat on the heating pad to avoid 
hypothermia.  

- Place the earbars correctly and fix the rat into the stereotaxic apparatus. Check if you got 
the right position: when you insert the earbar into the ear, you may be able to observe a 
blink reflex of the eye of the same side. You may also hear cracking the Membrana tympani. 
The head should be in a straight position and the ears should form a line. You must be able 
to move the head of the rat in the vertical direction, but when you stop moving the head 
should stay in the same position. There should be no movement in the horizontal direction 
at all.  

- Get stuck the incisors of the rat into the incisors bar of the stereotaxic device and fixate the 
nose holder attaching closely, but take care not to injure the rat. 

- Lubricate the thermometer with a fatty ointment (Vaseline ) and insert it carefully into the 
rectum. Note down the temperature which should be around 37ºC without exceeding 39ºC. 

- Connect the ECG electrodes to the limbs and view it on the screen (there will be noise until 
you place the reference electrode in the neck). 

- Cover the rat with a towel in order to prevent hypothermia. 

- Apply eye ointment to protect the cornea (Bepanthen ) against drying and apply Betadine on 
the shaved area of the head with a generously soaked pad.  

- Inject Lidocaine s.c. where you will make the incision of the skin. Disperse it evenly 
juddering the skin softly with your finger. 

- Place the scalpel onto the skull, frontal, close to the beginning of the midline and applying 
a certain pressure separate the skin with a single incision until the end of head bone.  

- Lay open the bone by separating the skull with the hooks. Clean away fatty tissue and 
musculature. Scratch off carefully the periosteum using the most appropriate tool for it (with 
the aid of the binocular Zeiss OPMI 1). Clean the bone every once a while with a cotton 
swab, saline soaked if needed. 
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- Open a way to the Cisterna magna by twitching off carefully the muscles and the connective 
tissue with a blunt tool. Separate with the same blunt tool or with the blunt tweezers the 
skin from the underlying connective tissue in order to have enough space to insert the 
reference electrode into the neck. 

- Find bregma and mark with a waterproof pencil on the bone where to drill the hole for the 
fixation screw and where to drill the window for recording. intracellular window is missing 

- Inject 2ml NaCl s.c. into the back of the rat (“give it to drink”) in order to avoid dehydration. 

- Check once in a while the deepness of anesthesia of the rat. If the rat whiskers (or even 
blinks) then it’s time to inject 0.1 ml to 0.2 ml Ket/Xyl. i.p. 

- Drill carefully the hole for the fixation screw under binocular. Use the drill head size 10 and 
the the highest magnification – it is very easy to pop into the Dura. Fixate the screw using 
as a holder the bent tweezers and the clockmaker screw driver. 

- Start drilling carefully into the skull bone the window for recording. First mark the opening 
by drilling a groove following the pencil mark. Continue drilling deeper and deeper but 
uniformly until you can appreciate the tissue and vessels below the bone. Clean off the bone 
splits for a better sight by blowing with for instance with an empty Pasteur pipette. The bone 
window should be loose, such that it should be removable applying soft forces upwards 
with the tweezers (but don’t remove it yet!).  

- As there are also vessels within the bone, bleeding during drilling is frequent. These might 
make difficult visibility and therefore slow down the whole drilling process. In such cases: 
clean off the blood applying NaCl 0.9% with a syringe and wiping softly with a Q-tip, or 
when you’re sure to be still far away from the brain tissue, then, since sometimes it just 
stops, continue drilling even of the bleeding (the drilling cauterizes the bleeding). If this 
does not help you can use the soldering gun (temperature 250°C) and tip carefully on the 
bleeding side to cauterize the vessel. Note that drilling quickly and efficiently the hole is 
better than a slow hole since it minimizes edema. 

- Build up the funnel with the dental acryl cement taking care that no liquid acryl cement 
flows into the hole. Check that the funnel does not leak saline. Let it dry. 

- Mount both micromanipulators, and check their positioning: must be perpendicular one to 
the other. Check the range of the vertical arm of the micromanipulator. 

- Remove the bone flap with fine forceps. Very carefully nick the Dura mater with the keenest 
(finest?) hypodermic needle (at least 30 Gauge or smaller). Always take a new needle. If the 
incision is complete, liquor will flow. Use the eye scissors to lift the dura and cut carefully 
to extend the hole. Use maximum precaution not to damage blood vessels nor the cortical 
surface. Note that the dura is laminar and often one thin sheet of the dura remains, even 
though it looks as if the dura is completely removed. In older animals, the dura is fat and 
whitish, therefore easy to distinguish. Quickly add saline (HEPES-buffered ACSF to 
prevent pH shifts) to keep surface moist. 

- Fix the Multielectrode-Array into the micromanipulator and advance into the tissue. Try to 
avoid the blood vessels because electrodes cannot pass through them and this produces a 
higher dimpling. 

 
Conditions to start a recording session: 

- The multielectrode-array is placed within the cortex and there is good spontaneous activity 
on all electrodes 

- The intracellular recorded neuron exhibits a stable Vm ≤ -55mV, stable electrophysiological 
properties without the use of “retaining” i.e. hyperpolarizing current and the ability to 
generate repetitive APs in response to depolarizing current pulses (additionally to determine 
“off line”: input resistance >20MOhm). 

- Spontaneous activity: Simultaneous extra- and intracellular recordings 
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- Bridge compensation within the cell: asymmetric pulses of 0.1nA amplitude an 2ms 
duration. 

- Subthreshold activity: Injection of hyperpolarizing current into the intracellularly recorded 
neuron. Increase negative I until the neuron stops to spike. 

- Asymmetric hyperpolarizing current pulses, 0.2nA amplitude and 200ms duration. 

- Asymmetric depolarizing current pulses, 0.2nA amplitude and 200ms duration. 

- Filling of the neuron with Neurobiotin® Dye applying I = +1nA, 200ms pulses during min. 
10 minutes. 

- Check the offset after pulling the electrode out of the tissue, but still within the solution. 

- Draw or take a photo from the brain surface to determine roughly the position of the 
recorded neuron during the staining. 
 
Urethane Injection: 

- 2g Urethane + 8ml of NaCl (20%)- 

- Place in plastic tube with blue cap and shake to dissolve.- Inject 0.5ml per 100 g body weight 
i.p. Use 26 gage needle and 10ml syringe. Needs approximately 30 min to take effect, 
whiskers can still be present, but animal should be anesthetic for pain stimulus. 
 
Saline solution: NaCl 0.9% solution. 

- 100ml use 0.90g of NaCl.Place in small bottle, label and fill a syringe with this. 
 
Ketamine / Xylazine:  10% Ketamine ® 1ml using syringe 

- 1% Xylocain (Rompun®) 0.5ml using syringe 

- Add together and mix in Eppendorf® tube. Inject 0.1 ml i.p. in each time interval until the 
complete anesthesia.  
 
Potassium acetate (KC2H3O3) 1M: 

- For 10 ml of distilled water use 0.98 g of potassium acetate.  

- Place in plastic test tube with blue cap and label. 

- Neurobiotin: Disolve 8mg of Neurobiotin®  in 400ml filtered potassium acetate 1M 
solution and place in a 1ml syringe with filter (0.2um) 

- Local anesthetic: Fill 0.5 ml Lidocain® in syringe and label 
 
Paraformaldehyde (PFA) 4% 

- The whole preparation has to be done under the extraction hood, and use reserved and 
marked tools only, because of the high toxicity of PFA. 

- For 1 l PB 0.1 M, +4ºC, pH 7.4 

- Add 10 mg PFA to 950 ml Aqua dest. and stir with the aid of a magnetic stirrer 

- Heat till 60ºC controlling the temperature with a thermometer 

- Continue stirring and dissolve completely of PFA within the PB 

- The dissolution can be stored in 500 ml after turning cold plastic bottles in the freezer. 
 
Phosphate Buffer  0.1M, pH 7.4 

- For 1l add NaH2PO4 2,62 g to 950ml Aqua dest. 

- Stir to dissolve and add Aqua dest. to complete 1 l 

- Calibrate pH to 7.4 or 

- Add Na2H PO4 14,42 g to 950 ml Aqua dest. 

- Stir to dissolve and complete 1 l adding Aqua dest. 

- Calibrate pH 7.4 
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Chrome/Alum-Gelatin-coated slides 

- For 500 ml Chrome/Alum Gelatin solution 0.5% 

- Add 2.5 g Gelatin powder to 500 ml Millipore filtered distilled water 

- Heat the water to 60 ºC and completely dissolve the gelatin with the aid of a magnetic stirrer. 
Do not exceed this temperature.  

- Stir in 0.25 g chromium potassium sulfate (The solution should turn a pale blue). Add a few 
crystals of thymol as a preservative. 

- Filter the Chrome/Alum-Gelatin dissolution twice 

- Procedure: 

- Dip racks of clean slides in the warm gelatin solution (40-50 ºC), drain the slides onto paper 
tissue, and then stand the slides (covered with foil to keep off dust) on end to air dry or 37 
ºC incubator overnight. 

- Store in dust-free container at room temperature. Throw out the gelatin mixture after use. 
 
DAB Reaction for free-floating sections 

- Prerequisite: 6 slices / each 100 µm thick, been in 0.1M PB at least 24 hours. 

- Chemicals/Materials: PBS 0.1M, pH 7.4 

- Incubation chamber (flexible PVC, wells with slanted side walls, covered with plastic 

- Triton X-100 

- H2O2 30% (fresh) 

- A and B solutions (Vectastain ABC-kit) 
 
Procedure    -   Day 1 

- Quenching endogenous peroxidase 

- Wash free floating slices in 0.1M PB about 2 times 

- Prepare peroxidase 2% (2ml H2O2 + 28ml 0.1M PB) in 50 ml graduate cylinder and cover 
top with parafilm and carefully shake. 

- Remove PB from each of the wells and add about 4 ml of the H2O2 2% to each well. 

- Incubate during 60 minutes. 

- Rinsing 

- Remove the H2O2 and rinse with 0.1M PB 6-8 times 10 minutes, so that no more air bubbles 
appear on the slices. 

- Biotin-avidin-complex 

- During last 2-3 rinsing steps prepare the ABC reaction solution (2.5 ml per well): 

- Use a 25 ml graduate cylinder and add 15 ml 0.1M PB. 

- Using micropipette measure 150 µl A solution, 150 µl  B solution, and 150 µl l of 10% Triton 
X (preparation of 100 ml 10% Triton X loading solution: 10 ml Triton X-100100% + 90 ml 
0.1 M PB; loading solution storage in the fridge only for short time periods). 

- Add parafilm to top and shake really well, may start to foam. 

- Place in fridge for 30 minutes. 

- Remove the PB from the last rinsing step. 

- Add 2.5 ml ABC solution in each well 

- Place the well plate onto the shaker and allow gentle agitation overnight. 
 
Day 2 

- Before starting anything, check and prepare all the materials needed. 

- Prepare everything that is needed under the extraction hood, this is very important because 
DAB is highly toxic (cancerigenic) and precautions need to be taken for its appropriate 
disposal: 
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- Wear impermeable nitril gloves. 

- Place heater/stirrer under the hood 

- Use a separate and labeled beaker, into this the DAB rests and any substances that have 
come in contact with it will be disposed of. Add a small amount of sodium hypochlorite 
(stored in freezer) to neutralize the wrappers the DAB tablet were in. 

- Prepare a small bottle and wrap in aluminium foil or similar which will later be used to filter 
the DAB solution into. 

- Get funnel and filter paper ready. 

- Set up a bottle to hold the brushes and the Pasteur pipette. 
 
Prepare the DAB solution 

- Measure 30ml of Tris buffer pH 8.2 and place in small beaker. 

- Stir with the aid of a magnetic stirrer. 

- Get prepared the beaker with the aluminium foil around it, because the dissolving of the 
DAB tablets needs to be done in the dark. 

- Open carefully the wrapper of 2 DAB tablets and place into beaker with Tris buffer. 

- Place the beaker covered with aluminium foil over this and turn on the sitrrer. 

- Remove the ABC solution from the (6) wells and subsequently rinse 6x3minutes the slices 
using 0.1M PB. 

- Prior to the last rinsing step, filter the DAB solution with the aid of the funnel and allow to 
drip for a few minutes.  

- Place the funnel into the labeled beaker and neutralize the funnel and the filter paper using 
sodium hypochlorite. 

- Remove the PB form the slices as good as possible. 

- Under hood, place first 1 ml of DAB into each well and then add 3ml more. Cover and 
place into the fridge for 25 minutes. 

 
In the mean time:  

- Calculate the amount of DAB needed: 

- Considering 4ml of DAB per well:  
4*3.3 µl 0.3% H2O2 per ml of DAB = 13.2µl in Eppendorf (990µl 0.1M PB + 10 µl 30% 
H2O2) 
4*20 µl 10% NiCl per ml of DAB = 80 µl in Eppendorf 

- Place these tubes under hood and prepare pipettes and pipette tips. 

- Take the well plate out of fridge and place under the hood.  

- Repeat the following steps for each of the (6) wells: 

- Place 8 µl of NiCl into the well using micropipette (always dispose of the used tip into the 
labeled garbage beaker) 

- Add 13.2 µl of H2O2 well. 

- Mix the solution within the well carefully with the aid of a Pasteur pipette. 

- Using the Pasteur pipette place a small amount into indentation of microscope slide. 

- Help with a brush to place one slice and view under the microscope to check if the neuronal 
tissue is adequately stained.  

- If not, place the slice back into the well to continue the DAB reaction. 

- If it’s so, then stop the DAB reaction placing the slice with the aid of a brush into a new 
well plate with 0.1 M PB. 

- Repeat for all slices. 
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Dehydration 

- Rinse the slices with 0.1MPB 3-4x10 minutes. Transfer the slice gently with the aid of a 
small brush from the well to the Gelatin coated slide and help to place the slice flat on it. 
With a paper tissue dry as far as possible without injuring the slice. 

- Dehydrate the slices moving through series of increasing ethanol concentration starting with 
60%, 70%, 80%, 90%, 100% during 2 minutes each.  

- Transfer all slides into methyl benzoate overnight.  

- Take out all the slides and let them laid under the hood until they loose the strong exhalation 
of the methyl benzoate. 

- Covering the slides 

- Put just one small drop of Mowiol onto the tissue on the slide and cover. Let them dry. 
Mowiol is not for permanent preparations, the tissue starts to bleach out after a few couple 
of months. Therefore, it’s important to reconstruct the stained neuron with the aid of a 
Camera Translucida.  
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8.2 MAUDS Programming Scripts 

Spike2 Script Version: In this version, the algorithm is written totally in the script language 

of spike2. The advantage is the legibility of the code. The algorithm is executed in the pc, 

sharing its resources with the task of recording the signals. So the delay of the characterization 

and real-time triggering depends on the pc used. 

 

    http://geb.uma.es/images/projects/MAUDS/maudsScript.s2s  

 

Spike2 Sequencer Version: In this version, the algorithm is implemented and executed into 

the sequencer of the data acquisition unit. The response time of this solution is very high and 

independent of the pc used. However, the code is much more illegible because it is written in 

the assembler language of the sequencer. 

 

    http://geb.uma.es/images/projects/MAUDS/maudsSequencer.s2s 

 

MATLAB® Version: Mauds implementation in MATLAB®. It can process mat data files 

and Spike2 txt exported files. It does include plotting utilities. 

 

    http://geb.uma.es/images/projects/MAUDS/mauds4matlab.zip 
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Background. The neuronal cortical network generates slow (,1 Hz) spontaneous rhythmic activity that emerges from the 
recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of 
alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and 
the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for 
a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize 
the occurrence of up and down states. Methodology/Principal Findings. Intracellular recordings from different areas of the 
cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up 
and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, 
such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. 
We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to 
trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based 
approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the 
method presented here is tested on data that departs from highly regular alternating up and down states. Conclusions/ 
Significance. We define a simple method to detect cortical states that can be applied in real time for offline processing of 
large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the 
study of cortical dynamics. An open-source MATLABH toolbox, and Spike 2H-compatible version are made freely available. 
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INTRODUCTION 
The slow (,1 Hz) oscillation, as described in cortical neurons of 
naturally sleeping [1,2] and anesthetized [1,3–5] cats, as well as in 
the  sleep  EEG  and  magnetoencephalograms  of  humans  [6–8] 
comprises a periodic fluctuation between a hyperpolarized 
membrane potential or down state (characterized by the absence 
of network activity), and a depolarized membrane potential, or up 
state (where action potentials use to occur). 

The slow oscillation is cortically generated [9] and takes place as 
a stable synchronous network event as demonstrated by multiple 
intra- and extracellular recordings in the intact brain [10–12]. Its 
generation by the cortical network is backed by the fact that it is 
also generated in deafferented cortical slabs [13] and in cortical 
slices maintained in vitro [14]. A large number of studies have been 
published in recent years dealing with the cellular and network 
mechanisms underlying this slow rhythm and other related 
aspects, such as the effect of up and down states on synaptic 
transmission and excitability [15–21]. 

In order to understand the cellular and network properties that 
modulate slow membrane potential fluctuations, it is often 
required to detect, separate and quantify the up and down states 
for further detailed data analysis. To achieve this processing of 
intracellularly recorded membrane potential fluctuations some 
methods deal with the data in a manual fashion, while others 
implement basic automated procedures. 

Metherate and Ashe (1993) [22] first carried out the 
quantification of the two-state behavior based on the membrane 
potential distribution. That graphical tool operates on the 
characteristic bimodal distribution of the membrane  potential, 
best fitted to a dual Gaussian function, and has been extensively 
used since then [14,19,23–33]. A peak at the hyperpolarized 
membrane potential values identifies the down state, separated 

from the depolarized up state by a well-defined central valley, 
indicative of fast transitions between the two states. Recently, 
a moving average of the membrane potential and its standard 
deviation (SD) has been presented [12] to separate the two states. 
In this case the down state presents a sharp peak at hyperpolarized 
potentials with low SD values, while the up state shows a broader 
hill at more depolarized potentials and higher SD values. A 
different approach based on the spectral difference of the LFP 
(local field potential) signal has been recently proposed to 
distinguish between up and down states [34]. This method also 
relies on the bimodal distribution of the membrane potential. 

The basic assumption underlying the approaches based on the 
bimodal distribution of the membrane potential is that the 
proportion of the area of the histogram under each of the peaks 
represents the proportion of time spent in each state, and 
consequently the mode of each peak is the preferred membrane 
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potential in each state. While this is true for very stable recordings, 
data is typically affected by fluctuating electrical and physiological 
conditions. 

According to this property, these approaches proceed by 
performing certain measurements on the biphasic histogram. A 
basic operation is to determine the threshold potential that delimits 
both states. This is obtained by computing the modes of the 
distributions (or, alternatively, visually identifying the peaks) and 
finding either the potential associated with the lowest bar between 
them, or the midpoint between the peaks if a broad valley 
separates them [35]. More reliable transitions can be performed 
by setting two thresholds, e.g., at one fourth and three fourths of 
the distance between the peaks [23]. The areas separated by these 
delimiting values are a good estimation of the time spent in each 
mode. 

Despite the simplicity and popularity of the histogram-based 
methods, there are some disadvantages related to its use: 

 
1. The intracellular membrane potential recordings must be 

stable over the time window used to compute the histogram. 
However, this ideal scenario is frequently complicated by 
membrane potential drift, changes in the electrode seal, 
movement artifacts (e.g. respiratory movements, heartbeat) or 
other factors, particularly when large time spans are to be 
considered. These changes will tend to blur the standard 
bimodal distribution of up and down states, making it hard to 
separate the two states based simply on threshold. 

2. Although the  threshold  can  be  automatically  determined, 
there is a certain tendency to establish the settings manually 
according to  the  expert assessment, even  when dealing  with 
very stable recordings and well-differentiated bimodal behav- 
ior. A reliable computerized method for peak identification in 
the histogram of membrane  potentials  from  recordings  that 
are not obtained in ideal conditions could be hard to find. 

 
An increasing amount of ‘‘non-standard’’ electrophysiological 

data (from anesthetized animals and slice recordings) and in 
addition long duration recordings demand automated and reliable 
methods for up and down states identification  and  characteriza- 
tion. We present an automatic and easy-to-use method that is able 
to identify and to reliably separate the two states of membrane 
potential, characteristic of slow wave sleep and under certain 
anesthesia: MAUDS (for Moving Averages for Up and Down 
Separation). Furthermore, the method has been engineered  to  be 
used online,  in such a  way that the  up and down  states can be 
visualized in real-time superimposed to the original signal, and the 
experiment design can include triggering events. It also provides 
immediate information on the statistics of the up versus down 
periods to evaluate the behavior of the network. 
 
METHODS 
Experimental Methods 
Slices preparation   The methods for preparing cortical slices 
were similar to those described previously [14]. Briefly, cortical 
slices were prepared from 2- to 6-month-old ferrets of either sex 
that were deeply anesthetized with sodium pentobarbital (40 mg/ 
kg) and decapitated. Four hundred-micrometer-thick coronal slices 
of the visual cortex were cut on a vibratome. A modification of the 
technique developed by [36] was used to increase tissue viability. 
After preparation, slices were placed in an interface-style recording 
chamber and bathed in ACSF containing (in mM): NaCl, 124; 
KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2; NaHCO3, 26; and 
dextrose, 10, and was aerated with 95% O2, 5% CO2 to a final pH 
of 7.4. Bath temperature was maintained at 34–35uC. Intracellular 

recordings were initiated after 2 hr of recovery. In order to induce 
spontaneous rhythmic activity, the solution was switched to ACSF 
containing (in mM): NaCl, 124; KCl, 3.5; MgSO4, 1; NaHPO4, 
1.25; CaCl2, 1–1.2; NaHCO3, 26; and dextrose, 10. 

Animal preparation for in vivo recording   Intracellular 
recordings in vivo from the primary visual cortex of cats were 
obtained following the methodology that we have previously 
described [37]. In short, adult cats were anesthetized with 
ketamine (12–15 mg/kg, i.m.) and xylazine (1 mg/kg, i.m.) and 
then mounted in a stereotaxic frame. A craniotomy (3–4 mm 
wide) was made overlying the representation of the area centralis 
of area 17. To minimize pulsation arising from the heartbeat and 
respiration a cisternal drainage and a bilateral pneumothorax were 
performed, and the animal was suspended by the rib cage to the 
stereotaxic frame. During recording, anesthesia was maintained 
with  i.m.  injections  of  both  ketamine  (7 mg/kg)  and  xylazine 
(0.5 mg/kg) every 20–30 min. The heart rate, expiratory CO2 

concentration, rectal temperature, and blood O2 concentration 
were monitored throughout the experiment and maintained at 
140–180 bpm, 3–4%, 37–38uC, and .95%, respectively. The 
EEG and the absence of reaction to noxious stimuli were regularly 
checked to insure an adequate depth of anesthesia. After the 
recording session, the animal was given a lethal injection of sodium 
pentobarbital. Animals were cared for and used in accordance 
with the Spanish regulatory laws (BOE 256; 25-10-1990) which 
comply with the EU guidelines on protection of vertebrates used 
for experimentation (Strasbourg 3/18/1986). 

Rat barrel cortex Adult Wistar rats (250–300 g) were used for 
recordings in S1 cortex. Anesthesia was induced by intraperitoneal 
injection of ketamine (100 mg/kg) and xylazine (8–10 mg/kg). The 
animals were not paralyzed. Maintenance dose of ketamine was 
75 mg/kg/h. Anesthesia levels were monitored by the recording of 
low-frequency electroencephalogram (EEG) and the absence of 
reflexes. Rectal temperature was maintained at 37uC. Once in the 
stereotaxic apparatus, a craniotomy (262 mm) was made at 
coordinates AP –1 to 23 mm from bregma, L 4.5–6.5 mm. After 
opening the dura, extracellular recordings were obtained with 
a tungsten electrode (FHC, Bowdoinham, ME, USA). Extracellular 
recordings were used to adjust whisker stimulation (not shown) and 
to monitor the occurrence of slow oscillations. Intracellular 
recordings were obtained within 1 mm from the extracellular 
recording electrode. Whisker stimulation. A puff of air given 
through a 1 mm tube placed in front of the whiskers (10–15 mm) 
was used for stimulation. The air puff (10 ms) was controlled by 
a stimulator and delivered by a Picopump (WPI, Sarasota, FL). Its 
pressure was adjusted such that it would evoke a response that was of 
50–100 mV in the extracellular recordings and between 5 and 
10 mV in the intracellular recordings. 

Recordings and stimulation Sharp intracellular recording 
electrodes were formed on a Sutter Instruments (Novato, CA) P-97 
micropipette puller from medium-walled glass and beveled to final 
resistances of 50–100 MV. Micropipettes were filled with 2 M 
potassium acetate. Recordings were digitized, acquired and 
analyzed using a data acquisition system (Power 1401; Cambridge 
Electronic Design, Cambridge, UK) and its software (Spike 2). Two 
different implementations of MAUDS where integrated in Spike 2: 
(1) using its built-in script language, and (2) as an assembler program 
that can be run on the sequencer included in the system. The 
functioning of these implementations has been tested and is further 
discussed in the results section. These programs, as well as 
MATLAB (The MathWorks, Inc.) implementations, are distributed 
as open source, and can be fetched from a web site (http://www.geb. 
uma.es/mauds), where a tutorial, examples, and a forum for MAUDS 
users are also available. 
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Analytical Methods 
The strategy we propose for characterizing up and down states in 
electrophysiological data is based on a method widely used in 
financial data analysis: crossover of moving averages. 

Methods for financial time series forecasting often involve the 
linear transformation (averaging) of past data in order to track 
trends and predict trend reversals [38]. Transitions between up 
and down membrane regimes can be anticipated in a similar way: 
current and previous dynamics can predict a forthcoming change 
to a depolarized or hyperpolarized membrane. In the field of 
signal processing such systems are referred to as real-time 
smoothers, and its implementation is equivalent to a low-pass 
filtering with two cut-off frequencies. 

We consider a time series of intracellular membrane potential 
samples. xi represents a sample in mV of membrane potential values. 
This signal is smoothed by computing for each sample a value that 
averages the membrane potential through a given time window. 

In forecasting systems, the standard form of a moving average 
over the last n values is given at time t by the following expression: 

something like the last two weeks of the signal (say a commodity’s 
price), while the long-term EMA averages the last three months. 
Crossings of the short-term EMA from values above the long-term 
curve to values below it indicate a possible change from the 
current trend to increase (a positive slope characteristic of buying 
periods) to a new decreasing period (negative slope, or selling 
cycle), while changes from below to above the long-term EMA 
indicates a change from the decreasing trend to an increasing one 
(negative to positive slope). 

The dynamics of the electrophysiological signal that we intend 
to characterize depends on several factors: cortical region, level of 
anesthesia, depolarizing or hyperpolarizing  currents,  etc.  While 
the expected frequency is about 1 Hz, in practice (including in vitro 
and in vivo recordings) this variable ranges between 0.2 and 1 Hz. 
This variability makes it necessary to adjust the method to the 
dynamics of each particular signal. A broad estimation of the 
frequency of the recorded signal suffices to compute suitable values 
for the window sizes of both EMAs. Expressed in seconds, the size 
of the windows for the slow average (Ws) and the fast average (Wf) 
are given by the following equations: 
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mt~ 
n

 

t X 
 
i~t{nz1 
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Ws~2(4{p) ð3Þ 

 
A family of implementations can be obtained when the terms in 

the summation are scaled according to some weighting function. 
One of such functions weights each value with a constant that 
decreases exponentially with the distance to the current value. The 
main property of this exponential weighting is that it gives a greater 
importance to recent values, while integrating over a wide 
temporal window. The price is a higher computational cost. This 
shortcoming must be taken into account when filtering physiolog- 
ical data recorded for a large period of time at a high sample rate. 
In such cases, the window size could extend along more than one 
hundred thousand values (2–3 s depending on the acquisition 
frequency). However, the implementation of exponential weighting 
with a first-order difference equation solves this computational 
problem. Equation (2) computes the exponential moving average of 
the last n values. It proceeds by combining the contribution from the 
previously averaged value, and the current value of the signal. 

 

 
mt~amt{1z(1{a)xt ð2Þ 

 

Wf ~6Ws ð4Þ 
 

where p is the estimated period (the inverse of the frequency) of the 
wave to be characterized. Here, equation (3) is defined such that 
the period of the wave is expected to fall below four seconds (or 
frequencies higher than 0.25 Hz). In a standard situation 
(frequency around 1 Hz) the slow EMA will be six times faster 
than the original signal. 

The crossing points of the two EMAs are good approximations 
of the transitions between up and down states (i.e. of both, up and 
down initiation). However, some extra processing around these 
points can determine more precisely the onsets and offsets. The 
results clearly improve by analyzing the slope of the signal with 
a simple momentum operation. The momentum is another 
indicator widely used in the financial world to measure market’s 
sentiment. It is defined as the difference between the current value 
of the signal and a previous value, with respect to the time 
difference between them. It operates, therefore, as an estimate of 
the slope. More precisely, equation (5) shows this relation. 
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The recursion reduces the complexity of the original loop to an 
order of magnitude (two products and one addition). This 
expression allows the smoothing of large data vectors in real time 
on a conventional computer. 

Higher values of n will expand the range of past values that 
influence the current value, strengthening the smoothing effect of 
the average. Parameter n is adjusted according to the dynamics of 
the signal. For example, in trading applications, trend tracking 
indicators use wide and narrow averaging windows for highly 
volatile and non-volatile prices, respectively. 

Periods where a signal keeps its tendency to increase or decrease 
(trending periods) can be tracked with fitted exponential moving 
averages (EMAs), while changes in this trending behavior (trend 
reversal) is detected by crossing over two EMAs with different 
window sizes. In the financial world these two curves that follow 
the signal are generally termed short-term (or fast) and long-term 
(or slow) averages. For example, a short-term EMA integrates 

where k is the time difference, and f is the sampling frequency. For 
example, if the membrane potential recorded at time t is –70 mV, 
and the value that was sampled 125,000 steps before was –60 mV, 
a frequency of 25 kHz would give a momentum of –20 mV/s, 
which means that around time t the membrane  tends to 
hyperpolarize at a rate of some –20 mV every second. 

This estimation of the slope is an indicator of the shape of the 
curve where the transition takes place. When the tendency to 
become hyperpolarized slows down at the end of an up state, we 
enter the flat hyperpolarized region of the down state. In terms of 
potential’s slope, this is like moving from low (negative) values to 
a zero slope. The reverse is true for entering the up state: the slope 
increases as the membrane depolarizes. Transitions are therefore 
computed as the precise moments around the crossing points 
where the momentum raises over a certain threshold. This limit 
value is negative when transition is made from up to down, and 
positive for down to up transitions. 
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Finally, those excursions of the membrane potential (identified 
by the method as up or down states) with duration shorter than 
40ms were filtered out, as in [12,34]. 

The combination of these two methods (EMAs overcrossing, 
and a fine analysis of membrane potential around the crossing 
points) reliably characterizes data in ideal and noisy conditions, 
even in situations where the histogram-based approach might fail. 
In the rest of the paper the proposed method will be referred as 
MAUDS and its performance will be tested against the traditional 
method in differently shaped intracellular bistate data. Blue boxes 
have been used in the figures to highlight the detected up states. 
 
RESULTS 
Up and Down states  were  identified in intracellular recordings 
obtained from the cerebral cortex of both in vitro and in vivo 
preparations from different areas of the cortex (visual, prefrontal and 
somatosensory). In the first part of the results we describe the 
properties of MAUDS analyzing the recordings with the MATLAB 

scripts in an offline fashion. In the second part of the results we 
demonstrate how this method can also be used online, thus allowing 
to exploit the signals that it generates in order to trigger other events 
or to obtain immediate statistics of time distribution of up versus down 
states under different conditions. The detection of up  and  down 
states occurring in the network can also be carried out by applying 
MAUDS to the local field potential (LFP) (Fig. S1), detection that 
shows a high correlation with the one from intracellular recordings 
obtained simultaneously and in close vicinity to the LFP. 

The characteristic shape of neuronal membrane potential 
during slow oscillations shows two clearly differentiated states of 
membrane  potential:  a  depolarized  membrane  (up  states)  and 
a hyperpolarized one (down states), with relatively fast transitions 
between them. As said before, in short recordings, up and down 
states are often identified by thresholding the membrane potential. 
However, this method frequently fails in long recordings due to 
membrane potential drifting, presence of spindles, and other types 
of interferences like electronic noise or movement artifacts while in 

 

 
 

Figure 1. Offline separation of standard up and down states. A. Intracellular recording in vivo from a neuron in cat primary visual cortex. Time 
marks in the horizontal axes of the traces indicate 1 second interval (relative labels not shown for clarity). A fast EMA is represented as a green line 
and a slow EMA in red line. The points of crossing between both of them have been used to calculate the beginning and end of up states, 
highlighted with a blue box. Same in B. B. Intracellular recording in vitro from a supragranular neuron in a prefrontal cortex slice from the ferret. C. 
Histogram of the membrane potential values corresponding to the trace in A. It shows two clearly differentiated states separated by a transitional 
valley (see Gaussian fit in green superimposed to the histograms, with parameters 276.6 and 267.0 for the mean, 0.8 and 5.3 for the standard 
deviation). D. Histogram of the membrane potential values corresponding to the trace in B (fitting curves with parameters 264.6 and 257.0 for the 
mean, 0.5 and 7.6 for the standard deviation). 
doi:10.1371/journal.pone.0000888.g001 
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vivo (heartbeat pulsation, respiratory movements, etc). Even when 
the aim of the experimentalists should be to eliminate all these 
artifacts, we will exploit them here in order to test the robustness of 
the described method against other commonly used ones. Two 
problems have to be solved for a good characterization of the 
states: (1) determining the periods where depolarized (up) or 
hyperpolarized (down) membrane potential take place, and (2) 
identifying the precise points in time where these states actually 
start and end. As  explained in the previous section, MAUDS 
tackles these problems with an initial broad identification of the 

down states by overcrossing two moving averages, and a later 
refinement of the initiation and termination points by a discrete 
processing of the membrane potential evolution in the transition 
interval. In general, we have observed that MAUDS performs well 
for any value of the long-term EMA in a wide range. On the other 
hand, the characterization is slightly more sensitive to the fast 
EMA. An optimum window size would smooth efficiently the high 
frequency changes of the membrane potential (isolated spikes and 
artifacts), being also quick enough to detect fast excursions of the 
signal to highly hyperpolarized regions. 

 

 

 
 

Figure 2. Offline up and down states separation in drifted recordings. A. In vivo intracellular recording from a neuron in the primary visual cortex 
from the cat. A drift in the membrane potential is illustrated. B. Intracellular recording in vitro from a neuron in the prefrontal cortex of the ferret. The 
slow EMA follows the average membrane potential, providing a value of reference that discriminates the up and down levels. See the high 
frequencies detailed in the inset. Time marks in the horizontal axes of the traces indicate 1 second interval. C and D. Histograms corresponding the A 
and B traces respectively. Note that in the drifted recordings the bimodality of the Vm values is not as clear as in stable recordings like in Fig. 1. 
doi:10.1371/journal.pone.0000888.g002 
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We studied periods of $ 900 seconds of intracellular fluctuations 
in recordings from neurons in the visual cortex of the anesthetized 
cat, from neurons in the somatosensorial cortex in the anesthetized 
rat, and from neurons recorded in oscillating ferret cortical slices 
obtained from prefrontal or visual cortices from the ferret (n = 20). 
The traces in (Fig. 1A, 1B) were recorded from two different animals 
and show the standard up-down behavior. These states are efficiently 
separated for a wide range of fast and slow EMAs. Under these 
recording conditions, the histograms show two different distributions 

of membrane potentials (Fig. 1C and D). Therefore, a simple 
thresholding is expected to reliably separate up and down states. 
(Overshadowing blue boxes show the precise limits of the up states 
found by MAUDS, in this and the following figures.) 

Non-standard up and down states arise when the recording 
scenario departs from these ideal conditions. The periodicity and 
homogeneity of the standard up and down states disappears, 
yielding either irregular fluctuations (induced for example by noise 
or respiration if in vivo), or high frequencies that blur the transitions 

 
 

 
 

Figure 3. Offline detection of up and down states by MAUDS in special situations. A and B. Correctly identifying up states where no action 
potentials occur in highly hyperpolarized neurons recorded in vitro in prefrontal cortex from the ferret. Note that in B there is correct detection of 
down states in spite of the repetitive occurrence of short lasting sharp events. C. Filtering isolated synaptic events occurring in the middle of a down 
state. D. Sorting suspicious down states intermingled into long-lasting up states (third up state). C and D correspond to intracellular recordings 
obtained in vivo from cat’s primary visual cortex. In all panels time marks in the horizontal axes of the traces indicate 1 second interval. 
doi:10.1371/journal.pone.0000888.g003 
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(especially in the down states initiation). While MAUDS can still 
deal with these situations (traces and superimposed EMAs in Fig. 2, 
A and B), the resulting histogram rapidly looses the bimodal shape 
(Fig. 2C and D), making it harder to decide where the right 
threshold should be located. Since the duration of up and down 
states presents a large variability, it is also difficult to filter false 
transitions according to this feature. The histograms performed 
over longer recording sessions simply showed a smoothed shape, 
but failed to better define the two-peaks picture. 

Another undesired artifact is signal drifting, caused by changes 
in the junction potential. In principle this effect can be prevented 
(chloriding silver electrodes, using an agar bridge, etc.) and 
compensated by commercial amplifiers, but it is usual to obtain 
long sequences of data where slow shifts (e.g. Fig, 2A) or fast 
excursions of the membrane potentials can be observed. These 
variations in the apparent membrane potential do not necessarily 
reflect any change in the current flowing through the membrane 
but an offset of the membrane potential value. Therefore, the 
bistable fluctuation of the membrane potential during rhythmic 
activity remains, allowing it to be studied in spite of the unstable 
wave it is resting on (Fig. 2). 

In addition to drifted recordings, the proposed method correctly 
separates up and down states where special events take place, such 
as the absence of spiking activity  in a hyperpolarized membrane 
with subthreshold oscillations (Fig. 3, A and B traces), the presence 
of isolated synaptic potentials (or even spikes) along well-defined 
down states (Fig. 3C shows a synaptic potential between the first 
and second up states), frustrated down state initiations that might 
generate misclassifications (Fig. 3D), or recordings during re- 
spiratory or other movement artifacts (Fig. 4A), where the 
underlying slow oscillation is still present  (detailed  in  Fig.  4B). 
The histograms of membrane potential show that some bimodal 
distribution remains (Fig. 4D) over stable intervals, but it vanishes 
when applied to a few seconds interval (Fig. 4C shows the 
histogram for the trace on Fig. 4A). 

In order to compare the performance of MAUDS with that of 
the histogram method, 5 recordings containing standard slow 
oscillation were selected (for an overall time of 145 s) and the 
corresponding transitions were obtained based on the histogram 
(best manual fitting) and with MAUDS, where a broad estimation 
of the oscillation frequency parameterized the slow and fast EMAs. 
With regard to effectivity, both methods correctly identified all the 

 
 

 
 

Figure 4. Offline identification of up and down states in intracellular recordings with artifacts. A. Intracellular recording from primary visual cortex 
of the cat in vivo. There is a respiratory movement artifact that generates rhythmic drifts of the membrane potential. B. Detail of a portion of the 
membrane potential shown in A (second 15, 16, 17). Time marks in the horizontal axes of the traces indicate 1 second interval. C and D. The 
distributions of membrane potentials in panels A and B, respectively. 
doi:10.1371/journal.pone.0000888.g004 
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up and down states present in the recordings. On the other hand, 
the precision of MAUDS was compared to the histogram-based 
characterization according to the Coincidence Index (CoIn) 
described in [34]. The mean degree of overlap computed between 
the two  series  of  up  and  down  states  was  91.760.8%,  with 
a 97.761.6% CoIn for the up states, and a 85.762.8% for the 
down states. This value shows that MAUDS has a high precision 
in determining the transitions with respect to the traditional 
histogram approach. 

Although the histogram method performs similarly in charac- 
terizing standard oscillations, the previous examples show that 
a fixed threshold will not characterize well the underlying slow 
oscillation in non-standard recordings. Determining the threshold 
for standard up and down states can easily be done in a manual 
way, but a criterion to deal with non-standard behavior (as in the 
previous examples) has not been proposed yet in the literature. For 
this reason,  MAUDS  performance  can  not  be  compared  to 
a histogram-based characterization of non-standard slow oscilla- 
tions. 

In order to use MAUDS for the online analysis of intracellular 
recordings (Movie S1), the script was integrated in the Spike 2 
(Cambridge Electronic Design, Ltd.) data acquisition software. As 
described in the Methods section, two different  implementations 
have been coded and tested for online characterization. While the 
characterization of the electrophysiological signal is equivalent in 
both versions, the computational resources and times used differ 
significantly. The script version has the advantage of being coded 
in a high-level programming language, which is easy to understand 
and update by potential users. In contrast, the assembly version 
results extremely cryptic and is not suited for further modification 
by users. On the other hand, the script runs on the computer’s 
processor, which means that it shares the resources with the 
recording process (that has a higher priority) resulting in 
characterization times that do not  allow  real-time  triggering 
(around 1 s on a Pentium IV processor). Furthermore, the assembly 
language runs on the sequencer (see Methods for details), and has 
the advantage of a processing time that is completely independent 
of the computational resources, the system’s load,  and  the 
recording process itself. The sequencer  processes  20  instructions 
per millisecond, allowing a real-time interaction with the 
experiment: stimuli can be triggered  1 ms  after  the  transition 
has  been  detected. 

The assembly version was used to perform online characteriza- 
tion and pulse triggering. The detection of the transitions between 
up and down states was set to generate a 1-bit digital signal, 
differentiating the current up or down state present in the voltage 
recordings. This signal was recorded and used externally to trigger 
events by connecting it to other equipment. Online analysis of up 
and down states was performed in more than 40 intracellular 
recordings during slow oscillations occurring in the cortex of 
anesthetized animals in vivo (visual, somatosensory) and in vitro 
(visual, prefrontal). The results of the online analysis are illustrated 
in Figs. 5 and 6. Figure 5 represents the detection of up states 
during three different intracellular recording in vivo: supra- and 
subthreshold up states of different durations and amplitudes are 
equally detected during the recording. Identification of up and 
down states during recording from a fast spiking neuron (Fig. 5A) 
in primary visual cortex, during a drifted recording from a regular 
spiking cell (Fig. 5B) or subthreshold up states recorded from rat 
barrel cortex (Fig. 5C) are illustrated. Online analyzed drifted 
recordings (Fig. 5B) were still well identified. In Fig. 5B a small 
depolarization remained undetected. However this depolarization 
could hardly be defined as up states even by visual inspection and 
manual classification. 

 
 

Figure 5. Online detection during intracellular recordings in vivo. A. 
Up states recorded in a fast spiking neuron in the primary visual cortex 
of the cat. B. Online detection of up and down states in an intracellular 
recording  in  cat  primary  visual  cortex  during  subthreshold  and 
suprathreshold up states in a drifted recording (note that due to the 
drift the suprathreshold up states seem to be more hyperpolarized than 
the subthreshold ones). In A and B spikes have been truncated. C. 
Online detection of up states recorded in the barrel cortex of a rat. In all 
these cases the animals were anesthetized with ketamine and xylazine 
(see Methods). In all panels time marks in the horizontal axes of the 
traces indicate 1 second interval. 
doi:10.1371/journal.pone.0000888.g005 

 
In vitro recordings were also analyzed online (Fig. 6A,B; Movie 

S1), and subthreshold up states are displayed, along with the 
population activity reflected in the multiunit recording in close 
vicinity of the intracellularly recorded cell. In a different neuron 
(Fig. 6B), the signal generated by the detection of the initiation of 
the up states was fed into the intracellular amplifier (Axoclamp 2B, 
Molecular Devices Co.) in order to generate a step of hyperpolarizing 
current. By regulating the delay of occurrence of the current 
injection, the input resistance of the neuron could be measured at 
different times with respect to the initiation of the up states. This 
signal could have been used equally for the triggering of other 
events of stimulation or analysis. 

Online detection of up states was also used to average up states 
and thus determine the shape of the up state rising time, as it was 
done for slow oscillations recorded in the barrel cortex of the 
ketamine-anesthetized rat (Fig. 6 C, D). A puff of air delivered to 
the whiskers induced a consistent sensory response that was 
recorded intracellularly in the barrel cortex (Fig. 6F). The signal 
generated by the online detection of the up states’ initiation was 
also used to trigger the sensory responses at particular intervals 
after the initiation of the up states, thus allowing systematic 
average of different trials (Fig. 6G). 
 
DISCUSSION 
Identifying the transitions between up and down cortical states is 
sometimes difficult and has to rely on the subjective opinion of the 
researcher. For example, it is not obvious when a short de- 
polarization should be wide enough to be considered an up state or 
when the absence of spikes is a necessary condition to determine 
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the presence of a down state. Understanding the cellular and 
network mechanisms that generate the two-state behavior 
generated by the cortical  network therefore  demands  a robust 
and reliable method for up and down states identification. Here we 
have demonstrated that the traditional histogram-based approach 
originally described by Metherate and Ashe (1993) [22] and 
extensively used afterwards (e.g. [14,19,23–26,28–33]), while 
being an efficient graphical tool for manual threshold determina- 

tion under ideal conditions, lacks the adaptive computational 
properties to deal with fuzzy  transitions, occurring  during 
recordings that are not stable, or drifting, that develops quite 
often over long recordings. 

Trend-following techniques of financial trading applications 
combined with problem-specific knowledge yields a method that 
robustly separates up and down states, in both ideal and fuzzy 
situations. This work formalizes such a method and analyses its 

 

 

 
 

Figure 6. Online detection of up states and their use as triggers. A. Online detection of up states during in vitro intracellular recordings in primary 
visual cortical slices from the ferret. Bottom trace: extracellular multiunit recording representing the population firing in the vicinity from the 
intracellular recorded neuron. B. Online detection of up states in a recording from ferret oscillatory slices, primary visual cortex. In this case the 
beginning of the up state has been used to trigger a hyperpolarizing pulse (20.2 nA) at different times with respect to the occurrence of the up state 
in order to estimate changes in the input resistance. C. Slow oscillations in the barrel cortex of the ketamine anesthetized rat. Unfiltered local field 
potential (top) and intracellular suprathreshold recording (bottom). D. Averaged up states (n = 20) using the detection of initiation of up state as 
a point of reference with online MAUDS analysis, LFP (top) and intracellular recording (bottom). E. Subthreshold oscillations. F. Averaged intracellular 
responses to a puff of air to the whiskers (n = 20). The sensory response is highlighted with a yellow box. Same in G. G. Averaged up states while 
giving the whisker stimulation at regular intervals after the initiation of the up state (5 in each case), four intervals are represented. 
doi:10.1371/journal.pone.0000888.g006 
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performance in different situations characteristic of ill-defined 
biphasic behavior: (1) irregular shape of up and down states – 
variations in amplitude, frequency– (Fig. 3) (2)  imprecise  down 
state initiation, (3) signal drifting (caused by changes in the liquid 
junction potential at the electrode tip), or (4) artifacts due to 
movements during in vivo recordings, such as respiratory move- 
ments or heartbeat (Fig. 2). 

The experiments carried out for up and down state separation 
show that histogram-based methods will perform well in ideal 
situations (as widely reported in the literature), but will fail if the 
signal differs from this harmonic, well-defined and non-trended 
behavior. On the other hand, MAUDS efficiently separates up and 
down states in ideal (closely fitting the best histogram-based 
characterization) as well as in irregular oscillation. The cases studied 
in this work are common in most intracellular recordings, and can be 
analyzed with an adaptive method of the sort of MAUDS. 

Well-defined up and down states have been widely studied in the 
past, but how this bistate behavior departs from ideal conditions has 
not been reported in the literature, perhaps because of the lack of 
objective methods to characterize irregular situations. Such a method 
will allow formal quantification of these excursions, and must be 
based on an extended definition of the up and down states that meets 
conflicting experimenters’ criteria. The authors believe that an 
algorithmic approach similar to the one presented here would 
definitely be a good starting point in this direction. 

In order to integrate the online and offline versions, the model 
has been defined and tested with EMAs that compute only 
previous values. This is at the cost of a delay in the turning points 
obtained, which affects the overall performance. An offline version 
based on EMAs that average past and future intervals of time for 
each value would improve the results shown here. In spite of this 
delay, the predictive character of the online version has been used 
experimentally to trigger stimuli and to manipulate cell membrane 
voltage at specific times along the oscillation. This is of great 
interest for experimentalists to study the impact of up and down 
states on signal processing (e.g. changes in conductance or in 
synaptic transmission and plasticity). Exponential weighting has 
proved to perform well, since it reacts faster, minimizing the lag 
between the predictive moving average and the actual data. The 
method is also expected to perform well in this type of interactive 
experiments, since the presence of sensory stimuli, current 
injection, or other manipulations interspersed with the oscillation 
will not interfere with the turning points. Only the presence of 
short down states might be problematic, since the artifacts might 
cut them. The general approach exposed here would be easily 
fitted to the conditions of particular experimental settings. 

The method formalized in this paper has been coded as a Spike 
2 script, an assembly program, and also embedded in a MATLAB 
toolbox. All these programs are available online as an open-source 
code. The MATLAB implementation exploits fast matrix  opera- 
tions and the powerful graphical capabilities of this programming 
language, and can analyze electrophysiological raw data formatted 
as ASCII or MATLAB binary files. The code has been optimized 

and computes more than a million membrane potential samples 
per second on a PIV 2.8GHz with 0.5GB memory (this computer 
processes a file containing 10 minutes of intracellular membrane 
potential sampled at 25 kHz in some 13 seconds). On the other 
hand, the Spike 2 implementations are designed for online data 
processing, allowing real-time characterization and visualization 
(script version), and triggering of stimuli (sequencer version). 

Further work has to be done in order to improve two different 
aspects of MAUDS: (1) the adaptive capabilities of the proposed 
method, by automatically setting the window size of the fast EMA, 
that can be done based on local membrane potential variability, or 
exploring ranges of values where the separation remains stable; 
and (2) a complete validation of MAUDS over an extensive set of 
intracellular and extracellular data (Fig. S1) recorded in different 
cortical areas. While the authors expect a good general 
performance, even with minor changes in the parameter set, the 
forum set up in the MAUDS website is expected to feedback about 
this question, as more experimenters report on the application of 
MAUDS to recorded datasets. 
 
SUPPORTING   INFORMATION 
Figure S1 MAUDS detection of up and  down  states  on  the 
Local Field Potential recording and comparison with detection in 
the intracellular recording. Intracellular (A) and LFP (B) 
simultaneous recording in the rat barrel cortex. LFP was recorded 
unfiltered. MAUDS analysis has been applied off-line to both 
channels independently. Blue boxes highlight the detected up 
states in each of the recordings. Applying the concept of 
Coincidence Index (CoIn) described in (Mukovski et al. Cerebral 
Cortex 17:400, 2007), computed CoIn between both channels was 
85.7%, with a 89.3% CoIn for the up states and a 82.1% for the 
down states. 
Found at: doi:10.1371/journal.pone.0000888.s001 (0.55 MB TIF) 

 

Movie S1 Online detection of up and down states applying 
MAUDS to the intracellular recordings. Slow rhythm recorded in 
the barrel cortex of an anesthetized rat. Top panel: Online up 
states detection (trace going up), Middle panel: Unfiltered LFP. 
Bottom panel: Intracellular recording. 
Found at: doi:10.1371/journal.pone.0000888.s002 (2.23 MB 
SWF) 
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Fucke T, Suchanek D, Nawrot MP, Seamari Y, Heck DH, 
Aertsen A, Boucsein C. Stereotypical spatiotemporal activity 
patterns during slow-wave activity in the neocortex. J Neuro- 
physiol 106: 3035–3044, 2011. First published August 17, 2011; 
doi:10.1152/jn.00811.2010.—Alternating epochs of activity and si- 
lence are a characteristic feature of neocortical networks during 
certain sleep cycles and deep states of anesthesia. The mechanism and 
functional role of these slow oscillations (<1 Hz) have not yet been 
fully characterized. Experimental and theoretical studies show that 
slow-wave oscillations can be generated autonomously by neocortical 
tissue but become more regular through a thalamo-cortical feedback 
loop. Evidence for a functional role of slow-wave activity comes from 
EEG recordings in humans during sleep, which show that activity 
travels as stereotypical waves over the entire brain, thought to play a 
role in memory consolidation. We used an animal model to investigate 
activity wave propagation on a smaller scale, namely within the rat 
somatosensory cortex. Signals from multiple extracellular microelec- 
trodes in combination with one intracellular recording in the anesthe- 
tized animal in vivo were utilized to monitor the spreading of activity. 
We found that activity propagation in most animals showed a clear 
preferred direction, suggesting that it often originated from a similar 
location in the cortex. In addition, the breakdown of active states 
followed a similar pattern with slightly weaker direction preference 
but a clear correlation to the direction of activity spreading, supporting 
the notion of a wave-like phenomenon similar to that observed after 
strong sensory stimulation in sensory areas. Taken together, our 
findings support the idea that activity waves during slow-wave sleep 
do not occur spontaneously at random locations within the network, as 
was suggested previously, but follow preferred synaptic pathways on 
a small spatial scale. 

 

slow-wave sleep; extracellular electrode array; up/down state; ket- 
amine/xylazine; traveling waves 

 
 

SPREADING WAVES OF ACTIVITY within neocortical networks are a 
phenomenon that can be observed under many different con- 
ditions. This includes early developmental phases (Katz and 
Shatz 1996; Wong 1999; Momose-Sato et al. 2007), strong 
sensory stimulation in various primary sensory areas such as 
barrel cortex (Ferezou et al. 2006; Petersen et al. 2003), visual 
cortex (Xu et al. 2007), and motor cortices (Rubino et al. 2006) 
(for a detailed review see Wu et al. 2008), as well as during 
slow-wave sleep (Chauvette et al. 2010) and anesthesia-in- 
duced slow-wave activity (Steriade et al. 1993a; 1993b; 1993c; 
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Takagaki et al. 2008). This widespread occurrence has led to a 
strong interest in the mechanisms underlying wave propagation 
in the neocortex although a functional role of the traveling 
waves remains unclear. To gain a better understanding of the 
functional nature of these reoccurring waves during slow-wave 
sleep, many studies have elucidated important details on the 
features of the so-called up- and down-states, which are a 
characteristic of slow-wave activity in single cells and cell 
populations. In a neocortical network undergoing slow-wave 
activity, only a certain fraction of the cells within a local 
volume takes part in action potential firing during the up-state 
(at least in the superficial layers), as was revealed by calcium 
imaging studies (Kerr et al. 2005), with a slow drift of the 
active subpopulation. Multiple parallel intracellular recordings 
have demonstrated, however, that even the silent cells receive 
nearly no synaptic input during the down-states, whereas their 
membrane potential shows strong depolarization and fluctua- 
tions during the up-states (Volgushev et al. 2006), demonstrat- 
ing that the entire network seems to partake in the oscillatory 
activity (see also Léger et al. 2005). The questions regarding 
which cells within the network start a new active state and the 
mechanisms behind its spreading are discussed somewhat con- 
troversially: some evidence points toward a thalamic origin 
(Blethyn et al. 2006; Hughes et al. 2002; Crunelli and Hughes 
2010), but, because spontaneous slow-wave activity can also 
be observed within deafferentiated cortical slabs (Timofeev et 
al. 2000), it seems that the cortico-thalamic feedback loop 
might primarily serve to stabilize the oscillations and make 
them more regular (Steriade et al. 1993b; Timofeev et al. 
2000). Recent in vivo studies in cats suggest that, during 
slow-wave sleep, layer V pyramidal neurons, generally con- 
sidered the output cells of the local cortical network, seem to 
activate before those in layer IV, which receive most of the 
thalamic input (Chauvette et al. 2010). Along these lines, up-
state initiation in human subjects seems to be mediated by 
synaptic input to dendrites located in the supragranular layers, 
as shown by current source density analysis of layer-specific, 
local-field-potential recordings. However, in human cortex no 
leading layer in terms of onset of action potential firing could 
be identified (Csercsa et al. 2010). Data from acute slice 
experiments have supported these findings (Sanchez-Vives and 
McCormick 2000), and the observation that extracellular Ca2+ 

concentrations rapidly increase toward the end of the down- 
states and gradually decrease during the depolarized up-states 
(Massimini and Amzica 2001) has also argued in favor of the 
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cortical origin hypothesis. Mechanistically, the increased 
[Ca2+]ext might lead to a cascade of downstream events, 
including an increase in evoked vesicle release probability 
(Crochet et al. 2005) and subsequently to a higher frequency of 
miniature excitatory postsynaptic potentials, which then could 
ignite a transition into the active state (Chauvette et al. 2010). 
Theoretical studies, on the other hand, have suggested addi- 
tional mechanisms that could lead to slow-wave activity start- 
ing within the cortical network. If equipped with slightly 
elevated densities of Ih-channels, pyramidal cells might serve 
as pacemaker cells for a global oscillation (Kang et al. 2008), 
whereas other theoretical considerations suggest that oscilla- 
tory waves could be a generic emergent property of systems 
with spatially restricted connectivity (Ermentrout and Klein- 
feld 2001). Common to all theories is, first, the assumption of 
a more or less homogeneous distribution of cell types and, 
second, that oscillatory waves of activity could originate from 
arbitrary locations within the network. 

Because spatiotemporal patterns of traveling waves during 
slow-wave activity are an experimentally quantifiable phenom- 
enon, we wanted to further characterize the properties of slow- 
wave activity generation. In particular, we investigated to what 
extent waves of activity spread through the neocortical network 
along stereotypical pathways. Studies performed in the anes- 
thetized rat implementing voltage-sensitive dye (VSD) imag- 
ing have shown that activity waves have a tendency to prop- 
agate along specific paths, even showing cross-modal activa- 
tion (Takagaki et al. 2008). EEG studies in humans also 
revealed an origin and preferable direction of wave propaga- 
tion that was consistent across subjects (Massimini et al. 2004; 
Riedner et al. 2007). On the other hand, VSD imaging per- 
formed in the barrel cortex of awake mice indicated that 
spontaneous waves varied their direction from one trial to the 
next (Ferezou et al. 2006). For our study, we implemented a 
spatially defined array of seven extracellular electrodes in 
combination with one intracellular electrode and recorded from 
the somatosensory cortex of rats anesthetized with a combina- 
tion of urethane and ketamine/xylazine. This kind of anesthesia 
has been established as a model for slow-wave sleep (Fontanini 
et al. 2003; Sharma et al. 2010) and leads to stable and regular 
low-frequency oscillations in the neocortex. Fitting spreading 
circular waves to our data, we found that wave fronts had a 
preferred direction of propagation, which varied across ani- 
mals. This was true for both, activating and inactivating tran- 
sitions. Our findings suggest that activity waves during slow- 
wave activity originate from a single location within the 
network and follow preferred synaptic pathways, which are not 
predefined by the coarse anatomical structure of the neocortex 
and may differ across animals. 

 
 

MATERIALS AND METHODS 

Animals and surgery. For the experiments, adult Sprague-Dawley 
rats (274 to 570 g body wt) were anesthetized with intraperitoneal 
injections of 20% urethane (1 g/kg body wt), and supplementary doses 
of a mixture of ketamine and xylazine (100 mg/kg and 5 mg/kg, 
respectively) were administered every 30 –50 min to maintain deep 
anesthesia as defined by the absence of whisker movements and pinch 

anesthesia alone, the use of ketamine enhances and stabilizes the 
appearance of up- and down-states. After a deep anesthesia level was 
achieved, animals were placed into a stereotactic holder, and the skull 
was exposed. A 1.5 X 1.5 mm bone window was made over the left 
somatosensory cortex medial to the barrel field (anteroposterior, -2.1 
mm; mediolateral, 4.7 mm), and, where necessary, the dura was 
removed. All experimental procedures used in this study were per- 
formed in accordance with the Freiburg University and German 
guidelines on the use of animals in research. 

Electrophysiological recordings. For extracellular recordings, an 
array of glass-coated, single platinum-tungsten microelectrodes was 
used (0.5 to 0.8 MD; Thomas Recording, Giessen, Germany). Seven 
electrodes were distributed on a 3 X 3 grid with 400 ¡..m interelec- 
trode distance (for experiments 1– 8; Fig. 1A, top). Special care was 
taken to arrange the tips of the electrodes within the same horizontal 
plane to ensure recording from the same cortical layer. The dura was 
removed, and the array was slowly lowered perpendicularly to the pial 
surface into the brain tissue until clear spikes were detectable on at 
least five of the seven electrodes. To avoid recordings from subcor- 
tical structures, electrodes were never lowered more than 1.5 mm into 
the tissue. A subset of the experiments (experiments 9 –11; Fig. 1A, 
bottom) were recorded with an array consisting of seven electrodes 
distributed on a 3 X 4 grid with an interelectrode distance of 305 ¡..m. 
Again, the seven electrodes were inserted into the cortical tissue, but 
this time at an angle of 45° with respect to the pial surface, positioned 
in such a way as to have a planar arrangement of the electrode tips. 
This resulted in a distance between the tips of 431 ¡..m in one and 305 
¡..m in the other direction. Here the dura was left intact, and electrodes 
were lowered independently with the help of microdrives (MiniMatrix 
system; Thomas Recording) until they reached their final position 
within the cortex. Signals were preamplified 10X and 19X for the first 
and second set of recordings, respectively, and then passed through an 
array of filter amplifiers with a gain of 500 and a bandpass between 
100 Hz and 5 kHz (Multi Channel Systems, Reutlingen, Germany). 

 

 
 

 
 

 
 

Fig. 1. Recording electrodes layout and transition time detection. A: layout of 
intra- and extracellular electrodes for experiments 1–8 (top) and 9–11 (bottom). 
B: voltage histogram (gray) after high-pass filtering of intracellular recording 
trace. Black curves show the 2 fitted skewed Gaussian functions (Eq. 1), the 
peak values of which are marked by solid vertical lines. Broken lines mark 

reflex and the presence of clear state transitions in the intra- and threshlow , threshmid , and threshhigh , respectively (see MATERIALS AND METHODS). 
extracellular recordings (see below). Body temperature was measured 
using a rectal thermometer and maintained between 38 –39° C using 
a heating pad. Although the state transitions also occur under urethane 

C: detection of transition times; lines as in B. Accepted (e) and rejected (Œ) 
transitions are based on silent periods between consecutive down-to-up (DU) 
and up-to-down (UD) transitions (see MATERIALS AND METHODS). 
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Simultaneously to the extracellular recordings, one intracellular 
electrode was placed medially in close vicinity (0.5 to 1 mm) to the 
electrode array for membrane potential recording of a single cell. For 
that, microelectrodes with a resistance between 60 and 120 MD were 
pulled from borosilica glass (Hilgenberg, Malsfeld, Germany) on a 
horizontal Flaming/Brown puller (P97; Sutter Instruments, Novato, CA) 
and filled with potassium acetate solution (1 M). A total of 11 such 
combinatorial experiments were recorded. Signals were amplified with a 
bridge amplifier (SEC05; NPI, Tamm, Germany) and low-pass filtered at 
3 kHz. All signals were digitized at 25 kHz (power1401; CED, Cam- 
bridge, UK) and stored on a PC for offline analysis. 

Detection of state transitions in intracellular recordings. In a first 
step, down-to-up (DU) and up-to-down (UD) state transitions were 
detected in the voltage traces recorded intracellularly. Low-frequency 
fluctuations were eliminated by high-pass filtering traces with a 
second-order Butterworth filter with passband and stopband corner 

Ntrans,UD) * Nextra_el data traces A(t), each containing a state transition, 
assuming that the traveling wave passed by the respective extracellular 
electrode. Depending on the spatial spread of the wave, transitions will 
reach electrodes with different time shifts, which we quantified with 
respect to the transition time detected in the intracellular recording. 

For estimating this temporal shift for each extracellular electrode 
with respect to the intracellular transition, we used a variant of an 
algorithm introduced by Nawrot et al. (2003) for optimal temporal 
realignment of single trial spike responses to a repeated stimulus. For 
each electrode separately, we chose the first transition as having a shift 
of T1,opt 0. The remaining Ntrans-1 shifts (T2,opt . . . TN,opt) were 
calculated by first computing the cross-correlograms for each pair 
(i, j), Cij: 

 

Cij(T j - Ti) = f Ai(Ti + s)A j(T j - s)ds (2) 

frequencies  of  0.5  and  0.2  Hz,  respectively.  To  determine  state- Subsequently, a second order polynomial, pij(T)     aij T + bij  T + 
transition thresholds, voltage histograms were built over complete 
filtered traces and fit by a dual skewed normal function (which led to 
more reliable results than a simple sum of two Gaussians; Fig. 1B): 

(V - V0,i)2 

cij, was fitted to a small window (40 ms) centered around the 
maximum of each of the N(N-1)/2 correlograms Cij. Before correlat- 
ing, all cut-out MUA traces were multiplied with a window having the 
value  of  1  everywhere,  with  the  exception  of  the  10-ms  border - 

n(V) = 'Li Aie 2ui (1 + erf ( ai(V - V0,i) )) + B  (1) regions, where it decreased as a squared cosine to 0. This procedure 
ui        2 forced the maximum of the polynomial into the 400-ms window of the 

entire correlogram. The sum of all pij, P(T2 . . . TN), then possesses a 
with i     low, high; erf denotes the error function and introduces the 
skewness parameters ai; V0,i, ui, and Ai are the mean, variance and 
amplitude of the respective distributions; B denotes a global offset. 
From this fit the two maxima nmax,low  and nmax,high  and their differ- 
ence Llnmax were determined. We set thresholds to threshlow     
nmax,low  +  0.25Llnmax,  theshmid  nmax,low  +  0.5Llnmax,   and 
threshhigh nmax,low + 0.75Llnmax (Fig. 1B). A state transition was 
detected in the high-pass filtered intracellular trace if, for DU transi- 
tions, voltage passed threshlow ¡ threshmid ¡ threshhigh or, for UD 
transitions, threshhigh ¡ threshmid ¡ threshlow in the respective 
order; the time point of transition was defined as the time of passing 
threshmid. Up- and down-state durations were defined as the time until 
the next UD or DU transition, respectively. Time points of transitions 
were accepted for further wave-front analysis if between 50 ms and 
200 ms before (after) the DU (UD) transition no voltage value was 
higher than threshlow (Fig. 1C). We thereby ensured that we could 
unambiguously detect an approaching wave front in the extracellular 
recordings. Note that, because of our criteria for accepting transi- 
tions, the number of DU transitions (Ntrans,DU) and UD transitions 
(Ntrans,UD) were not the same and that in general there was not 
necessarily a DU transition (onset of an up-state) for each UD 
transition (offset of an up-state) for a particular up-state. This discrep- 
ancy is not problematic for further analysis steps and does not affect 
the results reported here. 

For determining the distribution of action potentials (APs) after (for 
UD transitions: before) the transition occurred, we set an AP detection 

unique global maximum that defines the shifts of trials (2 . . . N) for 
optimal alignment with the first trial. The time point of an extracel- 
lular state transition was then determined as the half-maximum 
crossing of the mean of the aligned traces. The temporal difference 
between intra- and extracellular state transition, Tglobal, was subse- 
quently subtracted from all single-transition shifts (T1 . . . TN). Using 
this procedure, we could estimate the latency of state transitions in 
extracellular signals relative to intracellular state transitions for each 
electrode separately. Thus, for each DU and UD transition, we 
obtained a vector of seven (total number of electrodes used in both our 
arrays) latencies, which we processed further for measuring the 
stereotypical nature of the state transitions. 

Fitting of circular wave fronts. The basic assumption for our 
analysis was that spontaneous state transitions do not occur simulta- 
neously across the whole cortex but travel as waves through the 
cortical network (reviewed in Wu et al. 2008). We further assumed 
that, on the spatial scale of our electrode array, these traveling wave 
fronts can be well approximated by expanding circular waves. We 
could thus express the stereotypical nature of reoccurring waves 
passing the extracellular electrode array on the basis of the angular 
distribution of the origins of fitted circular wave fronts. 

For each transition, we assumed a circular wave that started at 
origin (x0, y0) at time t0  before it first hit the electrode array and 
traveled at fixed speed v. Then, it will arrive at an electrode i of the 
array at time: 

threshold to up state mean voltage plus twice the up state membrane 
potential standard deviation. Every threshold crossing with a positive 
flank was then detected as an AP. 

1 

ti = 
v    

(xi - x0) (yi - y 0)2 - t0 

 

(3) 

Alignment of signals from extracellular electrodes. Multiunit ac- 
tivity (MUA) from extracellular recordings was prepared with a root 
mean square (RMS) procedure (Stark and Abeles 2007). Signals from 
extracellular electrodes were cut off at twice their standard deviation 
to reduce the relative weights of units with high amplitudes. Subse- 
quently, traces were squared and low-pass filtered with a fourth-order 
Butterworth filter with corner and stop frequencies of 100 Hz and 150 
Hz, respectively. Finally, the square root of the signal was calculated 

The four parameters x0, y0, v, and t0 were optimized for each 
transition separately, using a Levenberg-Marquardt algorithm (Press 
et al. 1992), which is designed to optimize nonlinear functions to a 
given set of data points. It is implemented in the SciPy package 
(Version 0.5.2) and based on the sum of squared differences between 
the experimentally measured latency vector (T1 . . . T7) and on the 
vector (t1   . . .  t7) based on the circular wave model: 

for further analysis. From the resulting traces, we cut 400-ms win- 
dows centered around intracellular state transition times. Data within 

Error = 'Li=1 (Ti - ti)2
 (4) 

these windows were then downsampled from 25 kHz to 1 kHz using 
a fast Fourier transform-based method implemented in the Python- 
based scientific computing package SciPy (Version 0.5.2; see http:// 
scipy.org/  for  details).  We  thereby  ended  up  with  (Ntrans,DU    + 

yielding Ntrans sets of parameters for each experiment. Thus for each 
state transition we obtained an estimate for the origin (x0, y0), defining 
the direction of wave propagation, the speed of the propagating wave 
front v, and time of impact t0. 
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Measures of stereotypicity. Using the parameters computed by 
circular wave front optimization, we further utilized measures from 
circular statistics to determine how stereotypically spontaneous state 
transitions occurred. We were particularly interested in whether ori- 
gins of circular waves were homogeneously distributed or whether 
there was a directional preference of wave propagation. 

For convenience, we used the central electrode as the origin of a 
polar coordinate system. Using the origin coordinates, (x0,i, y0,i), i   
1 . . . Ntrans, one can calculate the set of angles, c.i, vs. an arbitrary 
axis of the coordinate system (in our case the positive x-axis of the 
array, pointing into rostral direction; see Fig. 4A). From the distribu- 
tion of angles, we calculated complex mean vectors as 

1 

in our preparation was comparable to that reported in other 
studies. Spontaneous state transitions in vivo have been ob- 
served to occur with a frequency of around 1 Hz and to span a 
membrane potential range of 10 –15 mV (Steriade et al. 1993a; 
Léger et al. 2005; Volgushev et al. 2006). We confirmed the 
occurrence of slow oscillations in our intracellular recordings 
by autocorrelating the intracellular signal (Fig. 2A, left). The 
temporal period of the resulting side peaks of the correlogram 
was 0.97 ± 0.21 s (range 0.76 to 1.40), i.e., mean oscillation 
frequencies of 1.07 ± 0.20 Hz (Fig. 2A, right). Membrane 
potential histograms showed two clearly discernible peaks, 
which could be fitted well by a sum of two skewed normal 

m1 = 
N

  trans 

1 

'Li e jc.i  
(5) 

functions  (Eq.  1).  Experiments  for  which  the  second  peak 
could  not  be  unequivocally  identified  were  excluded  from 

   2 jc.i 
further analysis. The voltage difference between the two peaks 

m2 = 
N

 trans 
'Li e was 9.8 ± 2.6 mV and thus within the range of values reported 

where m1  and m2  denote the first and second trigonometric moment, 
respectively. Note that the mean vector strength (the absolute value of 
m) varies between 0 and 1. The circular variance was calculated as 
(Batschelet 1981) 

CV =    2(1 - lml) (6) 

Additionally, we tested the mean vector strength |m| against its ex- 
pected value from a purely random distribution of angles with the same 
Ntrans. The mean |m| from 1,000 random angular distributions was 
calculated, as well as its standard deviation. We accepted experimental 
mean vectors as significant if they were longer than the mean vector 
strength plus four standard deviations of the simulated uniform 
distributions. 

For testing whether wave front propagation velocities showed a 
preferred direction, we devised the following test: experimentally, 
each direction was associated with a velocity. If we permuted the 
velocities with respect to the directions, any dependencies between the 
two should be resolved. We performed 1,000 of such permutations 
and computed the resulting mean angular-velocity (AV) distribution. 
We then used the mean squared difference as a distance measure to 
determine which fraction of permuted AV distributions was more 
different from the mean than the actually observed experimental 
distribution. This fraction reflects the probability (P value) that the 
experimental AV distribution derived from the group of permuted AV 
distributions. A small P value (P < 0.05) was then taken as evidence 
for a nonhomogeneous AV distribution. 

 
RESULTS 

For studying the stereotypical nature of spontaneous state 
transitions in vivo, simultaneous intra- and extracellular re- 
cordings of spontaneous slow-oscillation activity from somato- 
sensory cortex of 11 adult Sprague-Dawley rats were per- 
formed. Intracellular recordings lasted between 3 and 12 min. 
Times of state transitions between down-states and up-states 
were determined from intracellular recordings and were used to 
define a search window on the data from the extracellular 
electrodes, within which the times of state transition for the 
local cell population sampled by each extracellular electrode 
were defined. The latency differences between extracellular 
electrodes were used to fit an expanding circular wave front 
characterizing the wave of activity traveling over the cortical 
surface. Subsequently, the parameters from this fit were used to 
determine how stereotypical the observed state transitions were 
on a single trial basis. 

Characterization of intracellularly recorded state transitions. 
We first wanted to assure that the slow-wave activity observed 

previously. The clear separability of these peaks allowed us to 
determine state-transition times with high precision in the 
intracellular recording. Membrane potentials during down- 
states were -80.3 ± 18.3 mV. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 2. Characteristics of intracellularly recorded membrane potential fluctua- 
tions. A, left: example autocorrelogram (total time 1 min) of intracellular raw 
data from single intracellular recording. Right: distribution of state-transition 
frequencies as extracted from autocorrelograms (gray dots: single experiments; 
black dot: mean across experiments). B, left and right: distribution of the 
up-state and down-state durations, respectively. Gray traces represent individ- 
ual experiments, and the black traces indicate the mean overall experiments. 
The dashed vertical line at 200 ms depicts the minimum state duration used for 
further analysis (see text). C, left: normalized action potential (AP) distribution 
histogram for the DU transition (bin width 20 ms). Gray traces show distri- 
butions from individual experiments, and the black trace is the mean over all 
experiments (n     11). Right: same as in left, but for the UD transition. 
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Histograms of up-state and down-state durations (Fig. 2B, 
left and right) revealed a weakly bimodal distribution, with 
local minima at around 200 ms and 100 ms in the up- and 
down-state distributions, respectively. For our analysis of the 
stereotypical nature of transitions, we could only use state 
transitions that allowed the reconstruction of wave fronts and, 
therefore, discarded short-lasting states, where state onsets and 
offsets were often difficult to assign. In addition, latencies 
between the intra- and the extracellular transition could reach 
up to 150 ms (Fig. 3B). As a minimum duration, we thus chose 
the local minimum in the up-state length distribution (200 ms). 
After the exclusion of state transitions followed by short states, 
73.5 ± 4.5% for DU transitions and 76.9 ± 4.1% for UD 
transitions were used for further analysis. The length of cut-out 

windows for extracellular data was then set to 400 ms and 
divided symmetrically around the intracellular state transition, 
gathering an approximately sigmoidal shape of the extracellu- 
lar spike-rate profiles within the cut-out window (see Fig. 7 in 
Léger et al. 2005). 

Temporal shifts between electrodes in the array. To detect 
direction and speed of traveling-activity wave fronts, we mea- 
sured the time differences of wave-front arrival at the different 
electrodes within the extracellular recording array. In contrast 
to the detection of state transitions in intracellular recordings, 
where voltage thresholds allow for an unambiguous definition 
of the transition time, APs recorded with extracellular elec- 
trodes do not necessarily mark state transitions because the first 
AP  can  occur  with  considerable  jitter  after  the  membrane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Extracellular multiunit activity (MUA) 
data and implementation of realignment algo- 
rithm. A: example of an extracellular record- 
ing, centered on the intracellular state transi- 
tion (dashed line). The gray trace indicates raw 
data; the black trace shows data after process- 
ing (see MATERIALS AND METHODS). B: calcu- 
lated shifts for a single experiment, showing 
mean and SD for each extracellular electrode 
(indicated by dot and bar, respectively) and 
individual shifts for each transition (gray dots). 
C: 50 filtered extracellular traces (as black 
trace in A), randomly chosen from 1 electrode 
(during the same experiment), centered around 
intracellular state transition onset (white line) 
before (top) and after (bottom) realignment 
algorithm was applied. D: example of  3  s of 
intracellular raw data (top) and the 7 simulta- 
neously recorded extracellular raw traces (bot- 
tom 7). Dashed lines indicate intracellular DU 
transition onset, and the black highlighted 
MUA signal shows 400-ms windows after re- 
alignment shifts were applied (see MATERIALS 

AND METHODS). 
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potential has reached the up-state. This problem can be reduced 
by averaging over a local population of neurons because most 
cells take part in slow oscillations in a concerted manner 
(Volgushev et al. 2006; Kerr et al. 2005). Extracellular elec- 
trodes with an impedance close to 1 MD pick up signals from 
neurons in a volume of roughly 100-¡..m diameter around the 
electrode tip (Stark and Abeles 2007), which contains between 
20 and 30 neurons in the neocortex, assuming a cell density of 
90,000 cells per mm3 (Gabbott and Stewart 1987). To get a 
reasonable estimate of the transition time of the local popula- 
tion, we used a combination of two procedures: in a first step, 
we applied an RMS procedure (see MATERIALS AND METHODS) to 
the extracellular signals from each electrode (Fig. 3A). This 
method is advantageous for an unbiased estimation of the 
activity of a larger population of neurons recorded by a single 
electrode because high-amplitude APs from cells that are 
located close to the electrode tip are truncated. This is espe- 
cially important for the second step in our analysis, the extrac- 
tion of transition times by applying a realignment algorithm 
(see MATERIALS AND METHODS), because the measurement of the 
optimal time shift could otherwise easily be dominated by a 
few high-amplitude AP units. The realignment algorithm was 
used because it allows for reliable response detection in noisy 
single-trial data (see Nawrot et al. 2003). Because with this 
algorithm the error in shifts based on less steep noisy flanks is 
bigger, we extracted the histograms of AP occurrences (Fig. 
2C, left and right). These histograms should allow us to 
estimate the sharpness of state transitions in extracellular 
recordings under the assumption that the firing pattern ex- 
tracted from the intracellular recording is representative for the 
cells generating the signals captured by the extracellular elec- 
trodes.  From  the  appearance  of  the  histograms,  we  should 

expect sharper DU transitions than UD transitions (Léger et al. 
2005). This potentially renders the shifts of UD transitions less 
reliable compared with those of DU transitions. The realign- 
ment algorithm itself was used to align single cut-out windows 
from a given electrode such that the observed signals became 
maximally similar (Fig. 3C). For each transition, the latencies 
of all electrodes (Fig. 3B) relative to the intracellular recording 
(Fig. 3D) were then used for estimating the parameters of a 
single activity wave front moving across the electrode array. 

Traveling wave fronts of DU transitions. To assess how 
stereotypical the state transitions were, we applied circular 
statistics to the distribution of directions pointing toward the 
extrapolated origins of circular waves fit to the transition 
latencies of the extracellular electrodes (Fig. 4A). The stereo- 
typical nature was quantified by calculating the mean vector 
(Eq. 5) of the directions for all state transitions in an experi- 
ment. The direction of the mean vector indicates the preferred 
direction; its length (the mean vector strength) is a measure for 
the relative frequency of its occurrence. The mean vector 
strength ranges from 0 to 1, corresponding to no and maxi- 
mally stereotypical behavior, respectively. Three examples of 
direction distributions of DU transitions are shown in Fig. 4B 
(top). The average mean vector strength over all experiments was 
0.45 ± 0.25 (range 0.08 to 0.74). These values correspond to an 
average circular variance (Eq. 6) of 59° (range 77.7 to 41.3°), 
meaning that transitions had a strong bias toward the preferred 
direction of propagation. To assess the statistical significance of 
the observed vector strengths, we compared them to the expected 
values of 1,000 uniformly distributed, random-angle distributions 
with the same number of transitions each. We considered a mean 
vector strength as highly significant if it exceeded the simulated 
mean vector strength by four standard deviations from the control 

 

Fig. 4. Circular wave-front analysis of state 
transitions. A: schematic illustration showing 
circular wave origin (x0, y0) and expanding 
wave fronts propagating across the multi- 
electrode array. Positions and identities of 
electrodes are indicated by black dots, la- 
beled accordingly. The interelectrode dis- 
tance was 400 ¡..m for the first set and 431 
and 305 ¡..m for the second set of experi- 
ments  (see  MATERIALS  AND  METHODS).  M, 
medial; L, lateral; C,  caudal;  R,  rostral. 
B: examples of directional distributions 
(quiver plots, top) and resulting rank plots 
(bottom). Mean directions in quiver plots are 
indicated by thick vectors; mean vector 
length and 4X SD resulting from 1,000 uni- 
form angular distributions are shown as inner 
and outer circles, respectively. In the rank 
plots, thick black lines depict experimental 
angular distribution. Gray lines show 200 
uniform angular distributions, and thin black 
line is the equidistant distribution. Before 
generating rank plots, the mean angle was 
subtracted. Numbers in the upper left-hand 
corners of the rank plots indicate the exper- 
iment number, asterisk indicates signifi- 
cance. C and D: distributions of wave-front 
velocities of DU and UD transitions, respec- 
tively. Gray traces show distributions from 
single experiments, and the average across 
experiments is shown in black. Velocities 
larger than 100 ¡..m/ms are pooled into a 
single bin at the far right of the respective 
histogram. 
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surrogate data (inner and outer black circles in Fig. 4B, top, 
respectively). This was the case in 10 out of 11 experiments. For 
a better visualization of deviations of experimentally observed 
angular distributions from uniformly random distributions, we 
plotted angles from single transitions against their relative rank 
within the distribution of angles (Fig. 4B, bottom). To allow for a 
better comparison over different experiments, we aligned the 
mean angles along the positive x-axis (angle 0°). This way, 
experimental data can be easily compared with simulated uniform 
distributions (gray traces in Fig. 4B, bottom). This visualization, 
similar to the reported mean vector lengths, demonstrates that 
most experiments showed a clear preference for one direction of 
the wave of activity spreading over the cortical tissue. Using a 
sliding-window (width: 10 transitions) approach, we examined 
the temporal evolution of the mean direction. For all experiments, 
fluctuations around the mean direction stayed well within the 
circular variance over the recording period (data not shown). 

One main concern during our analysis was that, during the 
experiments, electrodes might not have been aligned in one 
single plane but could have picked up MUA signals from 
different layers. It has been described in previous studies that 

up-states might be initiated in deep layers first (Sanchez-Vives 
and McCormick 2000; Chauvette et al. 2010; Sakata and Harris 
2009; Csercsa et al. 2010). Indeed, additional experiments, 
where the electrodes of the 3 X 4 electrode array were 
positioned vertically in three different cortical layers (Supple- 
mental Fig. S1A; supplemental material for this article is 
available online at the Journal of Neurophysiology website), in 
some cases showed temporal lead in deep layers (Supplemental 
Fig. S1B). To test whether one electrode introduces such a 
systematic error to our wave-front parameter estimation, we 
performed the same analysis again with one electrode left out 
in turn. For most experiments, no qualitative changes of our 
results were observed (Supplemental Fig. S2A). For two ex- 
periments, however, we found electrodes that, when left out, 
reduced the significance of our results. We marked these 
experiments in Fig. 5A by asterisks in parentheses. 

By comparing the second trigonometric moment (m2; Eq. 5) to 
the first moment (m1) we determined whether the angular distri- 
butions were monomodal (m1 > m2) or bimodal (m2 > m1). One 
would expect a bimodal distribution when waves of activity were 
reflected at a border between areas (Xu et al. 2007) and, hence, 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Analysis of angular distributions of 
wave-front origins. A: angular rank plots of 
DU transitions of single experiments, sorted 
by decreasing DU mean vector strength (Eq. 
5). Format as in Fig. 4B. B: angular rank 
plots of UD transitions of single experiments, 
ordered as in A. Format as in A. C: distribu- 
tions of angular differences between DU and 
UD transitions (thick black lines), sorted by 
decreasing DU mean vector strength. Gray 
horizontal lines indicate angular difference 
distribution mean and SD of 1,000 artificial 
uniformly distributed DU and UD angular 
distributions with the same number of state 
transitions each. Dashed vertical lines depict 
the angle between mean DU and UD vectors. 
The numbers located in the upper left-hand 
corners in A to C indicate the number of the 
individual experiment. Significance is indi- 
cated by asterisks in A and B, and the number 
in the lower right corner indicates the number 
of transitions used for the respective plot. 
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would pass our electrode array consecutively in opposite direc- 
tions. For DU transitions, the average m2  vector strength was 
0.30 ± 0.14 (range 0.15 to 0.55). The corresponding m1-to-m2 

ratio was 1.51 ± 0.64 (>1 in 10 of 11 experiments; the remaining 
1 experiment was not significant compared with a uniform ran- 
dom distribution). These findings clearly show that DU transition 
directions were unimodally distributed. 

We next measured the mean median propagation velocity of 
DU transition wave fronts from the circular wave-front fits, as 
25.8 ± 7.6 ¡..m/ms (range: 15.1 to 37.8 ¡..m/ms). Despite this 
high variability in median velocities, velocity histograms 
looked similar for all experiments (Fig. 4C, gray traces), 
resulting in a smooth mean velocity distribution across all 
experiments (Fig. 4C, black trace). This distribution shows a 
distinct peak at 19 ¡..m/ms. A permutation test (see MATERIALS 

AND METHODS) revealed that, in 4 of 11 experiments, the 
experimental AV distribution deviated significantly (P < 0.05) 
from a randomized AV distribution in one or more angular 
bins. However, we could not find a clear correlation between 
the peaks of the AV distribution and the preferred direction of 
wave-front origins. 

Traveling wave fronts of UD transitions. Previous imaging 
studies suggested that the activity at the end of up-states does 
not simply die out without a spatiotemporal structure but that, 
instead, the UD transition travels as a circular wave front 
similar to that of the DU transition (Xu et al. 2007). To test this 
in our experimental data, we applied the same analysis as 
above to UD transitions. 

We observed that the distribution of directions toward the 
origin of the wave front for single experiments (plotted in Fig. 
5B as rank plots) looks more diffuse than that observed for DU 
transitions (Fig. 5A). The average mean vector strength was 
0.30 ± 0.13 (range 0.13 to 0.46), meaning an average circular 
variance of 68° (range 76° to 60°, respectively). However, with 
the use of the same test against uniform random angular 
distributions as for DU transitions, only 7 of 11 experiments 
showed significantly stereotypical transitions, based on mean 
vector strength. Again, no dependence of mean direction on 
experimental time was observed (see above). Also, leaving out 
one electrode in turn from our analysis (see above) did not 
change our results. 

As for DU transitions, we used the second trigonometric 
momentum to test bimodality vs. monomodality of the direc- 
tion  distribution.  The  average  vector  strength  for  m2   was 
0.24 ± 0.1 (range 0.08 to 0.36). The ratio between m1 and m2 

was 1.49 ± 0.92 (range 0.4 to 3.4), again showing a clearly 
unimodal distribution. 

The distribution of velocities (Fig. 4D) looked similar to that 
observed for DU transitions, with an average median velocity 
of 24.8 ± 5.2 ¡..m/ms (range 18.4 to 33.7 ¡..m/ms). Again, the 
average of velocity distributions across experiments showed a 
distinct peak, now at 16 ¡..m/ms. Experimental AV distribu- 
tions deviated significantly (P < 0.05) from randomized AV 
distributions in 7 of 11 experiments. Again, the relation be- 
tween AV distribution peaks and preferred direction of wave- 
front origins remained unclear. 

We next asked the question whether DU and UD transitions 
at the beginning and end, respectively, of the same up-state 
shared the same properties regarding direction toward wave 
origin and propagation velocity. Velocities of DU and respec- 
tive UD wave fronts did not correlate (all P values >0.05, 

Spearman’s rank test). We tested the dependence of UD 
wave-front direction on DU wave-front direction by computing 
the distribution of their angular differences, Llcp (Fig. 5C). In 
those experiments, where both DU and UD vector strength 
were particularly large, a clear peak around Llcp 0 emerged, 
showing that a large fraction of UD waves traveled in the same 
direction as the preceding DU wave front. 

 
 

DISCUSSIO
N 

In the present study, we examined the stereotypical behavior of 
spontaneous transitions between up- and down-states in the somato- 
sensory cortex of anesthetized rats. We used extracellularly recorded 
MUA triggered on intracellular state transitions to determine the 
temporal shifts of wave-front arrivals between different electrodes. 
This is, to our knowledge, the first study where a large number of 
such spontaneous DU and UD transitions was used from the same 
animal to systematically analyze the wave-front propagation during 
slow-wave activity on a microscopic scale (Massimini et al. 2004; 
Volgushev et al. 2006). In the vast majority of experiments, we 
observed a clear, highly significant unimodal distribution of wave- 
front traveling directions. Results from previous studies regarding 
stereotypical behavior of state transitions on a cellular level are 
contradictory: Luczak et al. (2007) reported highly stereotypical ac- 
tivation of single units upon state transitions, independent of wave- 
front direction. Another study, using optical imaging methods to 
observe a smaller population of cells, did not find any stereotypical 
firing behavior of single cells (Kerr et al. 2005). However, the latter 
experiments covered a much smaller spatial scale, thereby potentially 
stressing local fluctuations. 

The results presented here indicate that activity propagation 
in most animals showed a clear preferred direction, a behavior 
that may originate from the repeated early activation of an 
excitatory pathway often originating from a single location in 
the cortex (Vyazovskiy et al. 2009). In other words, there 
seems to be a cortical “hot spot”, where up-states are initiated 
and subsequently travel as clearly defined wave fronts across 
the cortex. In how far activity at this location is triggered by 
cortical cells, or by thalamic input, cannot be judged from our 
data. The same holds true for the underlying physiological 
mechanism: spontaneous synaptic release, followed by activa- 
tion of persistent sodium currents (Timofeev et al. 2000; 
Bazhenov et al. 2002; Chauvette et al. 2010), could cause the 
observed stereotypical wave generation if one assumes that 
certain cells have a particularly low threshold to release syn- 
aptic vesicles. Similarly, up-states could arise from autono- 
mously oscillating pacemaker cells (Kang et al. 2008) forming 
the hot spot. It will be interesting to see in future experiments 
whether in different sleep cycles these hot spots appear at 
different locations or whether they are preferentially located at 
a single position in the cortex of the respective individual. 
Moreover, as we found neither the same directional preference 
nor a similar origin of the traveling waves across animals, the 
corresponding difference between presumed hot spots across 
animals needs to be explained. 

Methodological constraints. The basic assumption for this 
study is the circular shape of the traveling wave fronts. This 
view is supported by voltage-sensitive dye studies (Xu et al. 
2007; for a comprehensive review, see Wu et al. 2008). Even 
for different wave-front shapes, such as spiral waves (Huang et 
al. 2004), the circular shape is a reasonable approximation on 
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the small spatial scale covered by our electrode array (�800 
¡..m). Distortions of the circular shape could arise from differ- 
ent sources: 1) small areas within the cortex might be activated 
slightly earlier or later compared with the gross traveling wave 
front, thereby introducing an “effective” temporal jitter; and 
2) the realignment algorithm used in our study might introduce 
a temporal shift error, when signals superimposed by noise are 
presented. However, wave-front fitting (Eq. 3) performed well 
on jittered surrogate latencies, retrieving the direction reliably 
for normally distributed temporal jitters up to a standard 
deviation of �20 ms, which is clearly more than we expect to 
be possibly introduced by the noise sensitivity of the realign- 
ment algorithm (Nawrot et al. 2003). In a certain fraction 
(�5% on average) of all transitions, we observed an unrealis- 
tically high velocity (>100 ¡..m/ms), which might either be 
attributable to effective temporal jitter (e.g., the cortex activat- 
ing quasisynchronously) or be introduced by a combination of 
temporal shift errors. Removal of these transitions did not change 
the results presented here. One additional concern during exper- 
iments was that the intracellular electrode itself, or tissue damage 
incurred by it, might be the source of state transitions. However, 
as in most experiments, the preferred direction did not point 
toward the intracellular electrode (and nor to any of the extracel- 
lular electrodes), we are confident that the observed propagating 
waves originated in the neuronal network itself and not at a 
location of an electrode or tissue injured by it. It would, however, 
be interesting to see whether wave propagation changes in a 
chronic recording with implanted electrodes. 

The use of an intracellular electrode might not be feasible in 
other experimental preparations, particularly if the number of 
extracellular electrodes is increased. We therefore repeated our 
analysis of temporal shifts of activity within windows centered 
around state transitions in one extracellular electrode. This 
modified approach yielded the same results (data not shown), 
showing that our analysis is feasible also with multielectrode 
arrays without intracellular measurement. 

An additional parameter that allows validation of our results 
with respect to previous findings from other groups is the 
wave-propagation velocity. Experimental observations re- 
vealed velocities over a range of 2–30 ¡..m/ms (Reig et al. 
2010; Ferezou et al. 2006); our findings are in the upper half of 
this range. Propagation velocities predicted by computational 
models are somewhat lower (3– 8 ¡..m/ms; Compte et al. 2003) 
but markedly increased when inhibition in the model was 
blocked (20 –50 ¡..m/ms; Compte et al. 2003). The contribu- 
tions of excitatory and inhibitory neurons could not be identi- 
fied in our study, as we did not sort single units from the 
extracellularly recorded MUA. 

Waves have been reported to transcend functional borders 
within the cortex (Takagaki et al. 2008). However, a recent 
study (Xu et al. 2007) showed a more complex behavior at area 
borders between primary and secondary visual cortices, including 
compression and reflection of waves. Reflection at a nearby area 
border would, in our experiments, have resulted in a bimodal 
direction distribution, which we never observed. However, be- 
cause of methodological constraints, we excluded DU transitions 
following very short down-states and thus might have systemat- 
ically ignored reflections at area borders close to our electrode 
array. In any case, it remains to be demonstrated in how far our 
results are transferable to other brain areas as, for instance, the 
visual cortex described in Xu et al. (2007), and whether reflected 

waves could be detected if we place our electrode array over the 
border between two areas. A serious limitation with respect to 
such analysis is, however, the low number and density of elec- 
trodes that have been available for the reconstruction of the 
traveling waves. Obviously, it is impossible to differentiate be- 
tween circular waves and more complex patterns, which might 
impose the same latency distributions, with only seven electrodes. 

Functional implications. The occurrence of spontaneous 
slow oscillations has been demonstrated in a large variety of 
preparations, ranging from organotypical (Johnson and Buono- 
mano 2007) and acute slice preparations (Sanchez-Vives and 
McCormick 2000; Reig et al. 2010) over deafferented cortical 
slabs (Timofeev et al. 2000) to experiments in the intact cortex 
(Steriade et al. 1993a; 1993b; 1993c; Contreras and Steriade 
1995; Léger et al. 2005; Kerr et al. 2005; Waters and Helmchen 
2006; Saleem et al. 2010). Additionally, in vivo experiments 
have been performed under a variety of conditions, particularly 
with respect to anesthesia. Here, the usage of ketamine/xyla- 
zine was shown to generate oscillating behavior similar to 
slow-wave sleep observed in sleeping animals (Sharma et al. 
2010; Fontanini et al. 2003). 

The function of slow oscillations and associated traveling 
waves has thus far remained elusive. It has been proposed that 
these effects play a key role in memory consolidation (Wilson and 
McNaughton 1994; Sejnowski and Destexhe 2000; Hoffman et al. 
2007; Landsness et al. 2009), with specific activity patterns being 
replayed during up-states (Luczak et al. 2007; but see also Kerr et 
al. 2005) and a stronger activation in cortical regions that have 
been extensively used during wake periods (e.g., Huber et al. 
2008). This view might be consistent with our finding that cortical 
subregions were activated in the same spatiotemporal order over 
many consecutive state transitions, thereby potentially introducing 
a high number of pattern repetitions. It is, however, difficult to 
judge in how far the patterns characterized in our study are 
stereotypical down to the level of synapses. For a validation of this 
issue, experiments with paired recordings in the intact animal would 
be the ultimate test, an experimental technique that is not available to 
date. Another, more tractable issue concerns the question in how far 
our results may be biased by the anesthetic we used. Future experi- 
ments in unanesthetized, sleeping animals could show, whether trav- 
eling waves during slow-wave sleep exhibit the same stereotypical 
behavior as observed here under ketamine/xylazine anesthesia. We 
expect a similar behavior under these two conditions, as a certain 
degree of stereotypical behavior has been shown in humans (Massi- 
mini et al. 2004). However, an interesting extension to the experi- 
ments we performed for this study would be 1) to track changes in 
wave-propagation parameters over several sleep cycles within the 
same animal and 2) to compare these results to those from animals 
having spent time in an enriched environment, as this might enforce 
consolidation during sleep of newly learned patterns, particularly in 
motor and sensory areas. 
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