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Abstract—A wireless link considering correlated Maximal
Ratio Combining (MRC) and Transmit Antenna Selection (TAS)
under the general η-µ fading is analyzed. Exact and asymptotic
expressions for the cumulative distributing function (CDF) and
probability density function (PDF) are derived. These new results
are used to evaluate the outage capacity and the asymptotic aver-
age bit error rate (average BER) for different binary modulations.
The obtained theoretical results are validated through Monte
Carlo simulations.

Index Terms—Bit error rate, asymptotic analysis, generalized
fading.

I. INTRODUCTION

AMONG the different possible Multiple Input - Multi-
ple Output (MIMO) schemes, which employ multiple

transmit and receive antennas, Transmit Antenna Selection
(TAS) with Maximal Ratio Combining (MRC) at the receiver
provides full diversity gain and reduces the implementation
complexity by selecting the transmit antenna that maximizes
the output SNR [1]. Thus, TAS/MRC is currently the focus of
much attention by the research community, as it has been pro-
posed as a part of present and future wireless communications
systems, including multi-hop, spectrum-sharing and secure-
communications systems (see, for example, [2]–[5] and the
references therein).

Multi-antenna signal reception in a portable or handheld
terminal will typically yield to signal correlation due to
insufficient antenna separation, resulting in a performance
degradation that needs to be quantified for a proper system
design. In spite of the vast amount of literature dealing
with TAS/MRC systems, few works consider receive antenna
correlation, and results seem to be available only for correlated
Rayleigh and Nakagami-m fading, e.g. [6]–[9].

The η-µ fading is a general fading model that can be
used to better represent the small-scale variations of the
radio signal in a non-line-of-sight condition [10], and includes
the Hoyt (Nakagami-q), the Nakagami-m and the Rayleigh
fading models as particular cases. On the other hand, the
generality of the model yields to a considerable increased
mathematical complexity, which precludes the derivation of
simple expressions for the performance analysis of wireless
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communication systems. Thus, to the author’s knowledge,
there is no previous result for TAS/MRC in correlated η-µ
fading, and results seem to be available only for the case
of uncorrelated antennas [11]. A general framework for the
asymptotic evaluation of the symbol error rate (SER) suitable
for arbitrary fading was presented in [2], however, uncorrelated
receive antennas was assumed.

A comprehensive analysis of TAS/MRC under η-µ con-
sidering arbitrary receive antenna correlation is presented in
this work. The CDF and PDF of the instantaneous output
signal-to-noise ratio (SNR) are derived both in exact form,
in terms of a confluent Lauricella function, and in asymptotic
form, which tends to the exact values as the average SNR per
receive antenna increases. These chief statistics are new in the
literature, to the authors’ knowledge, and are used to find exact
and asymptotic expressions of the outage capacity, as well as
asymptotic BER expressions for several binary modulations.

The remainder of this work is organized as follows: The
system model is presented in Section II. In Section III, exact
and asymptotic expressions of the CDF and PDF of the
instantaneous SNR are derived. In Section IV, expressions for
the outage capacity and the asymptotic BER for several binary
modulations are found. Some application results are shown in
Section V. Finally, main conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a MIMO system with Lr receive antennas
and Lt transmit antennas. Spatial diversity is exploited at
the transmit end by means of TAS, while at the receive end
MRC is performed. We assume a slowly varying (with respect
to the symbol duration) and non-selective (flat) fading. The
transmit antennas are assumed to be uncorrelated, while the
receive antennas are assumed to be spatially correlated with
arbitrary correlation between any pair of antennas. An error-
free feedback channel is assumed to allow the transmitter to
select the transmit antenna which maximizes the output SNR.

The channel between any transmit and receive antenna is
assumed to undergo η-µ fading. This is a general fading model
that considers the received signal to be the composition of
2µ signal clusters, when 2µ is an integer, which is assumed
here. Format 1 of this fading model is considered, in which
the η parameter represents the power ratio between the in-
phase and quadrature components in each signal cluster [10].
The instantaneous SNR at receive antenna i conditioned on
antenna j being selected for transmission will be

γ i|j =

2µi,j∑
k=1

X2
i,k|j + Y 2

i,k|j (1)
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where X i,k|j and Y i,k|j are mutually independent
zero-mean Gaussian random variables with variances
σ2
X i,k|j

= γ̄ i|jηi,j/ (2µi,j (1 + ηi,j)) and σ2
Y i,k|j

=

γ̄ i|j/ (2µi,j (1 + ηi,j)), where γ̄ i|j denotes the average
SNR at receive antenna i conditioned on antenna j being
selected for transmission, while ηi,j and µi,j are the fading
parameters in the link between transmit antenna j and receive
antenna i. The SNR at the output of the MRC combiner,
conditioned on antenna j being selected for transmission is
given by

γj =

Lr∑
i=1

γ i|j . (2)

It is proved in [12] that, when 2µi.j are integers, the MGF of
γj for correlated MRC reception under η-µ fading is given by

Mγj (s) =

Vj∏
v=1

(
1− 2λ(Xj)

v s
)− ξ(Xj)v

2
(

1− 2λ(Yj)
v s

)− ξ(Yj)v
2

,

(3)
where {λ(Xj)

v }Vjv=1 and {λ(Yj)
v }Vjv=1 are the distinct eigen-

values, and {ξ(Xj)
v }Vjv=1 and {ξ(Yj)

v }Vjv=1 their associated al-
gebraic multiplicities, of the covariance matrices KXj

=

Cov
(
XT

j ,Xj

)
and KYj

= Cov
(
YT

j ,Yj

)
, where Xj =[

X1|j, . . . ,XLr|j

]
with X i|j =

[
X i,1|j , . . . , X i,2µi,j |j

]
, and

Yj =
[
Y1|j, . . . ,YLr|j

]
with Y i|j =

[
Y i,1|j , . . . , Y i,2µi,j |j

]
.

Note that KXj
and KYj

are square matrices of dimen-
sion

∑Lr
i=1 2µi,j and their elements are determined con-

sidering Cov
(
X i,k|j , Xp,q|j

)
= σX i,k|jσX p,q|j

√
ρi,p and

Cov
(
Y i,k|j , Yp,q|j

)
= σY i,k|jσY p,q|j

√
ρi,p if k = q, where

ρi,p is the correlation coefficient between the SNR at re-
ceive antennas i and p. while Cov

(
X i,k|j , Xp,q|j

)
=

Cov
(
Y i,k|j , Yp,q|j

)
= 0 if k 6= q, with i, p = 1, . . . , Lr,

k = 1, . . . , 2µi,j and q = 1, . . . , 2µp,j .
For the sake of compactness, in the following, and unless

explicitly stated otherwise, we will consider equal channel
parameters for any pair of transmit and receive antennas,
and the sub-indices will be dropped from the notation when
unnecessary. In this case, the MGF given in (3) can be written
in terms of the eigenvalues of the signal correlation matrix of
the received antennas [13], which permits to avoid constructing
matrices KX and KY. Actually, we demonstrate in the next
Proposition that, in this case, the sum of correlated η-µ random
variables is statistically equivalent to the sum of independent
η-µ random variables where the individuals SNRs, assumed
to be the same at every receive antenna, are weighted by the
eigenvalues of the signal correlation matrix.

Proposition 1. Let us assume a correlated MRC receiver
under η-µ fading with equal parameters at every branch, then,
the MGF of the output SNR, given that antenna j is selected
for transmission, can be written as

Mγj (s) =
V∏
v=1

(
1− ηγ̄

µ (1 + η)
λvs

)−µζv
×
(

1− γ̄

µ (1 + η)
λvs

)−µζv (4)

where {λv}Vv=1 are the distinct eigenvalues, and {ζv}Vv=1 their
associated algebraic multiplicities, of the signal correlation
matrix M of the receive antenna array, which is assumed to
be non-singular. Note that M is a square matrix of dimension
Lr and

∑V
v=1 ζv = Lr.

Proof: When the fading parameters at the receive an-
tennas are equal, matrices KX and KY are constructed
considering that

Cov
(
X i,k|j , Xp,q|j

)
= ηCov

(
Y i,k|j , Yp,q|j

)
, (5)

Cov
(
Y i,k|j , Yp,q|j

)
=


γ̄

2µ(1+η) , for i = p, k = q,
γ̄

2µ(1+η)

√
ρi,p, for i 6= p, k = q,

0, for the rest of cases,
(6)

where i, p = 1, . . . , Lr; k, q = 1, . . . , 2µ; and where ρi,p is the
correlation coefficient between the received SNR at antennas i
and p of the receive array. Thus, the correlation matrices KX

and KY can be expressed in compact form as

KX = ηKY, (7)

KY =
γ

2µ(1 + η)
M⊗ I2µ, (8)

where In denotes the n × n identity matrix, ⊗ denotes the
kronecker product and M is the signal correlation matrix
which elements are given by

M (i, p) =
√
ρi,p, i, p = 1, . . . , Lr. (9)

From (7) and (8) and the fact that the eigenvalues of the
kronecker product of two matrices are given by the product
of the eigenvalues of the involved matrices, it is clear that the
eigenvalues of KX and KY (λ(X)

v and λ
(Y )
v ) are related to

the eigenvalues of M by

λ(X)
v =

γ̄η

2µ (1 + η)
λv, λ(Y )

v =
γ̄

2µ (1 + η)
λv, (10)

which implies that KX, KY and M has the same number of
different eigenvalues, satisfying ξ

(X)
v = ξ

(Y )
v = 2µζv , as I2µ

has a unity eigenvalue with multiplicity 2µ, which together
with (3) yields to (4).

Note that for 2µ = m, η = 1, the result in (4) collapses to
[9, eq. (2)] for Nakagami-m fading.

As TAS is performed at the transmitter, the unconditional
output SNR will be given by γ = maxj{γj}, j = 1, . . . , Lt.
In the next section we derive both exact and asymptotic
expressions for the PDF and CDF of γ.

III. OUTPUT SNR STATISTICS

We now show that it is possible to find exact expressions for
both the PDF and the CDF of the output SNR of the proposed
system model.

Lemma 1. The PDF and CDF of the output SNR of a corre-
lated MRC receiver with transmit antenna selection under η-µ
fading with equal parameters can be expressed in terms of the
confluent Lauricella function Φ2(·), defined in [14, p. 34, (8)],
as given, respectively, in (11) and (12), where we have defined
Z = {ζ1, . . . , ζV } and ∆ = µ (1 + η) {λ−1

1 , . . . , λ−1
V }.
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fγ (x) =
2µLrLt

[(2µLr)!]
Lt [det (M)]

2µLt

(
µ2 (1 + η)

2

η

)µLrLt
1

γ̄

(
x

γ̄

)2µLrLt−1

× Φ
(2V )
2

(
µZ, µZ; 2µLr;−

∆

η

x

γ̄
,−∆

x

γ̄

)[
Φ

(2V )
2

(
µZ, µZ; 2µLr + 1;−∆

η

x

γ̄
,−∆

x

γ̄

)]Lt−1

,

(11)

Fγ (x) =
1

[(2µLr)!]
Lt [det (M)]

2µLt

(
µ2 (1 + η)

2
x2

ηγ̄2

)µLrLt [
Φ

(2V )
2

(
µZ, µZ; 2µLr + 1;−∆

η

x

γ̄
,−∆

x

γ̄

)]Lt
. (12)

Proof: From (4), the MGF of γj can be rewritten as

Mγj (s) =
1

[det (M)]
2µ

(
µ2 (1 + η)

2

ηγ̄2

)µLr
1

(−s)2µLr

×
V∏
v=1

(
1− µ (1 + η)

ηγ̄λvs

)−µζv (
1− µ (1 + η)

γ̄λvs

)−µζv
.

(13)

The PDF fγj (x) and CDF Fγj (x) of the output SNR
conditioned on antenna j being selected for transmission
are given by the inverse Laplace transformations fγj (x) =
L−1[Mγj (−s);x], and Fγj (x) = L−1[Mγj (−s)/s;x], which
can be found using [14, p. 290, (55)]. Considering now that
the PDF and CDF of the output SNR are given, respectively,
by fγ (x) =

∑Lt
j=1 fγj (x)

∏Lt
k=1,k 6=j Fγk (x) and Fγ (x) =∏Lt

j=1 Fγj (x), the final results are obtained.

Remark. For the case of non-necessarily equal channel pa-
rameters between the transmit and receive antenna pairs, the
MGF of γj given in (3) can be rewritten as

Mγj (x) =
1

(−2s)
∑Lr
i=1 2µi,j

√
det
(
KXj

)
det
(
KYj

)
×

Vj∏
v=1

(
1− 1

2λ
(Xj)
v s

)− ξ(Xj)v
2
(

1− 1

2λ
(Yj)
v s

)− ξ(Yj)v
2

,

(14)

and following the same approach as in Lemma 1, the PDF
and CDF of the output SNR can be obtained for the general
case. However, the resulting expressions will be less compact
and not explicitly given in terms of the channel parameters
and the average SNR per receive antenna, but in terms of
matrices KXj

, KYj
and their eigenvalues. �

The derived exact expressions can be accurately calculated
numerically, however, they do not offer insights on the impact
of system parameters on performance. Fortunately, they permit
the derivation of asymptotic expressions in the high SNR
regime.

Corollary 1. The asymptotic behavior, as γ →∞, of the PDF
and CDF of the output SNR of a correlated MRC receiver

with transmit antenna selection under η-µ fading with equal
parameters can be obtained as

fγj (x) =
2µLrLt

[(2µLr)!]
Lt [det (M)]

2µLt

×

(
µ2 (1 + η)

2

ηγ̄2

)µLrLt
x2µLrLt−1 + o

(
γ̄−2µLrLt

)
,

(15)

Fγj (x) =
1

[(2µLr)!]
Lt [det (M)]

2µLt

×

(
µ2 (1 + η)

2

η

)µLrLt (
x

γ̄

)2µLrLt

+ o
(
γ̄−2µLrLt

)
,

(16)

where the function o(g(x)) is any function such that
limx→0 o(g(x))/g(x) = 0.

Proof: These expressions can be obtained from (11) and
(12) and the fact that, from the definition of Φ2(·), given in [14,
p. 34, (8)], it is clear that. Φ

(n)
2 (b1, . . . , b1; c; d1x, . . . , dnx) =

1 + o (xε), with 0 < ε < 1.
Note that the obtained PDF has the form

fγ(x)
.
=
α

γ

(
x

γ

)t
+ o

(
γ̄−(t+1)

)
, (17)

where parameters t and α are given by

t = 2µLrLt − 1, (18)

α =
2µLrLt

[(2µLr)!]
Lt [det (M)]

2µLt

(
µ2 (1 + η)

2

η

)µLrLt
. (19)

Note that parameters α and t can be used to readily obtain
closed-form expressions of different performance metrics, such
as the average error rate for different binary and M -ary
modulations in the high SNR regime [15].

IV. PERFORMANCE ANALYSIS OF WIRELESS
COMMUNICATIONS SYSTEMS

As we have been able to obtain exact and asymptotic
expressions of the correlated MRC receiver with TAS under
η-µ fading, we can calculate different performance metrics
of wireless communications systems employing this MIMO
scheme under the considered fading model. As an example of
application, we compute the outage capacity probability and
the asymptotic BER for several binary modulations.
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A. Outage capacity probability
The instantaneous channel capacity per unit bandwidth is

well known to be given by

C = log2(1 + γ). (20)

We define the outage capacity probability as the probability
that the instantaneous channel capacity C falls below a prede-
fined threshold RS (given in terms of rate per unit bandwidth),
i.e.,

Pout = P (C < RS) = P (log2(1 + γ) < RS) . (21)

Therefore
Pout = P

(
γ < 2RS − 1

)
, (22)

yielding
Pout = Fγ

(
2RS − 1

)
, (23)

which together with (12) permits to calculate the exact outage
capacity probability. This result offers little insight on the
effect of parameters on performance. Fortunately, we can
obtain a simple expression in the high SNR regime as, from
(16), we can write

Pout
.
=

1

[(2µLr)!]
Lt [det (M)]

2µLt

×

(
µ2 (1 + η)

2

η

)µLrLt (
2RS − 1

γ̄

)2µLrLt

, γ̄ →∞,

(24)

where the symbol .
= denotes asymptotic equality as γ →∞.

B. Asymptotic average BER
The average error rate for several binary modulations can

be expressed in compact form using [16, eq. (8.100)] as

Pe =

∫ ∞
0

Γ(b, ax)

2Γ(b)
fγ(x)dx, (25)

where Γ(m,x) =
∫∞
x
zm−1e−zdz denotes the incomplete

Gamma function, Γ(m) = Γ(m, 0) denotes the Gamma func-
tion and where (a, b) = (1, 0.5) for binary phase shift keying
(BPSK), (a, b) = (0.5, 0.5) for binary frequency shift keying
(BFSK), (a, b) = (1, 1) for differential binary phase shift
keying (DBPSK) and (a, b) = (0.5, 1) for non-coherent binary
frequency shift keying (NCBFSK). Alternatively, integrating
(25) by parts, the average error rate can be computed from
the CDF as

Pe =
ab

2Γ(b)

∫ ∞
0

xb−1e−axFγ(x)dx. (26)

From the derived exact expression of the CDF given in (12)
it is not possible to find a closed-form exact expression for
the average BER. However, (26) is well suited for numerical
evaluation using the Gauss-Laguerre quadrature method [17,
p. 890 (25.4.45)]. On the other hand, the introduction of (16)
into (26) leads to a closed-form asymptotic expression as

Pe
.
=

Γ (b+ 2µLrLt)

2Γ (b) [(2µLr)!]
Lt [det (M)]

2µLt

×

(
µ2 (1 + η)

2

η

)µLrLt
1

(aγ̄)
2µLrLt

, γ̄ →∞.
(27)
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Figure 1. Outage capacity probability vs. average SNR per branch for a
capacity threshold RS = 5 bps/Hz when Lr = 2 and Lt = 2.

V. NUMERICAL RESULTS

In this section, we show some representative results of
the analyzed system. For simplicity of discussion, we have
considered a constant correlation ρ between each pair of
receive antennas. The Φ2(·) function is fast and efficiently
computed as a numerical Inverse Laplace Transform using
[18].

Fig. 1 shows the outage capacity probability vs. the average
SNR per branch for a given capacity threshold RS = 5 bps/Hz
when Lr = 2 and Lt = 2 considering correlated receive anten-
nas. The figure plots the exact results, the asymptotic results
and also some points obtained by Monte Carlo simulation that
show an excellent agreement with the theoretical results. We
can appreciate how, for a given set of values for the channel
parameters η and µ, the higher the correlation the greater the
outage probability, as expected due to the loss of channel
variability among the receive antennas. We can also see in
Fig. 1 the influence of the channel parameters: the severity
of fading decreases when µ increases and, consequently, the
outage probability becomes lower. On the other hand, the η
parameter has a much smaller influence and it can be observed
that the higher the value of η, for η ∈ (0, 1], the lower the
fading severity, thus yielding a better performance.

Fig. 2 represents the outage capacity probability vs. corre-
lation coefficient for a capacity threshold RS = 5 bps/Hz and
γ = 15 dB. The influence of the sizes of the transmit and
receive arrays with different channel parameter values can be
analyzed. It is shown that, as the number of antennas increases,
the outage capacity probability reduces. Comparing the cases,
Lr = 2, Lt = 3 and Lr = 3, Lt = 2, it is interesting to note
that a better performance (lower outage capacity probability)
is obtained when more antennas are deployed at the receiver,
except for the case of high correlation, as the MRC receiver
is less effective when the receive antennas experience similar
channels.

Finally, Fig. 3 shows the asymptotic average BER for dif-
ferent modulation schemes, correlation and channel parameter
values. As expected, the average asymptotic BER increases
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Figure 3. Asymptotic average BER vs. average SNR per branch for Lr = 2
and Lt = 2..

when the channel fading is more severe (lower η and/or µ).
On the other hand, it is shown how correlation degrades
performance, i.e., the lower ρ the lower the BER in the high
SNR regime. Also, it is shown that the NCBFSK modulation
shows a worse behavior than BPSK, as the former is a non-
coherent modulation.

VI. CONCLUSIONS

In this work, expressions for the PDF and CDF of the output
SNR are derived for the first time for TAS/MRC systems under
η-µ fading and arbitrary correlation at the receive end, both
in exact and asymptotic form. As application examples, we
have used these expressions to analyze the outage capacity
probability and the asymptotic average BER for different
binary modulations. The asymptotic expressions allow a much
affordable analysis in the high SNR regime. Monte Carlo
simulation shows an excellent agreement with the theoretical
results.

The framework presented here can be used to analyze more
elaborated system models for which the TAS/MRC scheme

has been proposed, such as multi-hop, spectrum-sharing and
secure-communications systems, but incorporating the general
η-µ fading with receive antenna correlation.
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