## Evolution Algebras

## Presented by: Yolanda Cabrera Casado

Advisors: Mercedes Siles Molina, M.Victoria Velasco Collado

Universidad de Málaga

16 December 2017
(1) Introduction

## Outline

## (1) Introduction

(2) Basic facts about evolution algebras

## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras
(6) Further work


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
4 Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras
(6) Further work


Gene: Molecular unit of hereditary information.


Gene: Molecular unit of hereditary information.


Chromosomes: Long strands of DNA formed by ordered sequences of genes. In the process of reproduction, the attributes of the offspring are inherited from alleles contained in the chromosomes of the parents.

Gene: Molecular unit of hereditary information.

Allele: Distinct forms of genes to an attribute. For example, the gene for eye color has three alleles: brown, green and blue.


Chromosomes: Long strands of DNA formed by ordered sequences of genes. In the process of reproduction, the attributes of the offspring are inherited from alleles contained in the chromosomes of the parents.

Diploid organisms carry a double set of chromosomes (one of each parent). Otherwise it is called haploid.

Diploid organisms carry a double set of chromosomes (one of each parent). Otherwise it is called haploid.


They reproduce by means of sex cells (gametes), each of them carrying a single set of chromosomes.

Diploid organisms carry a double set of chromosomes (one of each parent). Otherwise it is called haploid.


They reproduce by means of sex cells (gametes), each of them carrying a single set of chromosomes.

The fusion of two gametes of opposite sex gives rise to a zygote, which contains a double set of chromosomes.

Alleles passing from gametes to zygotes.

Alleles passing from gametes to zygotes.


Gametic Algebra


## Gametic Algebra

The gametic algebra for simple Mendelian inheritance with two alleles $\{\mathbf{B}, \mathbf{b}\}$

## Gametic Algebra

The gametic algebra for simple Mendelian inheritance with two alleles $\{\mathbf{B}, \mathbf{b}\}$

## Gametic Algebra

The gametic algebra for simple Mendelian inheritance with two alleles $\{\mathbf{B}, \mathbf{b}\}$


Consider the set of gametes $B=\left\{a_{1}, \ldots, a_{n}\right\}$ as abstract elements. Define the $n$ dimensional algebra over $\mathbb{R}$ with basis $B$ and multiplication

$$
a_{i} a_{j}=\sum_{k=1}^{n} \gamma_{i j k} a_{k} \text { such that } \sum_{k=1}^{n} \gamma_{i j k}=1 .
$$

Particular case: evolution algebra

Particular case: evolution algebra

In the asexual inheritance,

- $a_{i} a_{j}$ does not make sense biologically $\left(a_{i} a_{j}=0\right) i \neq j$.
- $a_{i} a_{i}=a_{i}^{2}=\sum_{k=1}^{n} \gamma_{k i} a_{k}$. Interpreted as self-replication.

It is called evolution algebra.

## Particular case: evolution algebra

In the asexual inheritance,

- $a_{i} a_{j}$ does not make sense biologically $\left(a_{i} a_{j}=0\right) i \neq j$.
- $a_{i} a_{i}=a_{i}^{2}=\sum_{k=1}^{n} \gamma_{k i} a_{k}$. Interpreted as self-replication.

It is called evolution algebra.

## Particular case: evolution algebra

In the asexual inheritance,

- $a_{i} a_{j}$ does not make sense biologically $\left(a_{i} a_{j}=0\right) i \neq j$.
- $a_{i} a_{i}=a_{i}^{2}=\sum_{k=1}^{n} \gamma_{k i} a_{k}$. Interpreted as self-replication.

It is called evolution algebra.


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution
algebra
(4) Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras
© Further worl

Evolution Algebras Basic facts about evolution algebras

## What we mean by evolution algebra

Evolution Algebras Basic facts about evolution algebras
What we mean by evolution algebra

## Definitions

## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## Remark

## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## Remark

- $\left|\left\{k \in \Lambda \mid \omega_{k i} \neq 0\right\}\right|<\infty$ for every $i \in \Lambda \Rightarrow M_{B} \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## Remark

- $\left|\left\{k \in \Lambda \mid \omega_{k i} \neq 0\right\}\right|<\infty$ for every $i \in \Lambda \Rightarrow M_{B} \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$.


## What we mean by evolution algebra

## Definitions

An evolution algebra over a field $\mathbb{K}$ is a $\mathbb{K}$-algebra $A$ provided with a basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i} e_{j}=0$ whenever $i \neq j$.

- $B$ is called a natural basis.
- The scalars $\omega_{k i} \in \mathbb{K}$ such that $e_{i}^{2}:=e_{i} e_{i}=\sum_{k \in \Lambda} \omega_{k i} e_{k}$ will be called the structure constants of $A$ relative to $B$.
- The matrix $M_{B}:=\left(\omega_{k i}\right)$ is said to be the structure matrix of $A$ relative to $B$.


## Remark

- $\left|\left\{k \in \Lambda \mid \omega_{k i} \neq 0\right\}\right|<\infty$ for every $i \in \Lambda \Rightarrow M_{B} \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$.
- $\operatorname{CFM}_{\wedge}(\mathbb{K})=\left(M_{\wedge}(\mathbb{K}),+, \cdot\right)$ such that for which every column has at most a finite number of non-zero entries.

Evolution Algebras Basic facts about evolution algebras

## Mendelian genetics versus non-Mendelian genetics

## Mendelian genetics versus non-Mendelian genetics

## Remark

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$.

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$.

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$.

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$.

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$ and according to Mendel laws the multiplication table is as follows:

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$ and according to Mendel laws the multiplication table is as follows:

|  | $F F$ | $F f$ | $f f$ |
| :---: | :---: | :---: | :---: |
| $F F$ | $F F$ | $\frac{1}{2}(F F+F f)$ | $F f$ |
| $F f$ | $\frac{1}{2}(F F+F f)$ | $\frac{1}{4}(F F+f f)+\frac{1}{2} F f$ | $\frac{1}{2}(f f+F f)$ |
| $f f$ | $F f$ | $\frac{1}{2}(f f+F f)$ | $f f$ |

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$ and according to Mendel laws the multiplication table is as follows:

|  | $F F$ | $F f$ | $f f$ |
| :---: | :---: | :---: | :---: |
| $F F$ | $F F$ | $\frac{1}{2}(F F+F f)$ | $F f$ |
| $F f$ | $\frac{1}{2}(F F+F f)$ | $\frac{1}{4}(F F+f f)+\frac{1}{2} F f$ | $\frac{1}{2}(f f+F f)$ |
| $f f$ | $F f$ | $\frac{1}{2}(f f+F f)$ | $f f$ |

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$ and according to Mendel laws the multiplication table is as follows:

|  | $F F$ | $F f$ | $f f$ |
| :---: | :---: | :---: | :---: |
| $F F$ | $F F$ | $\frac{1}{2}(F F+F f)$ | $F f$ |
| $F f$ | $\frac{1}{2}(F F+F f)$ | $\frac{1}{4}(F F+f f)+\frac{1}{2} F f$ | $\frac{1}{2}(f f+F f)$ |
| $f f$ | $F f$ | $\frac{1}{2}(f f+F f)$ | $f f$ |

Then this algebra is not an evolution algebra.

## Mendelian genetics versus non-Mendelian genetics

## Remark

Let the zygotic algebra be for simple Mendelian inheritance for one gene with two alleles, $F$ and $f$. The zygotes have three possible genotypes: $F F, F f$ and $f f$. We consider vector space generate by the basis $B=\{F F, F f, f f\}$ and according to Mendel laws the multiplication table is as follows:

|  | $F F$ | $F f$ | $f f$ |
| :---: | :---: | :---: | :---: |
| $F F$ | $F F$ | $\frac{1}{2}(F F+F f)$ | $F f$ |
| $F f$ | $\frac{1}{2}(F F+F f)$ | $\frac{1}{4}(F F+f f)+\frac{1}{2} F f$ | $\frac{1}{2}(f f+F f)$ |
| $f f$ | $F f$ | $\frac{1}{2}(f f+F f)$ | $f f$ |

Then this algebra is not an evolution algebra.

## Evolution Algebras <br> Basic facts about evolution algebras

Properties

## Evolution Algebras <br> Basic facts about evolution algebras

## Properties

## Remark

## Properties

## Remark

- Evolution algebras are commutative and hence flexible.


## Properties

## Remark

- Evolution algebras are commutative and hence flexible.


## Remark

- Evolution algebras are commutative and hence flexible.
- The direct sum of evolution algebras is an evolution algebra.


## Remark

- Evolution algebras are commutative and hence flexible.
- The direct sum of evolution algebras is an evolution algebra.
- The quotient algebra $A / I$ with I ideal of $A$ is an evolution algebra.


## Properties

## Remark

- Evolution algebras are commutative and hence flexible.
- The direct sum of evolution algebras is an evolution algebra.
- The quotient algebra $A / I$ with $/$ ideal of $A$ is an evolution algebra.
- Evolution algebras are not power associative in general and therefore it are not, in general, Jordan, alternative or associative algebras.


## Properties

## Remark

- Evolution algebras are commutative and hence flexible.
- The direct sum of evolution algebras is an evolution algebra.
- The quotient algebra $A / I$ with $/$ ideal of $A$ is an evolution algebra.
- Evolution algebras are not power associative in general and therefore it are not, in general, Jordan, alternative or associative algebras.


## Evolution Algebras <br> Basic facts about evolution algebras

A new product

## Evolution Algebras

A new product

Remark

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$.

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$.

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right)
$$

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right)
$$

## Definition

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right) .
$$

## Definition

Let $A$ an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of A.

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right)
$$

## Definition

Let $A$ an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of A. For arbitrary elements $x=\sum_{i \in \Lambda_{x}} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda_{y}} \beta_{i} e_{i}$ in $A$ for certain $\Lambda_{x}, \Lambda_{y} \subseteq \Lambda$, we define

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right)
$$

## Definition

Let $A$ an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of A. For arbitrary elements $x=\sum_{i \in \Lambda_{x}} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda_{y}} \beta_{i} e_{i}$ in $A$ for certain $\Lambda_{x}, \Lambda_{y} \subseteq \Lambda$, we define

$$
x \bullet B y:=\sum_{i \in \Lambda_{x} \cap \Lambda_{y}} \alpha_{i} \beta_{i} e_{i}
$$

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right) .
$$

## Definition

Let $A$ an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of A. For arbitrary elements $x=\sum_{i \in \Lambda_{x}} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda_{y}} \beta_{i} e_{i}$ in $A$ for certain $\Lambda_{x}, \Lambda_{y} \subseteq \Lambda$, we define

$$
x \bullet B y:=\sum_{i \in \Lambda_{x} \cap \Lambda_{y}} \alpha_{i} \beta_{i} e_{i}
$$

## Remark

## A new product

## Remark

Let $A$ be any finite dimensional evolution algebra with a natural basis $B$. Suppose $x=\sum_{i \in \Lambda} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda} \beta_{i} e_{i}$ arbitrary elements of $A$. Then, we have

$$
\xi_{B}(x y)=M_{B}\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\vdots \\
\alpha_{n} \beta_{n}
\end{array}\right) .
$$

## Definition

Let $A$ an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of A. For arbitrary elements $x=\sum_{i \in \Lambda_{x}} \alpha_{i} e_{i}$ and $y=\sum_{i \in \Lambda_{y}} \beta_{i} e_{i}$ in $A$ for certain $\Lambda_{x}, \Lambda_{y} \subseteq \Lambda$, we define

$$
x \bullet_{B} y:=\sum_{i \in \Lambda_{x} \cap \Lambda_{y}} \alpha_{i} \beta_{i} e_{i} .
$$

## Remark

$$
\xi_{B}(x y)=M_{B}\left(\xi_{B}(x) \bullet B \xi_{B}(y)\right),
$$

## Change of basis

## Change of basis

## Theorem

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$.

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

$$
M_{B^{\prime}}=P_{B^{\prime} B}^{-1} M_{B} P_{B^{\prime} B}^{(2)},
$$

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

$$
M_{B^{\prime}}=P_{B^{\prime} B}^{-1} M_{B} P_{B^{\prime} B}^{(2)},
$$

where $P_{B^{\prime} B}^{(2)}=\left(p_{i j}^{2}\right)$.

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

$$
M_{B^{\prime}}=P_{B^{\prime} B_{B}}^{-1} M_{B} P_{B^{\prime} B}^{(2)},
$$

where $P_{B^{\prime} B}^{(2)}=\left(p_{i j}^{2}\right)$.
(2) Assume that $P=\left(p_{i j}\right) \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$ is invertible and satisfies the first above relation.

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet_{B} \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

$$
M_{B^{\prime}}=P_{B^{\prime} B}^{-1} M_{B} P_{B^{\prime} B}^{(2)},
$$

where $P_{B^{\prime} B}^{(2)}=\left(p_{i j}^{2}\right)$.
(2) Assume that $P=\left(p_{i j}\right) \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$ is invertible and satisfies the first above relation. Define $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$, where $f_{i}=\sum_{j \in \Lambda} p_{j i} e_{j}$ for every $i \in \Lambda$.

## Change of basis

## Theorem

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$ with structure matrix $M_{B}=\left(\omega_{i j}\right)$.
(1) If $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$ is a natural basis of $A$ with $P_{B^{\prime} B}=\left(p_{i j}\right)$ the change of basis matrices, then

$$
M_{B}\left(\xi_{B}\left(f_{i}\right) \bullet B \xi_{B}\left(f_{j}\right)\right)=0
$$

for every $i \neq j$ with $i, j \in \Lambda$. Moreover

$$
M_{B^{\prime}}=P_{B^{\prime} B}^{-1} M_{B} P_{B^{\prime} B}^{(2)},
$$

where $P_{B^{\prime} B}^{(2)}=\left(p_{i j}^{2}\right)$.
(2) Assume that $P=\left(p_{i j}\right) \in \operatorname{CFM}_{\Lambda}(\mathbb{K})$ is invertible and satisfies the first above relation. Define $B^{\prime}=\left\{f_{i} \mid i \in \Lambda\right\}$, where $f_{i}=\sum_{j \in \Lambda} p_{j i} e_{j}$ for every $i \in \Lambda$. Then $B^{\prime}$ is a natural basis and the second above relation is satisfied.

Evolution Algebras Basic facts about evolution algebras
Evolution subalgebras. Evolution ideals

## Evolution subalgebras. Evolution ideals

## Definitions

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.


## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.


## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Remark

## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Remark

(1) A subalgebra of an evolution algebra does not need to be an evolution algebra.

## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Remark

(1) A subalgebra of an evolution algebra does not need to be an evolution algebra.
(2) An evolution subalgebra does not need to be an ideal.

## Evolution subalgebras. Evolution ideals

## Definitions

- An subalgebra $A^{\prime}$ of an evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ is an evolution subalgebra if there exits a natural basis.
- An ideal $/$ of $A$ is called evolution ideal if it is an evolution subalgebra.


## Remark

(1) A subalgebra of an evolution algebra does not need to be an evolution algebra.
(2) An evolution subalgebra does not need to be an ideal.
(3) Not every ideal of an evolution algebra has a natural basis.

## Definition

We say that an subalgebra $A^{\prime}$ has the

## Definition

We say that an subalgebra $A^{\prime}$ has the extension property if there exists a natural basis $B^{\prime}$ of $A^{\prime}$

## Something less restrictive and more algebraically natural

## Definition

We say that an subalgebra $A^{\prime}$ has the extension property if there exists a natural basis $B^{\prime}$ of $A^{\prime}$ which can be extended to a natural basis of $A$.

## Something less restrictive and more algebraically natural

## Definition

We say that an subalgebra $A^{\prime}$ has the extension property if there exists a natural basis $B^{\prime}$ of $A^{\prime}$ which can be extended to a natural basis of $A$.

## Remark

## Something less restrictive and more algebraically natural

## Definition

We say that an subalgebra $A^{\prime}$ has the extension property if there exists a natural basis $B^{\prime}$ of $A^{\prime}$ which can be extended to a natural basis of $A$.

## Remark

Not every evolution subalgebra has the extension property.

Examples of evolution subalgebras. Homomorphism

## Corollary

## Examples of evolution subalgebras. Homomorphism

## Corollary

Let $f: A \rightarrow A^{\prime}$ be a homomorphism between the evolution algebras $A$ and $A^{\prime}$.

## Examples of evolution subalgebras. Homomorphism

## Corollary

Let $f: A \rightarrow A^{\prime}$ be a homomorphism between the evolution algebras $A$ and $A^{\prime}$. Then $\operatorname{Im}(f)$ is an evolution subalgebra of $A^{\prime}$.

## Examples of evolution subalgebras. Homomorphism

## Corollary

Let $f: A \rightarrow A^{\prime}$ be a homomorphism between the evolution algebras $A$ and $A^{\prime}$. Then $\operatorname{Im}(f)$ is an evolution subalgebra of $A^{\prime}$.

## Corollary

Let $f: A \rightarrow A^{\prime}$ be a homomorphism between the evolution algebras $A$ and $A^{\prime}$. Then $\operatorname{Im}(f)$ is an evolution subalgebra of $A^{\prime}$.

## Remark

In general, $\operatorname{Ker}(f)$ is not an evolution algebra. $\Rightarrow$ [Evolution Algebras and their Applications, Theorem 2, p.25] is not valid in general.

## Corollary

Let $f: A \rightarrow A^{\prime}$ be a homomorphism between the evolution algebras $A$ and $A^{\prime}$. Then $\operatorname{Im}(f)$ is an evolution subalgebra of $A^{\prime}$.

## Remark

In general, $\operatorname{Ker}(f)$ is not an evolution algebra. $\Rightarrow$ [Evolution Algebras and their Applications, Theorem 2, p.25] is not valid in general.

Evolution Algebras Basic facts about evolution algebras
Non-degenerate evolution algebra

Evolution Algebras Basic facts about evolution algebras

## Non-degenerate evolution algebra

## Definition

## Non-degenerate evolution algebra

## Definition

An evolution algebra $A$ is non-degenerate if it has a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i}^{2} \neq 0$ for every $i \in \Lambda$.

## Non-degenerate evolution algebra

## Definition

An evolution algebra $A$ is non-degenerate if it has a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i}^{2} \neq 0$ for every $i \in \Lambda$.

## Non-degenerate evolution algebra

## Definition

An evolution algebra $A$ is non-degenerate if it has a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i}^{2} \neq 0$ for every $i \in \Lambda$.

## Remark

## Non-degenerate evolution algebra

## Definition

An evolution algebra $A$ is non-degenerate if it has a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$ such that $e_{i}^{2} \neq 0$ for every $i \in \Lambda$.

Remark
Does non-degeneracy depend on the considered natural basis?

## Evolution Algebras <br> Basic facts about evolution algebras

## Annihilator. Properties

## Annihilator. Properties

## Definition

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\}
$$

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then
(1) $\operatorname{ann}(A)=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{0}(B)\right\}$.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then
(1) $\operatorname{ann}(A)=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{0}(B)\right\}$.
(2) $\operatorname{ann}(A)=0$ if and only if $\Lambda_{0}=\emptyset$.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then
(1) $\operatorname{ann}(A)=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{0}(B)\right\}$.
(2) $\operatorname{ann}(A)=0$ if and only if $\Lambda_{0}=\emptyset$.
(3) $\operatorname{ann}(A)$ is an evolution ideal of $A$.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then
(1) $\operatorname{ann}(A)=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{0}(B)\right\}$.
(2) $\operatorname{ann}(A)=0$ if and only if $\Lambda_{0}=\emptyset$.
(3) $\operatorname{ann}(A)$ is an evolution ideal of $A$.
(4) $\left|\Lambda_{0}(B)\right|=\left|\Lambda_{0}\left(B^{\prime}\right)\right|$ for every natural basis $B^{\prime}$ of $A$.

## Annihilator. Properties

## Definition

Let $A$ be an commutative algebra, we define its annihilator as

$$
\operatorname{ann}(A):=\{x \in A \mid x A=0\} .
$$

## Proposition

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{0}(B):=\left\{i \in \Lambda \mid e_{i}^{2}=0\right\}$. Then
(1) $\operatorname{ann}(A)=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{0}(B)\right\}$.
(2) $\operatorname{ann}(A)=0$ if and only if $\Lambda_{0}=\emptyset$.
(3) $\operatorname{ann}(A)$ is an evolution ideal of $A$.
(4) $\left|\Lambda_{0}(B)\right|=\left|\Lambda_{0}\left(B^{\prime}\right)\right|$ for every natural basis $B^{\prime}$ of $A$.

Consequently, the definition of non-degenerate evolution algebra does not depend on the considered natural basis.

## Evolution Algebras <br> Basic facts about evolution algebras

## Annihilator. Properties

## Evolution Algebras

## Annihilator. Properties

## Remark

## Annihilator. Properties

## Remark

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis.

## Annihilator. Properties

## Remark

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{1}:=\left\{i \in \Lambda \mid e_{i}^{2} \neq 0\right\}$.

## Annihilator. Properties

## Remark

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Denote by $\Lambda_{1}:=\left\{i \in \Lambda \mid e_{i}^{2} \neq 0\right\}$. Then

## Annihilator. Properties

## Remark

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis.
Denote by $\Lambda_{1}:=\left\{i \in \Lambda \mid e_{i}^{2} \neq 0\right\}$. Then
(1) $A_{1}:=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{1}\right\}$ is not necessarily a subalgebra of $A$.

## Annihilator. Properties

## Remark

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis.
Denote by $\Lambda_{1}:=\left\{i \in \Lambda \mid e_{i}^{2} \neq 0\right\}$. Then
(1) $A_{1}:=\operatorname{lin}\left\{e_{i} \in B \mid i \in \Lambda_{1}\right\}$ is not necessarily a subalgebra of $A$.
(2) $A / \operatorname{ann}(A)$ is not necessarily a non-degenerate evolution algebra.

## Absorption property. Properties

## Absorption property. Properties

## Definition

## Absorption property. Properties

## Definition

Let $I$ be an ideal of an evolution algebra $A$.

## Absorption property. Properties

## Definition <br> Let $I$ be an ideal of an evolution algebra $A$. $I$ has the absorption property if

## Absorption property. Properties

## Definition

Let $I$ be an ideal of an evolution algebra $A$. $I$ has the absorption property if $x A \subseteq I$ implies $x \in I$.

## Absorption property. Properties

## Definition

Let $I$ be an ideal of an evolution algebra $A$. $I$ has the absorption property if $x A \subseteq I$ implies $x \in I$.

## Lemma

## Absorption property. Properties

## Definition

Let $I$ be an ideal of an evolution algebra $A$. $I$ has the absorption property if $x A \subseteq I$ implies $x \in I$.

## Lemma

- An ideal / of an evolution algebra $A$ has the absorption property if and only if $\operatorname{ann}(A / I)=\overline{0}$.


## Absorption property. Properties

## Definition

Let $I$ be an ideal of an evolution algebra $A$. $I$ has the absorption property if $x A \subseteq I$ implies $x \in I$.

## Lemma

- An ideal $/$ of an evolution algebra $A$ has the absorption property if and only if $\operatorname{ann}(A / I)=\overline{0}$.
- If $I$ is a non-zero ideal which it has the absorption property, then $I$ is an evolution ideal and has the extension property.


## Absorption radical

Evolution Algebras Basic facts about evolution algebras

## Absorption radical

## Remark

Evolution Algebras Basic facts about evolution algebras

## Absorption radical

## Remark <br> The intersection of any family of ideals with the absorption property

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Definition

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Definition

We define the absorption radical and we denote it by $\operatorname{rad}(A)$

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Definition

We define the absorption radical and we denote it by $\operatorname{rad}(A)$

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Definition

We define the absorption radical and we denote it by $\operatorname{rad}(A)$ as the intersection of all the ideals of $A$ having the absorption property.

## Absorption radical

## Remark

The intersection of any family of ideals with the absorption property is an ideal with the absorption property.

## Definition

We define the absorption radical and we denote it by $\operatorname{rad}(A)$ as the intersection of all the ideals of $A$ having the absorption property. The radical is the smallest ideal of $A$ with the absorption property.

Absorption radical. Properties

## Absorption radical. Properties

## Proposition

## Absorption radical. Properties

## Proposition

Let $A$ be an evolution algebra.

## Absorption radical. Properties

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Absorption radical. Properties

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Absorption radical. Properties

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Corollary

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Corollary

Let $/$ be an ideal of an evolution algebra $A$.

## Absorption radical. Properties

## Proposition

Let $A$ be an evolution algebra. Then $\operatorname{rad}(A)=0$ if and only if $\operatorname{ann}(A)=0$.

## Corollary

Let $I$ be an ideal of an evolution algebra $A$. Then $A / \operatorname{rad}(A)$ is a non-degenerate evolution algebra.

## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ v_{4} & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ v_{4} & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Basic concepts about graphs

Consider the following graph $E$ :


- Condition Sing.
- Sink $\Rightarrow v_{2}$.
- Source $\Rightarrow v_{1}$.
- Path $\Rightarrow \mu=f_{2} f_{3} f_{4}$.
- Path $(E)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{2} f_{3}, f_{3} f_{4}, f_{2} f_{3} f_{4}\right\}$.
- Cycle $\Rightarrow f_{3} f_{4}$.
- Adjacency matrix
$v_{1}$
$v_{2}$
$v_{3}$
$v_{4}$$\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$


## Graph associated

## Graph associated

## Remark

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis $B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis $B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis
$B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

$$
M_{B}=\begin{gathered}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{gathered}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 0 & 0 & 5 \\
0 & 0 & -2 & 0
\end{array}\right) \quad P=\begin{aligned}
& \\
& e_{1}^{2} \\
& e_{2}^{2}
\end{aligned} e_{3}^{2}, e_{4}^{2} \quad \begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{cccc}
0 & v_{2} & v_{3} & v_{4} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis
$B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis
$B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

$$
M_{B}=\begin{aligned}
& e_{1} \\
& e_{2} \\
& e_{3} \\
& e_{4}
\end{aligned}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 0 & 0 & 5 \\
0 & 0 & -2 & 0
\end{array}\right) \quad P=\begin{aligned}
& \\
& e_{1}^{2} \\
& e_{2}^{2}
\end{aligned} e_{3}^{2} \quad e_{4}^{2} \quad \begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{cccc}
0 & v_{2} & v_{3} & v_{4} \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 \\
0
\end{array}\right)
$$

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis
$B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

## Graph associated

## Remark

Let $A$ be the evolution algebra with natural basis
$B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and product given by:

$$
e_{1}^{2}=-e_{2}+e_{3} \quad e_{2}^{2}=0 \quad e_{3}^{2}=-2 e_{4} \quad e_{4}^{2}=5 e_{3}
$$

$$
M_{B}=\begin{aligned}
& e_{1} \\
& e_{2} \\
& e_{3} \\
& e_{4}
\end{aligned}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 0 & 0 & 5 \\
0 & 0 & -2 & 0
\end{array}\right) \quad P=\begin{aligned}
& \\
& v_{1}^{2} \\
& v_{1}^{2} \\
& e_{2}^{2} \\
& v_{2} \\
& v_{3}
\end{aligned}\left(\begin{array}{cccc}
v_{1} & v_{2}^{2} & v_{3} & v_{4} \\
v_{4} & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$



## Graph associated

Evolution Algebras Basic facts about evolution algebras

## Graph associated

## Remark

## Graph associated

## Remark

- The graph associated to an evolution algebra depends on the selected basis.


## Graph associated

## Remark

- The graph associated to an evolution algebra depends on the selected basis.
- Isomorphic evolution algebras $\nRightarrow$ isomorphic graphs.


## Graph associated

## Remark

- The graph associated to an evolution algebra depends on the selected basis.
- Isomorphic evolution algebras $\nRightarrow$ isomorphic graphs.

Let $A$ be the evolution algebra with natural basis $B=\left\{e_{1}, e_{2}\right\}$ and product given by $e_{1}^{2}=e_{1}+e_{2}$ and $e_{2}^{2}=0$. Consider the natural basis $B^{\prime}=\left\{e_{1}+e_{2}, e_{2}\right\}$. Then the graphs associated to the bases $B$ and $B^{\prime}$ are, respectively:

## E:




## Outline

。
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras
(6) Firther wiork

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $D^{1}(1)=\left\{k \in \Lambda \mid e_{1}^{2}=\sum_{k} \omega_{k 1} e_{k}\right.$ with $\left.\omega_{k 1} \neq 0\right\}=\{2\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $D^{2}(1)=\underset{k \in D^{1}(1)}{\bigcup} D^{1}(k)=\{5\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $D^{3}(1)=\{3\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $D^{4}(1)=\{2\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $D(1)=\bigcup_{m \in \mathbb{N}} D^{m}(1)=\{2,5,3\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- $C(2)=\{j \in \Lambda \mid j \in D(2)$ and $2 \in D(j)\}=\{2,5,3\}$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- A cyclic index $i_{0}$ is a principal cyclic index if $j \in D\left(i_{0}\right)$ for every $j \in \Lambda$ with $i_{0} \in D(j)$.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- 4 is a principal cyclic index.

Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


Let $A$ evolution algebra with structure matrix $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$


- 1 is a chain-start index because 1 has no ascendents.

Evolution Algebras Decomposition of an evolution algebra
Ideal generated by one element

Evolution Algebras Decomposition of an evolution algebra
Ideal generated by one element

## Corollary

## Ideal generated by one element

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis.

## Ideal generated by one element

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Then, for every $k \in \Lambda$,

## Ideal generated by one element

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Then, for every $k \in \Lambda$,

$$
\left\langle e_{k}^{2}\right\rangle=\operatorname{lin}\left\{e_{j}^{2} \mid j \in D(k) \cup\{k\}\right\} .
$$

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Then, for every $k \in \Lambda$,

$$
\left\langle e_{k}^{2}\right\rangle=\operatorname{lin}\left\{e_{j}^{2} \mid j \in D(k) \cup\{k\}\right\}
$$

## Corollary

## Ideal generated by one element

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Then, for every $k \in \Lambda$,

$$
\left\langle e_{k}^{2}\right\rangle=\operatorname{lin}\left\{e_{j}^{2} \mid j \in D(k) \cup\{k\}\right\} .
$$

## Corollary

Let $A$ be an evolution algebra.

## Ideal generated by one element

## Corollary

Let $A$ be an evolution algebra and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis. Then, for every $k \in \Lambda$,

$$
\left\langle e_{k}^{2}\right\rangle=\operatorname{lin}\left\{e_{j}^{2} \mid j \in D(k) \cup\{k\}\right\} .
$$

## Corollary

Let $A$ be an evolution algebra. For any element $x \in A$, $\operatorname{dim}\langle x\rangle$ is at most countable.

## Simple evolution algebras

## Simple evolution algebras

## Definition

## Simple evolution algebras

## Definition

## An algebra $A$ is simple

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$.

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:
(1) $A$ is non-degenerate.

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:
(1) $A$ is non-degenerate.
(2) $A=\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda\right\}$.

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:
(1) $A$ is non-degenerate.
(2) $A=\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda\right\}$.
(3) If $\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda^{\prime}\right\}$ is a non-zero ideal of $A$ for a non-empty $\Lambda^{\prime} \subseteq \Lambda$ then $\left|\Lambda^{\prime}\right|=|\Lambda|$.

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:
(1) $A$ is non-degenerate.
(2) $A=\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda\right\}$.
(3) If $\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda^{\prime}\right\}$ is a non-zero ideal of $A$ for a non-empty $\Lambda^{\prime} \subseteq \Lambda$ then $\left|\Lambda^{\prime}\right|=|\Lambda|$.

Moreover, the dimension of $A$ is at most countable and

## Simple evolution algebras

## Definition

An algebra $A$ is simple if $A^{2} \neq 0$ and 0 is the only proper ideal.

## Proposition

Let $A$ be an evolution algebra and let $B=\left\{e_{i} \mid i \in \Lambda\right\}$ be a natural basis of $A$. If $A$ is simple, therefore:
(1) $A$ is non-degenerate.
(2) $A=\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda\right\}$.
(3) If $\operatorname{lin}\left\{e_{i}^{2} \mid i \in \Lambda^{\prime}\right\}$ is a non-zero ideal of $A$ for a non-empty $\Lambda^{\prime} \subseteq \Lambda$ then $\left|\Lambda^{\prime}\right|=|\Lambda|$.

Moreover, the dimension of $A$ is at most countable and if $|\Lambda|<\infty$ then the converse is true.

## Simple evolution algebras

## Simple evolution algebras

## Example

## Simple evolution algebras

## Example

The converse is not true in general.

## Simple evolution algebras

## Example

The converse is not true in general. Let $A$ be an evolution algebra with natural basis $\left\{e_{i} \mid i \in \mathbb{N}\right\}$ and product given by:

## Simple evolution algebras

## Example

The converse is not true in general. Let $A$ be an evolution algebra with natural basis $\left\{e_{i} \mid i \in \mathbb{N}\right\}$ and product given by:

$$
\begin{array}{rlrl}
e_{1}^{2} & =e_{3}+e_{5} & e_{2}^{2} & =e_{4}+e_{6} \\
e_{3}^{2} & =e_{1}+e_{3}+e_{5} & e_{4}^{2} & =e_{2}+e_{4}+e_{6} \\
e_{5}^{2} & =e_{5}+e_{7} & e_{6}^{2}=e_{6}+e_{8} \\
e_{7}^{2} & =e_{3}+e_{5}+e_{7} & e_{8}^{2}=e_{4}+e_{6}+e_{8}
\end{array}
$$

## Simple evolution algebras

## Example

The converse is not true in general. Let $A$ be an evolution algebra with natural basis $\left\{e_{i} \mid i \in \mathbb{N}\right\}$ and product given by:

$$
\begin{aligned}
e_{1}^{2} & =e_{3}+e_{5} \\
e_{3}^{2} & =e_{1}+e_{3}+e_{5}
\end{aligned} \begin{array}{ll}
e_{2}^{2} & =e_{4}+e_{6} \\
e_{5}^{2} & =e_{5}+e_{7} \\
e_{7}^{2} & =e_{3}+e_{5}+e_{7}
\end{array}
$$

Then $A$ satisfies the conditions 1,2 and 3 but $A$ is not simple

## Simple evolution algebras

## Example

The converse is not true in general. Let $A$ be an evolution algebra with natural basis $\left\{e_{i} \mid i \in \mathbb{N}\right\}$ and product given by:

$$
\begin{array}{ll}
e_{1}^{2}=e_{3}+e_{5} & e_{2}^{2}=e_{4}+e_{6} \\
e_{3}^{2}=e_{1}+e_{3}+e_{5} & e_{4}^{2}=e_{2}+e_{4}+e_{6} \\
e_{5}^{2}=e_{5}+e_{7} & e_{6}^{2}=e_{6}+e_{8} \\
e_{7}^{2}=e_{3}+e_{5}+e_{7} & e_{8}^{2}=e_{4}+e_{6}+e_{8}
\end{array}
$$

Then $A$ satisfies the conditions 1,2 and 3 but $A$ is not simple as $\left\langle e_{1}^{2}\right\rangle$ and $\left\langle e_{2}^{2}\right\rangle$ are two non-zero proper ideals.

Characterization for finite dimension

Characterization for finite dimension

## Corollary

# Characterization for finite dimension 

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis,

## Characterization for finite dimension

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis, then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $\Lambda=D(i)$ for every $i \in \Lambda$.

## Characterization for finite dimension

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis, then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $\Lambda=D(i)$ for every $i \in \Lambda$.

## Corollary

## Characterization for finite dimension

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis, then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $\Lambda=D(i)$ for every $i \in \Lambda$.

## Corollary

Let $A$ an evolution algebra with $\operatorname{dim}(A)=\mathrm{n}$ and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of $A$.

## Characterization for finite dimension

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis, then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $\Lambda=D(i)$ for every $i \in \Lambda$.

## Corollary

Let $A$ an evolution algebra with $\operatorname{dim}(A)=\mathrm{n}$ and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of $A$. Then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $B$ cannot be reordered in such a way that:

$$
\left(\begin{array}{cc}
W_{m \times m} & U_{m \times(n-m)} \\
0_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

## Characterization for finite dimension

## Corollary

If $A$ is a finite dimensional evolution algebra and $B$ a natural basis, then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $\Lambda=D(i)$ for every $i \in \Lambda$.

## Corollary

Let $A$ an evolution algebra with $\operatorname{dim}(A)=\mathrm{n}$ and $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis of $A$. Then $A$ is simple if and only if $\left|M_{B}(A)\right| \neq 0$ and $B$ cannot be reordered in such a way that:

$$
\left(\begin{array}{cc}
W_{m \times m} & U_{m \times(n-m)} \\
0_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

for some $m \in \mathbb{N}$ with $m<n$ and matrices $W_{m \times m}, U_{m \times(n-m)}$ and $Y_{(n-m) \times(n-m)}$.

Reducible evolution algebras

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras.

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Reducible evolution algebras

> Definition
> An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

Let $A$ be a non-degenerate evolution algebra with a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$.

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

Let $A$ be a non-degenerate evolution algebra with a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Assume that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$,

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

Let $A$ be a non-degenerate evolution algebra with a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Assume that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$, where each $I_{\gamma}$ is an ideal of $A$.

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

Let $A$ be a non-degenerate evolution algebra with a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Assume that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$, where each $I_{\gamma}$ is an ideal of $A$. Then, there exists a disjoint decomposition of $\Lambda$, say $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ such that

## Reducible evolution algebras

## Definition

An evolution algebra is called reducible if it can be decomposed as the direct sum of two non-zero evolution subalgebras. Otherwise $A$ is called irreducible.

## Theorem

Let $A$ be a non-degenerate evolution algebra with a natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Assume that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$, where each $I_{\gamma}$ is an ideal of $A$. Then, there exists a disjoint decomposition of $\Lambda$, say $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ such that

$$
I_{\gamma}=\operatorname{lin}\left\{e_{i} \mid i \in \Lambda_{\gamma}\right\} .
$$

## Characterizations

## Characterizations

## Remark

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible if and only if there exists $B^{\prime}=\left\{e_{\sigma(i)} \mid i=1, \ldots, n\right\}$ with $\sigma \in S_{n}$ such that

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible if and only if there exists $B^{\prime}=\left\{e_{\sigma(i)} \mid i=1, \ldots, n\right\}$ with $\sigma \in S_{n}$ such that

$$
M_{B^{\prime}}=\left(\begin{array}{cc}
W_{m \times m} & O_{(n-m) \times(n-m)} \\
0_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible if and only if there exists $B^{\prime}=\left\{e_{\sigma(i)} \mid i=1, \ldots, n\right\}$ with $\sigma \in S_{n}$ such that

$$
M_{B^{\prime}}=\left(\begin{array}{cc}
W_{m \times m} & O_{(n-m) \times(n-m)} \\
O_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

## Corollary

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible if and only if there exists $B^{\prime}=\left\{e_{\sigma(i)} \mid i=1, \ldots, n\right\}$ with $\sigma \in S_{n}$ such that

$$
M_{B^{\prime}}=\left(\begin{array}{cc}
W_{m \times m} & 0_{(n-m) \times(n-m)} \\
0_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

## Corollary

Let $A$ be a non-degenerate evolution algebra, $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis and let $E$ be its associated graph.

## Characterizations

## Remark

A non-degenerate finite dimensional evolution algebra $A$ with natural basis $B=\left\{e_{i} \mid i=1, \ldots, n\right\}$ is reducible if and only if there exists $B^{\prime}=\left\{e_{\sigma(i)} \mid i=1, \ldots, n\right\}$ with $\sigma \in S_{n}$ such that

$$
M_{B^{\prime}}=\left(\begin{array}{cc}
W_{m \times m} & 0_{(n-m) \times(n-m)} \\
0_{(n-m) \times m} & Y_{(n-m) \times(n-m)}
\end{array}\right)
$$

## Corollary

Let $A$ be a non-degenerate evolution algebra, $B=\left\{e_{i} \mid i \in \Lambda\right\}$ a natural basis and let $E$ be its associated graph. Then $A$ es irreducible if and only if $E$ is a connected graph.

## Optimal direct-sum decomposition

## Optimal direct-sum decomposition

## Definition

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$ is a direct sum of irreducible non-zero ideals,

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$ is a direct sum of irreducible non-zero ideals, then we say that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is an optimal direct-sum decomposition of $A$.

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is a direct sum of irreducible non-zero ideals, then we say that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is an optimal direct-sum decomposition of $A$.

## Theorem

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$ is a direct sum of irreducible non-zero ideals, then we say that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is an optimal direct-sum decomposition of $A$.

## Theorem

Let $A$ be a non-degenerate evolution algebra.

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$ is a direct sum of irreducible non-zero ideals, then we say that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is an optimal direct-sum decomposition of $A$.

## Theorem

Let $A$ be a non-degenerate evolution algebra. Then $A$ admits an optimal direct-sum decomposition.

## Optimal direct-sum decomposition

## Definition

Let $A$ be a non-zero evolution algebra and assume that $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$ is a direct sum of irreducible non-zero ideals, then we say that $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$ is an optimal direct-sum decomposition of $A$.

## Theorem

Let $A$ be a non-degenerate evolution algebra. Then $A$ admits an optimal direct-sum decomposition. Moreover, it is unique.

The fragmentation process

The fragmentation process

## Definition

The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$.

The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2},
$$

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2}
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2},
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2},
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2},
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a union $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ such that:

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2},
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a union $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ such that:
(1) If $i \in\{1, \ldots, k\}$ then $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ for $S_{i}$ a non-empty subset of $\{1, \ldots, n\}$.

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2}
$$

$$
\text { and such that for every } i=1, \ldots, n \text {, either } \Upsilon_{i} \subseteq \Lambda_{1} \text { or } \Upsilon_{i} \subseteq \Lambda_{2} .
$$

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a union $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ such that:
(1) If $i \in\{1, \ldots, k\}$ then $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ for $S_{i}$ a non-empty subset of $\{1, \ldots, n\}$.
(2) $\Lambda_{i} \cap \Lambda_{j}=\emptyset$, for every $i, j \in\{1, \ldots, k\}$, with $i \neq j$.

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2}
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a union $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ such that:
(1) If $i \in\{1, \ldots, k\}$ then $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ for $S_{i}$ a non-empty subset of $\{1, \ldots, n\}$.
(2) $\Lambda_{i} \cap \Lambda_{j}=\emptyset$, for every $i, j \in\{1, \ldots, k\}$, with $i \neq j$.

If for every $i \in\{1, \ldots, k\}$ the index set $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ is not fragmentable

## The fragmentation process

## Definition

Let $\Lambda$ be a finite set and let $\Upsilon_{1}, \ldots, \Upsilon_{n}$ be non-empty subsets of $\Lambda$ such that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$. We say that $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a fragmentable union if there exists disjoint non-empty subsets $\Lambda_{1}, \Lambda_{2}$ of $\Lambda$ satisfying

$$
\Lambda=\cup_{i=1}^{n} \Upsilon_{i}=\Lambda_{1} \cup \Lambda_{2}
$$

and such that for every $i=1, \ldots, n$, either $\Upsilon_{i} \subseteq \Lambda_{1}$ or $\Upsilon_{i} \subseteq \Lambda_{2}$.

## Definition

A fragmentation of a fragmentable union $\Lambda=\cup_{i=1}^{n} \Upsilon_{i}$ is a union $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ such that:
(1) If $i \in\{1, \ldots, k\}$ then $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ for $S_{i}$ a non-empty subset of $\{1, \ldots, n\}$.
(2) $\Lambda_{i} \cap \Lambda_{j}=\emptyset$, for every $i, j \in\{1, \ldots, k\}$, with $i \neq j$.

If for every $i \in\{1, \ldots, k\}$ the index set $\Lambda_{i}=\cup_{j \in S_{i}} \Upsilon_{j}$ is not fragmentable then we say that $\Lambda=\cup_{i=1}^{k} \Lambda_{i}$ is an optimal fragmentation.

The optimal direct-sum decomposition of $A$

The optimal direct-sum decomposition of $A$

Theorem (The fragmentation process)

## The optimal direct-sum decomposition of $A$

Theorem (The fragmentation process)
Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$.

The optimal direct-sum decomposition of $A$

Theorem (The fragmentation process)
Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \wedge\left(C_{k}\right) \cup \Lambda\left(i_{1}\right) \cup \cdots \cup \Lambda\left(i_{m}\right) \text {. }
$$

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \Lambda\left(C_{k}\right) \cup \wedge\left(i_{1}\right) \cup \cdots \cup \Lambda\left(i_{m}\right) .
$$

where $\Lambda(S):=S \cup_{i \in S} D(i)$.

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \wedge\left(C_{k}\right) \cup \wedge\left(i_{1}\right) \cup \cdots \cup \Lambda\left(i_{m}\right) .
$$

where $\Lambda(S):=S \cup_{i \in S} D(i)$.
Let $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ be the optimal fragmentation of $(\dagger)$

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \wedge\left(C_{k}\right) \cup \wedge\left(i_{1}\right) \cup \cdots \cup \wedge\left(i_{m}\right) \text {. }
$$

where $\Lambda(S):=S \cup_{i \in S} D(i)$.
Let $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ be the optimal fragmentation of ( $\dagger$ ) and decompose $B=\sqcup_{\gamma \in \Gamma} B_{\gamma}$, where $B_{\gamma}=\left\{e_{i} \mid i \in \Lambda_{\gamma}\right\}$.

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \wedge\left(C_{k}\right) \cup \Lambda\left(i_{1}\right) \cup \cdots \cup \wedge\left(i_{m}\right) \text {. }
$$

where $\Lambda(S):=S \cup_{i \in S} D(i)$.
Let $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ be the optimal fragmentation of $(\dagger)$ and decompose $B=\sqcup_{\gamma \in \Gamma} B_{\gamma}$, where $B_{\gamma}=\left\{e_{i} \mid i \in \Lambda_{\gamma}\right\}$. Then $A=\oplus_{\gamma \in \Gamma} I_{\gamma}$, for $I_{\gamma}=\operatorname{lin} B_{\gamma}$, which is an evolution ideal of $A$.

## The optimal direct-sum decomposition of $A$

## Theorem (The fragmentation process)

Let $A$ be a finite-dimensional evolution algebra with natural basis $B=\left\{e_{i} \mid i \in \Lambda\right\}$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of principal cycles of $\Lambda,\left\{i_{1}, \ldots, i_{m}\right\}$ the set of all chain-start indices of $\Lambda$ and consider the decomposition

$$
(\dagger) \quad \Lambda=\Lambda\left(C_{1}\right) \cup \cdots \cup \wedge\left(C_{k}\right) \cup \wedge\left(i_{1}\right) \cup \cdots \cup \Lambda\left(i_{m}\right) \text {. }
$$

where $\Lambda(S):=S \cup_{i \in S} D(i)$.
Let $\Lambda=\sqcup_{\gamma \in \Gamma} \Lambda_{\gamma}$ be the optimal fragmentation of ( $\dagger$ ) and decompose $B=\sqcup_{\gamma \in \Gamma} B_{\gamma}$, where $B_{\gamma}=\left\{e_{i} \mid i \in \Lambda_{\gamma}\right\}$. Then $A=\oplus_{\gamma \in \Gamma} l_{\gamma}$, for $I_{\gamma}=\operatorname{lin} B_{\gamma}$, which is an evolution ideal of $A$. Moreover, if $A$ is non-degenerate, then $A=\oplus_{\gamma \in \Gamma I_{\gamma}}$ is the optimal direct-sum decomposition of $A$.

## Optimal Fragmentation

PROTARAMI


Program E

```
CYClicQ[i_, P_]:= If[MemberQ[DP[i], i],
    Print[i"is a cyclic index"], Print[i" is not a cyclic index"]],
    CycleAssociated[i, P_] i= Select[Table[j, (j, Length[P])]
    MemberQ[DP[i,P], #] && MemberQ [DP[#, P], i] &]:
    Ascendents [i, P_] i=Module [{j,b},b={};
    For[j=1,j { Length[P],j++, If[MemberQ[DP[j, P], i], AppendTo[b, j]1]; b];
    Subset[\mp@subsup{A}{-}{\prime},\mp@subsup{B}{-}{\prime}]:=(Union[A,B] == Union [B]);
    PrincipalCycleQ[i, P ] :=
        If[Subset[Ascendents[i, P], Cyclehssociated[i, P]],
        Print[i "is a principal cyclic-index"],
        Print[i is not a principal cyclic-index"l];
    ElementsNotNoneROw[P}\mp@subsup{P}{-}{\prime}]:=M\mathrm{ Module[{j),
    Select[Table[j,[j, Length[P])],P[[#]] = OP[[1]] &]],
    * La función incad me devuelve los indices i tales que la fila i es nula*)
    ChainStartQ[i_, P_]:=
    If [MemberQ[ElementsNotNoneRow[P],i], Print [i"is a chain-start index"],
        f(MemberQ[ELementsNotNoneRow[P], 1], Prin
    yclenssociated [5, P
    Ascendents [5, P]
Det18F
(5)
artav:
Program C
Lambl= LambaPrincipalCycle[P_]:= Module[(j,b),
    b= (};
        For [j=1,j s Length[P], j++,
        Subset [Ascendents[j, P], CYcleAssociated [j, P]], AppendTo[b, DP[j, P]]]]
        ; b];
    M[i_, P_]:= Union[{i),DP[i,P]],
    LambdachainStart[P_] :=
    Table[A[ElementsNotNoneRow[P][[i]],P], [i, Length[ElementsNotNoneRow[P]]}]
    CanonicalDecomposition[P_]:=
    Join[LambdaChainStart [P], LambdaPrincipalCycle[P]];
CanonicalDecomposition[P]
O,\P4)
[{2, 3, 4, 6), (1, 2, 5, 7, 8), [2, 3, 4})
PROTHRAM|C
```



## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras
(3) Classification of three-dimensional evolution algebras
(0) Further work


## Classification of 2-dimensional complex evolution algebras

Theorem (Casas J.M., Ladra M., Omirov B.A., and Rozikov U.A., 2014)

# Classification of 2-dimensional complex evolution algebras 

```
Theorem (Casas J.M., Ladra M., Omirov B.A., and Rozikov U.A.,
2014)
```

Any 2-dimensional complex evolution algebra $E$ is isomorphic to one of the following pairwise non isomorphic algebras:

## Classification of 2-dimensional complex evolution algebras

Theorem (Casas J.M., Ladra M., Omirov B.A., and Rozikov U.A., 2014)

Any 2-dimensional complex evolution algebra $E$ is isomorphic to one of the following pairwise non isomorphic algebras:
(1) $\operatorname{dim} E^{2}=1$

- $E_{1}: e_{1} e_{1}=e_{1}$,
- $E_{2}: e_{1} e_{1}=e_{1}, e_{2} e_{2}=e_{1}$,
- $E_{3}: e_{1} e_{1}=e_{1}+e_{2}, e_{2} e_{2}=-e_{1}-e_{2}$,
- $E_{4}: e_{1} e_{1}=e_{2}$.


## Classification of 2-dimensional complex evolution algebras

## Theorem (Casas J.M., Ladra M., Omirov B.A., and Rozikov U.A., 2014)

Any 2-dimensional complex evolution algebra $E$ is isomorphic to one of the following pairwise non isomorphic algebras:
(1) $\operatorname{dim} E^{2}=1$

- $E_{1}: e_{1} e_{1}=e_{1}$,
- $E_{2}: e_{1} e_{1}=e_{1}, e_{2} e_{2}=e_{1}$,
- $E_{3}: e_{1} e_{1}=e_{1}+e_{2}, e_{2} e_{2}=-e_{1}-e_{2}$,
- $E_{4}: e_{1} e_{1}=e_{2}$.
(2) $\operatorname{dim} E^{2}=2$
- $E_{5}: e_{1} e_{1}=e_{1}+a_{2} e_{2}, e_{2} e_{2}=a_{3} e_{1}+e_{2}, 1-a_{2} a_{3} \neq 0$, where $E_{5}\left(a_{2}, a_{3}\right) \cong E_{5}^{\prime}\left(a_{3}, a_{2}\right)$,
- $E_{6}: e_{1} e_{1}=e_{2}, e_{2} e_{2}=e_{1}+a_{4} e_{2}, a_{4} \neq 0$, where $E_{6}\left(a_{4}\right) \cong E_{6}\left(a_{4}^{\prime}\right)$ $\Leftrightarrow \frac{a_{4}^{\prime}}{a_{4}}=\cos \frac{2 \pi k}{3}+\imath \sin \frac{2 \pi k}{3}$ for some $k=0,1,2$.

Evolution Algebras Classification two-dimensional evolution algebras
Classification of 2-dimensional evolution algebras

Evolution Algebras Classification two-dimensional evolution algebras
Classification of 2-dimensional evolution algebras

## Theorem

## Classification of 2-dimensional evolution algebras

## Theorem

Let $A$ be a two-dimensional evolution algebra over a field $\mathbb{K}$ where for every $k \in \mathbb{K}$ the polynomial $x^{n}-k$ has a root whenever $n=2,3$.

## Classification of 2-dimensional evolution algebras

## Theorem

Let $A$ be a two-dimensional evolution algebra over a field $\mathbb{K}$ where for every $k \in \mathbb{K}$ the polynomial $x^{n}-k$ has a root whenever $n=2,3$.
If $\operatorname{dim}\left(A^{2}\right)=0$ then $M_{B}=0$ for any natural basis $B$ of $A$.

## Classification of 2-dimensional evolution algebras

## Theorem

Let $A$ be a two-dimensional evolution algebra over a field $\mathbb{K}$ where for every $k \in \mathbb{K}$ the polynomial $x^{n}-k$ has a root whenever $n=2,3$.
If $\operatorname{dim}\left(A^{2}\right)=0$ then $M_{B}=0$ for any natural basis $B$ of $A$.
If $\operatorname{dim}\left(A^{2}\right)=1$ then $M_{B}$ is one of the following four matrices:
(1) $M_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$,
(2) $M_{B}=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$,
(3) $M_{B}=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$,
(4) $M_{B}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.

They are mutually non-isomorphic.

Evolution Algebras Classification two-dimensional evolution algebras
Classification of 2-dimensional evolution algebras

Evolution Algebras Classification two-dimensional evolution algebras
Classification of 2-dimensional evolution algebras

## Theorem

## Classification of 2-dimensional evolution algebras

## Theorem

If $\operatorname{dim}\left(A^{2}\right)=2$ then $M_{B}$ is one of the following three types of matrices:

## Classification of 2-dimensional evolution algebras

## Theorem

If $\operatorname{dim}\left(A^{2}\right)=2$ then $M_{B}$ is one of the following three types of matrices:
(5) $M_{B}(\alpha, \beta)=\left(\begin{array}{ll}1 & \alpha \\ \beta & 1\end{array}\right)$ for some $\alpha, \beta \in \mathbb{K}^{\times}$and $1-\alpha \beta \neq 0$.
(6) $M_{B}(\alpha)=\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)$ for some $\alpha \in \mathbb{K}^{\times}$.
(7) $M_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(8) $M_{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
(0) $M_{B}(\gamma)=\left(\begin{array}{ll}0 & 1 \\ 1 & \gamma\end{array}\right)$ for some $\gamma \in \mathbb{K}^{\times}$.

## Classification of 2-dimensional evolution algebras

## Theorem

If $\operatorname{dim}\left(A^{2}\right)=2$ then $M_{B}$ is one of the following three types of matrices:
(5) $M_{B}(\alpha, \beta)=\left(\begin{array}{cc}1 & \alpha \\ \beta & 1\end{array}\right)$ for some $\alpha, \beta \in \mathbb{K}^{\times}$and $1-\alpha \beta \neq 0$.
(6) $M_{B}(\alpha)=\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)$ for some $\alpha \in \mathbb{K}^{\times}$.
(7) $M_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(8) $M_{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
(0) $M_{B}(\gamma)=\left(\begin{array}{ll}0 & 1 \\ 1 & \gamma\end{array}\right)$ for some $\gamma \in \mathbb{K}^{\times}$.

They are mutually non-isomorphic except in the case $\left\{M_{B}(\gamma) \mid \gamma \in \mathbb{K}\right\}$ when $\frac{\gamma}{\gamma^{\prime}}$ is a $3 r d$ root of unity.

## Evolution Algebras

$\operatorname{dim}\left(A^{2}\right)=1$

Fix a two-dimensional evolution algebra $A$ and a natural basis $B=\left\{e_{1}, e_{2}\right\}$. Let

$$
M_{B}=\left(\begin{array}{ll}
\omega_{1} & \omega_{3} \\
\omega_{2} & \omega_{4}
\end{array}\right)
$$

Fix a two-dimensional evolution algebra $A$ and a natural basis $B=\left\{e_{1}, e_{2}\right\}$. Let

$$
M_{B}=\left(\begin{array}{ll}
\omega_{1} & \omega_{3} \\
\omega_{2} & \omega_{4}
\end{array}\right)
$$

- Suppose that $\left\{e_{1}^{2}\right\}$ is a basis of $A^{2}$. Since $e_{2}^{2} \in A^{2}$, there exists $c_{1} \in \mathbb{K}$ such that $e_{2}^{2}=c_{1} e_{1}^{2}=c_{1}\left(\omega_{1} e_{1}+\omega_{2} e_{2}\right)$.

Fix a two-dimensional evolution algebra $A$ and a natural basis $B=\left\{e_{1}, e_{2}\right\}$. Let

$$
M_{B}=\left(\begin{array}{ll}
\omega_{1} & \omega_{3} \\
\omega_{2} & \omega_{4}
\end{array}\right)
$$

- Suppose that $\left\{e_{1}^{2}\right\}$ is a basis of $A^{2}$. Since $e_{2}^{2} \in A^{2}$, there exists $c_{1} \in \mathbb{K}$ such that $e_{2}^{2}=c_{1} e_{1}^{2}=c_{1}\left(\omega_{1} e_{1}+\omega_{2} e_{2}\right)$.
- Extend the basis $\left\{e_{1}^{2}\right\}$ of $A^{2}$ to a new basis $B^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ of $A$ ( $B^{\prime}$ is not necessarily a natural basis) with change of basis matrix $P_{B^{\prime} B}$

$$
P_{B^{\prime} B}=\left(\begin{array}{ll}
\omega_{1} & p_{1} \\
\omega_{2} & p_{2}
\end{array}\right) .
$$

## Evolution Algebras

$\operatorname{dim}\left(A^{2}\right)=1$
-When is $B^{\prime}$ a natural basis?

- When is $B^{\prime}$ a natural basis?
- $\left(e_{1}^{2}\right)^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2} e_{2}^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2}\left(c_{2} e_{1}^{2}\right)=\left(\omega_{1}^{2}+\omega_{2}^{2} c_{2}\right) e_{1}^{2}$.
- When is $B^{\prime}$ a natural basis?
- $\left(e_{1}^{2}\right)^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2} e_{2}^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2}\left(c_{2} e_{1}^{2}\right)=\left(\omega_{1}^{2}+\omega_{2}^{2} c_{2}\right) e_{1}^{2}$.
- $e_{2}^{\prime 2}=p_{1}^{2} e_{1}^{2}+p_{2}^{2} e_{2}^{2}=\left(p_{1}^{2}+p_{2}^{2} c_{2}\right) e_{1}^{2}$.
- When is $B^{\prime}$ a natural basis?
- $\left(e_{1}^{2}\right)^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2} e_{2}^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2}\left(c_{2} e_{1}^{2}\right)=\left(\omega_{1}^{2}+\omega_{2}^{2} c_{2}\right) e_{1}^{2}$.
- $e_{2}^{\prime 2}=p_{1}^{2} e_{1}^{2}+p_{2}^{2} e_{2}^{2}=\left(p_{1}^{2}+p_{2}^{2} c_{2}\right) e_{1}^{2}$.
- $e_{1}^{2} e_{2}^{\prime}=\left(\omega_{1} e_{1}+\omega_{2} e_{2}\right)\left(p_{1} e_{1}+p_{2} e_{2}\right)=\left(\omega_{1} p_{1}+\omega_{2} p_{2} c_{2}\right) e_{1}^{2}=0$.
- When is $B^{\prime}$ a natural basis?
- $\left(e_{1}^{2}\right)^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2} e_{2}^{2}=\omega_{1}^{2} e_{1}^{2}+\omega_{2}^{2}\left(c_{2} e_{1}^{2}\right)=\left(\omega_{1}^{2}+\omega_{2}^{2} c_{2}\right) e_{1}^{2}$.
- $e_{2}^{\prime 2}=p_{1}^{2} e_{1}^{2}+p_{2}^{2} e_{2}^{2}=\left(p_{1}^{2}+p_{2}^{2} c_{2}\right) e_{1}^{2}$.
- $e_{1}^{2} e_{2}^{\prime}=\left(\omega_{1} e_{1}+\omega_{2} e_{2}\right)\left(p_{1} e_{1}+p_{2} e_{2}\right)=\left(\omega_{1} p_{1}+\omega_{2} p_{2} c_{2}\right) e_{1}^{2}=0$.
- Distinguish different cases depending on $\omega_{1} p_{1}+\omega_{2} p_{2} c_{2}$ is zero or not.


## Evolution Algebras Classification two-dimensional evolution algebras

## Summarizing

## Summarizing

| Type |  |  |  |
| :---: | :--- | :--- | :--- |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

## Summarizing

| Type | $A^{2}$ has EP |  |  |
| :---: | :---: | :---: | :--- |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes |  |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\mathrm{EP}=$ Extension property

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ | A has a ideal $\hat{l}$ |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\mathrm{EP}=$ Extension property
$\widehat{l}$ is a non-degenerate principal ideal.

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ | A has a ideal $\hat{l}$ |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 | $\left.I=<e_{1}\right\rangle$ |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\mathrm{EP}=$ Extension property
$\widehat{l}$ is a non-degenerate principal ideal.

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ | A has a ideal $\hat{l}$ |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 | $\left.I=<e_{1}\right\rangle$ |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 | No |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\mathrm{EP}=$ Extension property
$\widehat{l}$ is a non-degenerate principal ideal.

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ | A has a ideal $\hat{I}$ |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}>$ |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 | No |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 | $I=<e_{1}>$ |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\mathrm{EP}=$ Extension property
$\widehat{l}$ is a non-degenerate principal ideal.

## Summarizing

| Type | $A^{2}$ has EP | $\operatorname{dim}(\operatorname{ann}(\mathrm{A}))$ | A has a ideal $\hat{I}$ |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}>$ |
| $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$ | No | 0 | No |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 0 | $I=<e_{1}>$ |
| $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ | Yes | 1 | No |

$\mathrm{EP}=$ Extension property
$\widehat{l}$ is a non-degenerate principal ideal.

## Evolution Algebras

$\operatorname{dim}\left(A^{2}\right)=2$

- The number of non-zero entries in the structure matrix (main diagonal) is an invariant. Then, we have the following possibilities:
- The number of non-zero entries in the structure matrix (main diagonal) is an invariant. Then, we have the following possibilities:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & \alpha \\
\beta & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 1 \\
1 & \gamma
\end{array}\right)
$$

- The number of non-zero entries in the structure matrix (main diagonal) is an invariant. Then, we have the following possibilities:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & \alpha \\
\beta & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 1 \\
1 & \gamma
\end{array}\right)
$$

- We study if the parametric families of evolution algebras are isomorphic when we change of parameters.


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras
(5) Classification of three-dimensional evolution algebras
(6) Further work
$\square$



Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$
(1) $G=\left\{\left.\left(\begin{array}{ccc}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.

## Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$

(1) $G=\left\{\left.\left(\begin{array}{lll}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.
(2) $s_{3}=\left\{\operatorname{id}_{3},\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right\}$

## Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$

(1) $G=\left\{\left.\left(\begin{array}{ccc}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.
(2) $s_{3}=\left\{\mathrm{id}_{3},\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right\}$
(3) $H=\left\{\sigma(\alpha, \beta, \gamma) \mid \sigma \in S_{3},(\alpha, \beta, \gamma) \in\left(\mathbb{K}^{\times}\right)^{3}\right\}=$

$$
\left\{(\alpha, \beta, \gamma),\left(\begin{array}{lll}
0 & \alpha & 0 \\
\beta & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \beta & 0 \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
\alpha & 0 & 0 \\
0 & 0 & \beta \\
0 & \gamma & \beta \\
0
\end{array}\right),\left(\begin{array}{lll}
0 & \alpha & 0 \\
0 & 0 & \beta \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & \alpha \\
\beta & 0 & 0 \\
0 & \gamma & 0
\end{array}\right)\right\}
$$

## Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$

(1) $G=\left\{\left.\left(\begin{array}{lll}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.
(2) $s_{3}=\left\{\mathrm{id}_{3},\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right\}$
(3) $H=\left\{\sigma(\alpha, \beta, \gamma) \mid \sigma \in S_{3},(\alpha, \beta, \gamma) \in\left(\mathbb{K}^{\times}\right)^{3}\right\}=$

$$
\left\{(\alpha, \beta, \gamma),\left(\begin{array}{lll}
0 & \alpha & 0 \\
\beta & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \alpha \\
0 & \beta & 0 \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
\alpha & 0 & 0 \\
0 & 0 & \beta \\
0 & \gamma & \beta \\
0 & \gamma & 0
\end{array}\right),\left(\begin{array}{lll}
0 & \alpha & 0 \\
0 & 0 & \beta \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \alpha \\
\beta & 0 & 0 \\
0 & \gamma & 0
\end{array}\right)\right\}
$$

(4) $\sigma\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \tau\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\sigma \tau\left(\alpha_{\tau(1)} \beta_{1}, \alpha_{\tau(2)} \beta_{2}, \alpha_{\tau(3)} \beta_{3}\right)$.

## Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$

(1) $G=\left\{\left.\left(\begin{array}{lll}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.
(2) $s_{3}=\left\{\operatorname{id}_{3},\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right\}$
(3) $H=\left\{\sigma(\alpha, \beta, \gamma) \mid \sigma \in S_{3},(\alpha, \beta, \gamma) \in\left(\mathbb{K}^{\times}\right)^{3}\right\}=$

$$
\left\{(\alpha, \beta, \gamma),\left(\begin{array}{lll}
0 & \alpha & 0 \\
\beta & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & \beta & 0 \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & 0 & \beta \\
0 & \gamma & 0
\end{array}\right),\left(\begin{array}{lll}
0 & \alpha & 0 \\
0 & 0 & \beta \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \alpha \\
\beta & 0 & 0 \\
0 & \gamma & 0
\end{array}\right)\right\}
$$

(4) $\sigma\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \tau\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\sigma \tau\left(\alpha_{\tau(1)} \beta_{1}, \alpha_{\tau(2)} \beta_{2}, \alpha_{\tau(3)} \beta_{3}\right)$.
(5) Semidirect product of $S_{3}$ and $\left(\mathbb{K}^{\times}\right)^{3}$ is denoted by $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.

## Action of $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ on $\mathrm{M}_{3}(\mathbb{K})$

(1) $G=\left\{\left.\left(\begin{array}{lll}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}=\left\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{K}^{\times}\right\}$.
(2) $s_{3}=\left\{\operatorname{id}_{3},\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\right\}$
(3) $H=\left\{\sigma(\alpha, \beta, \gamma) \mid \sigma \in S_{3},(\alpha, \beta, \gamma) \in\left(\mathbb{K}^{\times}\right)^{3}\right\}=$

$$
\left\{(\alpha, \beta, \gamma),\left(\begin{array}{lll}
0 & \alpha & 0 \\
\beta & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & \beta & 0 \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & 0 & \beta \\
0 & \gamma & 0
\end{array}\right),\left(\begin{array}{lll}
0 & \alpha & 0 \\
0 & 0 & \beta \\
\gamma & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \alpha \\
\beta & 0 & 0 \\
0 & \gamma & 0
\end{array}\right)\right\}
$$

(4) $\sigma\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \tau\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=\sigma \tau\left(\alpha_{\tau(1)} \beta_{1}, \alpha_{\tau(2)} \beta_{2}, \alpha_{\tau(3)} \beta_{3}\right)$.
(5) Semidirect product of $S_{3}$ and $\left(\mathbb{K}^{\times}\right)^{3}$ is denoted by $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
(6) The action of $P$ on $M$ can be formulated as follows:

$$
P \cdot M:=P^{-1} M P^{(2)} .
$$

## Proposition

## Proposition

For any $P \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ and any $M \in M_{3}(\mathbb{K})$ we have:

## Proposition

For any $P \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ and any $M \in M_{3}(\mathbb{K})$ we have:
(1) The number of zero entries in $M$ coincides with the number of zero entries in $P \cdot M$.

## Proposition

For any $P \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ and any $M \in M_{3}(\mathbb{K})$ we have:
(1) The number of zero entries in $M$ coincides with the number of zero entries in $P \cdot M$.
(2) The number of zero entries in the main diagonal of $M$ coincides with the number of zero entries in the main diagonal of $P \cdot M$.

## Proposition

For any $P \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ and any $M \in M_{3}(\mathbb{K})$ we have:
(1) The number of zero entries in $M$ coincides with the number of zero entries in $P \cdot M$.
(2) The number of zero entries in the main diagonal of $M$ coincides with the number of zero entries in the main diagonal of $P \cdot M$.
(3) The rank of $M$ and the rank of $P \cdot M$ coincide.

## Proposition

For any $P \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ and any $M \in M_{3}(\mathbb{K})$ we have:
(1) The number of zero entries in $M$ coincides with the number of zero entries in $P \cdot M$.
(2) The number of zero entries in the main diagonal of $M$ coincides with the number of zero entries in the main diagonal of $P \cdot M$.
(3) The rank of $M$ and the rank of $P \cdot M$ coincide.
(4) Let $M_{B}$ be the structure matrix of an evolution algebra $A$ such that $A^{2}=A$. If $N$ is the structure matrix of $A$ relative to a natural basis $B^{\prime}$ then there exists $Q \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$ such that $N=Q \cdot M_{B}$.

Evolution Algebras Classification of three-dimensional evolution algebras
Three-dimensional evolution algebras

Three-dimensional evolution algebras

Let $A$ be a three-dimensional evolution $\mathbb{K}$-algebra where $\mathbb{K}$ is a field of characteristic different from 2

Let $A$ be a three-dimensional evolution $\mathbb{K}$-algebra where $\mathbb{K}$ is a field of characteristic different from 2 and such that for any $k \in \mathbb{K}$ the polynomial of the form $x^{n}-k$ has a root whenever $n=2,3,7$.

Let $A$ be a three-dimensional evolution $\mathbb{K}$-algebra where $\mathbb{K}$ is a field of characteristic different from 2 and such that for any $k \in \mathbb{K}$ the polynomial of the form $x^{n}-k$ has a root whenever $n=2,3,7$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=0$ then $M_{B}=0$ for any natural basis $B$ of $A$.

Let $A$ be a three-dimensional evolution $\mathbb{K}$-algebra where $\mathbb{K}$ is a field of characteristic different from 2 and such that for any $k \in \mathbb{K}$ the polynomial of the form $x^{n}-k$ has a root whenever $n=2,3,7$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=0$ then $M_{B}=0$ for any natural basis $B$ of $A$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=1$. Let $M_{B}=\left(\omega_{i j}\right)$ be the structure matrix.

## Three-dimensional evolution algebras

Let $A$ be a three-dimensional evolution $\mathbb{K}$-algebra where $\mathbb{K}$ is a field of characteristic different from 2 and such that for any $k \in \mathbb{K}$ the polynomial of the form $x^{n}-k$ has a root whenever $n=2,3,7$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=0$ then $M_{B}=0$ for any natural basis $B$ of $A$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=1$. Let $M_{B}=\left(\omega_{i j}\right)$ be the structure matrix.

- We may assume $e_{1}^{2} \neq 0$.

$$
\begin{aligned}
& e_{1}^{2}=\omega_{1} e_{1}+\omega_{2} e_{2}+\omega_{3} e_{3} \\
& e_{2}^{2}=c_{1} e_{1}^{2}=c_{1}\left(\omega_{1} e_{1}+\omega_{2} e_{2}+\omega_{3} e_{3}\right) \\
& e_{3}^{2}=c_{2} e_{1}^{2}=c_{2}\left(\omega_{1} e_{1}+\omega_{2} e_{2}+\omega_{3} e_{3}\right) .
\end{aligned}
$$

- We analyze when $A^{2}$ has the extension property, i.e., if there exists a natural basis $B^{\prime}=\left\{e_{1}^{2}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ of $A$ with

$$
P_{B^{\prime} B}=\left(\begin{array}{lll}
\omega_{1} & \alpha & \delta \\
\omega_{2} & \beta & \nu \\
\omega_{3} & \gamma & \eta
\end{array}\right)
$$

- We analyze when $A^{2}$ has the extension property, i.e., if there exists a natural basis $B^{\prime}=\left\{e_{1}^{2}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ of $A$ with

$$
P_{B^{\prime} B}=\left(\begin{array}{lll}
\omega_{1} & \alpha & \delta \\
\omega_{2} & \beta & \nu \\
\omega_{3} & \gamma & \eta
\end{array}\right)
$$

- The conditions are as follows:

$$
\begin{aligned}
\alpha \omega_{1}+\beta \omega_{2} c_{1}+\gamma \omega_{3} c_{2} & =0 \\
\delta \omega_{1}+\nu \omega_{2} c_{1}+\eta \omega_{3} c_{2} & =0 \\
\alpha \delta+\beta \nu c_{1}+\gamma \eta c_{2} & =0 \\
\left|P_{B^{\prime} B}\right| & \neq 0
\end{aligned}
$$

- We analyze when $A^{2}$ has the extension property, i.e., if there exists a natural basis $B^{\prime}=\left\{e_{1}^{2}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ of $A$ with

$$
P_{B^{\prime} B}=\left(\begin{array}{lll}
\omega_{1} & \alpha & \delta \\
\omega_{2} & \beta & \nu \\
\omega_{3} & \gamma & \eta
\end{array}\right)
$$

- The conditions are as follows:

$$
\begin{aligned}
\alpha \omega_{1}+\beta \omega_{2} c_{1}+\gamma \omega_{3} c_{2} & =0 \\
\delta \omega_{1}+\nu \omega_{2} c_{1}+\eta \omega_{3} c_{2} & =0 \\
\alpha \delta+\beta \nu c_{1}+\gamma \eta c_{2} & =0 \\
\left|P_{B^{\prime} B}\right| & \neq 0
\end{aligned}
$$

- $A^{2}$ has the extension property if and only if

$$
\omega_{1}^{2}+\omega_{2}^{2} c_{1}+\omega_{3}^{2} c_{2} \neq 0
$$

$\operatorname{dim}\left(A^{2}\right)=1$

| Type |  |  |  |
| :---: | :--- | :--- | :--- |

$\operatorname{dim}\left(A^{2}\right)=1$

| trpe | $A^{2}$ hasath enteotension |  |  |
| :---: | :---: | :---: | :---: |
| ( ${ }_{\text {c }}^{1}$ |  |  |  |
| ( |  |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| trpe | $A^{2}$ hasathe entension |  |  |
| :---: | :---: | :---: | :---: |
| ( ${ }_{\text {c }}^{1}$ | No |  |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe | $A^{2}$ hasathe entension |  |  |
| :---: | :---: | :---: | :---: |
| ( ${ }_{\text {c }}^{1}$ | No |  |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}10 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe | $A^{2}$ hasathe ertesiosion |  |  |
| :---: | :---: | :---: | :---: |
| ( | No |  |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{llll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe | $A^{2}$ hasathe entension |  |  |
| :---: | :---: | :---: | :---: |
| ( ${ }_{\text {c }}^{1}$ | No |  |  |
| ( | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ve |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ve |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{lll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & \\ 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| ( $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ | Ys |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Ys |  |  |
| $\left(\begin{array}{lll}0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
| $\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & \\ 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| ( $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | yes |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Ys |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ | yes |  |  |
| $\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Trpe |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & \\ 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| ( $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | yes |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Ys |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| ${ }_{\text {T,pe }}$ | $A^{2}$ has the ertesasion |  |  |
| :---: | :---: | :---: | :---: |
| ( | No |  |  |
| $\left(\begin{array}{ccc}1 & -1 & \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 \\ 1 & 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\right)$ | res |  |  |
| $\left(\begin{array}{lll}1 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}0 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| ${ }_{\text {T,pe }}$ | $A^{2}$ has the ertesasion |  |  |
| :---: | :---: | :---: | :---: |
| ( | No | - |  |
| $\left(\begin{array}{lcl}1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | res |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | ves |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) |  |
| :---: | :---: | :---: | :--- |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension property | dimension of $\operatorname{ann}(\mathrm{A})$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No | 1 |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension property | dimension of $\operatorname{ann}(\mathrm{A})$ |  |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No | 1 |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 |  |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 | No |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 | No |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | No |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No |  |  |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 | No |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Nes | 1 | No |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 |  |

$\operatorname{dim}\left(A^{2}\right)=1$

| Type | $A^{2}$ has the extension <br> property | dimension of <br> ann(A) | A has a principal degenerate <br> two-dimensional evolution ideal |
| :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | No | 0 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | No | 1 | $I=<e_{1}+e_{2}+e_{3}>$ |
| $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes |  |  |
| $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 0 | No |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Nes | 1 | No |
| $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 2 | $I=<e_{3}>$ |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | Yes | 1 | $I=<e_{3}>$ |

$\operatorname{dim}\left(A^{2}\right)=2$
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=2$. We may assume that there exists a natural basis $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ such that
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=2$. We may assume that there exists a natural basis $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
M_{B}=\left(\begin{array}{lll}
\omega_{11} & \omega_{12} & c_{1} \omega_{11}+c_{2} \omega_{12} \\
\omega_{21} & \omega_{22} & c_{1} \omega_{21}+c_{2} \omega_{22} \\
\omega_{31} & \omega_{32} & c_{1} \omega_{31}+c_{2} \omega_{32}
\end{array}\right)
$$

$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=2$. We may assume that there exists a natural basis $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
M_{B}=\left(\begin{array}{lll}
\omega_{11} & \omega_{12} & c_{1} \omega_{11}+c_{2} \omega_{12} \\
\omega_{21} & \omega_{22} & c_{1} \omega_{21}+c_{2} \omega_{22} \\
\omega_{31} & \omega_{32} & c_{1} \omega_{31}+c_{2} \omega_{32}
\end{array}\right)
$$

for some $c_{1}, c_{2} \in \mathbb{K}$ with $\omega_{11} \omega_{22}-\omega_{12} \omega_{21} \neq 0$.
$\operatorname{dim}\left(A^{2}\right)=2$
$\operatorname{dim}\left(A^{2}\right)=2$

- We compute the possible change of basis matrices $P_{B^{\prime} B}$ for another natural basis $B^{\prime}$.
- We compute the possible change of basis matrices $P_{B^{\prime} B}$ for another natural basis $B^{\prime}$.

$$
\begin{cases}\omega_{11} p_{11} p_{12}+\omega_{12} p_{21} p_{22}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{31} p_{32}= & 0 \\ \omega_{21} p_{11} p_{12}+\omega_{22} p_{21} p_{22}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{31} p_{32}= & 0 \\ \omega_{31} p_{11} p_{12}+\omega_{32} p_{21} p_{22}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{31} p_{32}= & 0\end{cases}
$$

- We compute the possible change of basis matrices $P_{B^{\prime} B}$ for another natural basis $B^{\prime}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\omega_{11} p_{11} p_{12}+\omega_{12} p_{21} p_{22}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{31} p_{32}= \\
\omega_{21} p_{11} p_{12}+\omega_{22} p_{21} p_{22}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{31} p_{32}= \\
\omega_{31} p_{11} p_{12}+\omega_{32} p_{21} p_{22}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{31} p_{32}= \\
0
\end{array}\right. \\
& \left\{\begin{array}{l}
\omega_{11} p_{11} p_{13}+\omega_{12} p_{21} p_{23}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{31} p_{33}= \\
\omega_{21} p_{11} p_{13}+\omega_{22} p_{21} p_{23}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{31} p_{33}= \\
\omega_{31} p_{11} p_{13}+\omega_{32} p_{21} p_{23}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{31} p_{33}= \\
\omega_{0}
\end{array}\right.
\end{aligned}
$$

- We compute the possible change of basis matrices $P_{B^{\prime} B}$ for another natural basis $B^{\prime}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\omega_{11} p_{11} p_{12}+\omega_{12} p_{21} p_{22}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{31} p_{32}= \\
\omega_{21} p_{11} p_{12}+\omega_{22} p_{21} p_{22}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{31} p_{32}= \\
\omega_{31} p_{11} p_{12}+\omega_{32} p_{21} p_{22}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{31} p_{32}=
\end{array} 0\right.
\end{aligned} \begin{aligned}
& \left\{\begin{array}{l}
\omega_{11} p_{11} p_{13}+\omega_{12} p_{21} p_{23}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{31} p_{33}= \\
\omega_{21} p_{11} p_{13}+\omega_{22} p_{21} p_{23}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{31} p_{33}= \\
\omega_{31} p_{11} p_{13}+\omega_{32} p_{21} p_{23}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{31} p_{33}= \\
\omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\omega_{11} p_{12} p_{13}+\omega_{12} p_{22} p_{23}+\left(\omega_{11} c_{1}+\omega_{12} c_{2}\right) p_{32} p_{33}= \\
\omega_{21} p_{12} p_{13}+\omega_{22} p_{22} p_{23}+\left(\omega_{21} c_{1}+\omega_{22} c_{2}\right) p_{32} p_{33}= \\
\omega_{31} p_{12} p_{13}+\omega_{32} p_{22} p_{23}+\left(\omega_{31} c_{1}+\omega_{32} c_{2}\right) p_{32} p_{33}= \\
0
\end{array}\right.
\end{aligned}
$$

$\operatorname{dim}\left(A^{2}\right)=2$

- We resolve the homogeneous systems and we obtain that:
- We resolve the homogeneous systems and we obtain that:

$$
\begin{array}{ll}
p_{11} p_{12}=-c_{1} p_{31} p_{32} ; & p_{21} p_{22}=-c_{2} p_{31} p_{32} ; \\
p_{11} p_{13}=-c_{1} p_{31} p_{33} ; & p_{21} p_{23}=-c_{2} p_{31} p_{33} ; \\
p_{12} p_{13}=-c_{1} p_{32} p_{33} ; & p_{22} p_{23}=-c_{2} p_{32} p_{33}
\end{array}
$$

- We resolve the homogeneous systems and we obtain that:

$$
\begin{array}{ll}
p_{11} p_{12}=-c_{1} p_{31} p_{32} ; & p_{21} p_{22}=-c_{2} p_{31} p_{32} ; \\
p_{11} p_{13}=-c_{1} p_{31} p_{33} ; & p_{21} p_{23}=-c_{2} p_{31} p_{33} ; \\
p_{12} p_{13}=-c_{1} p_{32} p_{33} ; & p_{22} p_{23}=-c_{2} p_{32} p_{33}
\end{array}
$$

- We distinguish several cases depending on $c_{1}$ and $c_{2}$.
$\operatorname{dim}\left(A^{2}\right)=2$
\& If $c_{1} c_{2} \neq 0$.
\& If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
\& If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
\& If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
- The minimum number of non-zero entries is four.
\& If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
- The minimum number of non-zero entries is four.
- $P_{B^{\prime} B}=\sigma(\alpha, \beta, \gamma)$ with $\sigma \in S_{3}$ and $(\alpha, \beta, \gamma) \in G$.
$\alpha_{0}$ If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
- The minimum number of non-zero entries is four.
- $P_{B^{\prime} B}=\sigma(\alpha, \beta, \gamma)$ with $\sigma \in S_{3}$ and $(\alpha, \beta, \gamma) \in G$.
- Using $(\alpha, \beta, \gamma)$ we try to place as many ones as possible.
$\AA$ If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
- The minimum number of non-zero entries is four.
- $P_{B^{\prime} B}=\sigma(\alpha, \beta, \gamma)$ with $\sigma \in S_{3}$ and $(\alpha, \beta, \gamma) \in G$.
- Using $(\alpha, \beta, \gamma)$ we try to place as many ones as possible.
- We list the results in Tables where we apply the action of $\sigma$ on the structure matrix.
\& If $c_{1} c_{2} \neq 0$.
- We prove that $P_{B^{\prime} B} \in S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- We study depending on the number of non-zero entries in $M_{B}$.
- The minimum number of non-zero entries is four.
- $P_{B^{\prime} B}=\sigma(\alpha, \beta, \gamma)$ with $\sigma \in S_{3}$ and $(\alpha, \beta, \gamma) \in G$.
- Using $(\alpha, \beta, \gamma)$ we try to place as many ones as possible.
- We list the results in Tables where we apply the action of $\sigma$ on the structure matrix.
- We study what happen when we change the parameters. Are the corresponding evolution algebras isomorphic?


## Four non-zero entries

## Four non-zero entries

- There are $3(15-6-3)=18$ cases.

Four non-zero entries

- There are $3(15-6-3)=18$ cases.



## Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.


Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ |  |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ |  |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ |  |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ |  |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
|  |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

| $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

| $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

| $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ |  |  |

## Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ |  |$|$|  |
| :--- | :--- | :--- | :--- |

## Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |$|$|  |
| :--- | :--- | :--- | :--- |

## Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ |  |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{lll}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left\lvert\,\left(\begin{array}{lll}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right.$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ |  |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ |  |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 1 & 0 & 1\end{array}\right)$ |  |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ |  |

Four non-zero entries

- There are $3(15-6-3)=18$ cases.

|  | $(1,2)$ | $(1,3)$ | $(2,3)$ | $(1,2,3)$ | $(1,3,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & c_{2} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & 0 & c_{2} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{2} & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & c_{2} & 1\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{2} & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & c_{2} & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & c_{1} \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ c_{1} & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & c_{1} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ c_{1} & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & c_{1} & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & c_{1} & 0 \\ 1 & 0 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}c_{1} & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & c_{1} & 1 \\ 0 & 0 & 0\end{array}\right)$ |

Evolution Algebras Classification of three-dimensional evolution algebras
Mutually isomorphic evolution algebras

Evolution Algebras Classification of three-dimensional evolution algebras

## Mutually isomorphic evolution algebras



Evolution Algebras Classification of three-dimensional evolution algebras

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Evolution Algebras Classification of three-dimensional evolution algebras

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ |  |
|  |  |  |
|  |  |  |

Evolution Algebras Classification of three-dimensional evolution algebras

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
|  |  |  |
|  |  |  |

## Mutually isomorphic evolution algebras

| $M_{B}$ |  | $P_{B^{\prime} B}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
|  |  |  |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ |  |  |

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ |  |

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & \frac{1}{c_{1}} \\ 1 & 1 & 0\end{array}\right)$ |

## Mutually isomorphic evolution algebras

| $M_{B}$ |  | $P_{B^{\prime} B}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $M_{B^{\prime}}$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |  |
| $\left.\begin{array}{lll}0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & \frac{1}{c_{1}} \\ 1 & 1 & 0\end{array}\right)$ |  |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ |  |  |

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & \frac{1}{c_{1}} \\ 1 & 1 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ |  |

## Mutually isomorphic evolution algebras

| $M_{B}$ | $P_{B^{\prime} B}$ | $M_{B^{\prime}}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\sqrt{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -c_{1}\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & c_{1} \\ 1 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ | $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & \frac{1}{c_{1}} \\ 1 & 1 & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & c_{1}\end{array}\right)$ | $\left(\begin{array}{ccc}\frac{1}{\sqrt{c_{1}}} & 0 & 0 \\ 0 & 0 & \frac{1}{c_{1}} \\ 0 & \frac{1}{c_{1}} & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & \frac{1}{c_{1}}\end{array}\right)$ |

Evolution Algebras Classification of three-dimensional evolution algebras $c_{1}=0$ and $c_{2} \neq 0$
\& $c_{1}=0$ and $c_{2} \neq 0$.
$c_{1}=0$ and $c_{2} \neq 0$
\& $c_{1}=0$ and $c_{2} \neq 0$.

- We have

$$
\begin{array}{ll}
p_{11} p_{12}=0 ; & p_{21} p_{22}=-c_{2} p_{31} p_{32} ; \\
p_{11} p_{13}=0 ; & p_{21} p_{23}=-c_{2} p_{31} p_{33} ; \\
p_{12} p_{13}=0 ; & p_{22} p_{23}=-c_{2} p_{32} p_{33} .
\end{array}
$$

$c_{1}=0$ and $c_{2} \neq 0$
\& $c_{1}=0$ and $c_{2} \neq 0$.

- We have

$$
\begin{array}{ll}
p_{11} p_{12}=0 ; & p_{21} p_{22}=-c_{2} p_{31} p_{32} ; \\
p_{11} p_{13}=0 ; & p_{21} p_{23}=-c_{2} p_{31} p_{33} ; \\
p_{12} p_{13}=0 ; & p_{22} p_{23}=-c_{2} p_{32} p_{33} .
\end{array}
$$

- The possible change of basis matrices are:


## $c_{1}=0$ and $c_{2} \neq 0$

\& $c_{1}=0$ and $c_{2} \neq 0$.

- We have

$$
\begin{array}{ll}
p_{11} p_{12}=0 ; & p_{21} p_{22}=-c_{2} p_{31} p_{32} ; \\
p_{11} p_{13}=0 ; & p_{21} p_{23}=-c_{2} p_{31} p_{33} ; \\
p_{12} p_{13}=0 ; & p_{22} p_{23}=-c_{2} p_{32} p_{33} .
\end{array}
$$

- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
0 & 0 & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & 0 & p_{23} \\
0 & p_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & \frac{-p_{32} p_{33}}{p_{22}} \\
0 & p_{32} & p_{33}
\end{array}\right)\right\}
$$

Evolution Algebras Classification of three-dimensional evolution algebras $c_{1}=0$ and $c_{2} \neq 0$

## We classify in three steps:

We classify in three steps:

- We focus on the first two families of matrices (they leave invariant the number of non-zero entries in the first and second columns).


## $c_{1}=0$ and $c_{2} \neq 0$

We classify in three steps:

- We focus on the first two families of matrices (they leave invariant the number of non-zero entries in the first and second columns).
- Are the resulting families of evolution algebras included into other families?


## $c_{1}=0$ and $c_{2} \neq 0$

We classify in three steps:

- We focus on the first two families of matrices (they leave invariant the number of non-zero entries in the first and second columns).
- Are the resulting families of evolution algebras included into other families?
- There are eight subtypes:


## $c_{1}=0$ and $c_{2} \neq 0$

We classify in three steps:

- We focus on the first two families of matrices (they leave invariant the number of non-zero entries in the first and second columns).
- Are the resulting families of evolution algebras included into other families?
- There are eight subtypes:

$$
\begin{aligned}
S=\{ & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & \alpha & \alpha
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
\alpha & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
\alpha & 1 & 1 \\
0 & 1 & 1 \\
0 & \beta & \beta
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
\alpha & \beta & \beta
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
1 & 1 & 1 \\
\alpha & 0 & 0 \\
\beta & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
\alpha & 1 & 1 \\
\beta & \gamma & \gamma
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
\alpha & 1 & 1 \\
\beta & \gamma & \gamma
\end{array}\right),\left(\begin{array}{lll}
\alpha & 1 & 1 \\
\beta & 1 & 1 \\
\gamma & \lambda & \lambda
\end{array}\right)\right\} .
\end{aligned}
$$

## $c_{1}=0$ and $c_{2} \neq 0$

We classify in three steps:

- We focus on the first two families of matrices (they leave invariant the number of non-zero entries in the first and second columns).
- Are the resulting families of evolution algebras included into other families?
- There are eight subtypes:

$$
\begin{aligned}
S=\{ & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & \alpha & \alpha
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
\alpha & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\alpha & 1 & 1 \\
0 & 1 & 1 \\
0 & \beta & \beta
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 1 \\
\alpha & \beta & \beta
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
1 & 1 & 1 \\
\alpha & 0 & 0 \\
\beta & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha & 1 & 1 \\
\beta & \gamma & \gamma
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 1 \\
\alpha & 1 & 1 \\
\beta & \gamma & \gamma
\end{array}\right),\left(\begin{array}{lll}
\alpha & 1 & 1 \\
\beta & 1 & 1 \\
\gamma & \lambda & \lambda
\end{array}\right)\right\} .
\end{aligned}
$$

- We see if their evolution algebras are mutually isomorphic.

$$
c_{1}=c_{2}=0
$$

$$
c_{1}=c_{2}=0
$$

\& If $c_{1}=c_{2}=0$.

$$
c_{1}=c_{2}=0
$$

\& If $c_{1}=c_{2}=0$.

- The possible change of basis matrices are:

$$
c_{1}=c_{2}=0
$$

4 If $c_{1}=c_{2}=0$.

- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\}
$$

$c_{1}=c_{2}=0$
\& If $c_{1}=c_{2}=0$.

- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\}
$$

- The number of non-zero entries in the first and second rows is preserved.
$c_{1}=c_{2}=0$
\& If $c_{1}=c_{2}=0$.
- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\}
$$

- The number of non-zero entries in the first and second rows is preserved.
- The only possibilities are:
$c_{1}=c_{2}=0$
\& If $c_{1}=c_{2}=0$.
- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\} .
$$

- The number of non-zero entries in the first and second rows is preserved.
- The only possibilities are:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & \omega_{22} & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & 0 & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{lll}
\omega_{11} & 0 & 0 \\
\omega_{21} & \omega_{22} & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & \omega_{22} & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & 0 \\
\omega_{22} & 0 \\
\omega_{32} & 0
\end{array}\right)\right\} \\
& \bigcup\left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & 0 & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & \omega_{12} & 0 \\
0 & 0 & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & 0 & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
0 & 0 & 0 \\
\omega_{31} & \omega_{32} & 0
\end{array}\right)\right\}
\end{aligned}
$$

$c_{1}=c_{2}=0$
\& If $c_{1}=c_{2}=0$.

- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\}
$$

- The number of non-zero entries in the first and second rows is preserved.
- The only possibilities are:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \omega_{12} \\
\omega_{21} & \omega_{22} \\
0 & 0 \\
0
\end{array}\right),\left(\begin{array}{cc}
\omega_{11} & \omega_{12} \\
\omega_{21} & 0 \\
\omega_{22} & 0 \\
0 & 0
\end{array}\right)\right\} \\
& \bigcup \\
& \left.\qquad\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & \omega_{12} & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
0 & 0 & 0 \\
\omega_{31} & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

$c_{1}=c_{2}=0$
\& If $c_{1}=c_{2}=0$.

- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\} .
$$

- The number of non-zero entries in the first and second rows is preserved.
- The only possibilities are:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{cc}
\omega_{11} & \omega_{12} \\
\omega_{21} & 0 \\
\omega_{22} & 0 \\
0 & 0
\end{array}\right)\right\} \\
& \bigcup\left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & \omega_{12} & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
0 & 0 & 0 \\
\omega_{31} & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

- We make as many ones as possible.
$c_{1}=c_{2}=0$
\% If $c_{1}=c_{2}=0$.
- The possible change of basis matrices are:

$$
\left\{\left(\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right),\left(\begin{array}{ccc}
0 & p_{12} & 0 \\
p_{21} & 0 & 0 \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\right\} .
$$

- The number of non-zero entries in the first and second rows is preserved.
- The only possibilities are:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
\omega_{21} & \omega_{22} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{cc}
\omega_{11} & \omega_{12} \\
\omega_{21} & 0 \\
\omega_{22} & 0 \\
0 & 0
\end{array}\right)\right\} \\
& \bigcup\left\{\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & \omega_{12} & 0 \\
0 & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
\omega_{11} & 0 & 0 \\
\omega_{21} & 0 & 0 \\
0 & \omega_{32} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \omega_{12} & 0 \\
0 & 0 & 0 \\
\omega_{31} & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

- We make as many ones as possible.
- Are the parametric families evolution algebras isomorphic?.
$\operatorname{dim}\left(A^{2}\right)=3$
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
- The only change of basis matrices are $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
- The only change of basis matrices are $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- The number of non-zero entries is invariant.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
- The only change of basis matrices are $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- The number of non-zero entries is invariant.
- The minimum number of non-zero entries is three.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
- The only change of basis matrices are $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- The number of non-zero entries is invariant.
- The minimum number of non-zero entries is three.
- We make as many ones as possible.
$\checkmark$ If $\operatorname{dim}\left(A^{2}\right)=3$.
- The only change of basis matrices are $S_{3} \rtimes\left(\mathbb{K}^{\times}\right)^{3}$.
- The number of non-zero entries is invariant.
- The minimum number of non-zero entries is three.
- We make as many ones as possible.
- We study when the parametric families of evolution algebras are isomorphic.


## Outline

(1) Introduction
(2) Basic facts about evolution algebras

- Evolution algebras
- Product and Change of basis
- Subalgebras and ideals
- Non-degenerate evolution algebras
- The graph associated to an evolution algebra
(3) Decomposition of an evolution algebra
- Ideals generated by one element
- Simple evolution algebras
- Reducible evolution algebras
- The optimal direct-sum decomposition of an evolution algebra
(4) Classification two-dimensional evolution algebras

55 Classification of three-dimensional evolution algebras
(6) Further work

## Further works

## Further works

- Another properties from the evolution algebras that can be read in terms of its underlying graph, and conversely.
- Another properties from the evolution algebras that can be read in terms of its underlying graph, and conversely.
- Will the optimal direct-sum decomposition have an impact from the biological point of view?.
- Another properties from the evolution algebras that can be read in terms of its underlying graph, and conversely.
- Will the optimal direct-sum decomposition have an impact from the biological point of view?.
- Biological application of the classification of evolution algebras
- Another properties from the evolution algebras that can be read in terms of its underlying graph, and conversely.
- Will the optimal direct-sum decomposition have an impact from the biological point of view?.
- Biological application of the classification of evolution algebras
- Classification of the alternative evolution algebras.
- Another properties from the evolution algebras that can be read in terms of its underlying graph, and conversely.
- Will the optimal direct-sum decomposition have an impact from the biological point of view?.
- Biological application of the classification of evolution algebras
- Classification of the alternative evolution algebras.
- The different methods use to obtain the classification can be generalized to arbitrary finite-dimensional evolution algebras.
"The lack of real contact between mathematics and biology is either a tragedy, a scandal or a challenge, it is hard to decide which."


## Gian Carlo Rota

Thanks!

