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Evolution Algebras Introduction

Gene: Molecular unit of
hereditary information.

Chromosomes: Long strands of DNA formed by ordered se-
quences of genes. In the process of reproduction, the attri-
butes of the offspring are inherited from alleles contained in
the chromosomes of the parents.

Allele: Distinct forms of genes to an
attribute. For example, the gene for
eye color has three alleles: brown,
green and blue.
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Evolution Algebras Introduction

Diploid organisms carry a double set of chromo-
somes (one of each parent). Otherwise it is called
haploid.

They reproduce by means of
sex cells (gametes), each of
them carrying a single set of
chromosomes.

The fusion of two gametes
of opposite sex gives rise to
a zygote, which contains a
double set of chromosomes.
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Evolution Algebras Introduction

Gametic Algebra

The gametic algebra for simple Mendelian inheritance with
two alleles {B,b}

B b

B B 1
2 (B+b)

b 1
2 (B+b) b

Consider the set of gametes B = {a1, . . . , an} as abstract elements.
Define the n dimensional algebra over R with basis B and multipli-
cation

ai aj =
n∑

k=1
γijkak such that

n∑
k=1

γijk = 1.
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Evolution Algebras Introduction

Particular case: evolution algebra

In the asexual inheritance,
• ai aj does not make sense biologically (ai aj = 0) i 6= j .

• ai ai = a2
i =

n∑
k=1

γki ak . Interpreted as self-replication.

It is called evolution algebra.
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Evolution Algebras Basic facts about evolution algebras

What we mean by evolution algebra

Definitions

An evolution algebra over a field K is a K-algebra A provided
with a basis B = {ei | i ∈ Λ} such that ei ej = 0 whenever i 6= j .

• B is called a natural basis.
• The scalars ωki ∈ K such that e2

i := ei ei =
∑

k∈Λ
ωki ek will be

called the structure constants of A relative to B.
• The matrix MB := (ωki ) is said to be the structure matrix of

A relative to B.

Remark

• |{k ∈ Λ| ωki 6= 0}| <∞ for every i ∈ Λ ⇒ MB ∈ CFMΛ(K).
• CFMΛ(K) = (MΛ(K),+, ·) such that for which every column

has at most a finite number of non-zero entries.
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Evolution Algebras Basic facts about evolution algebras

Mendelian genetics versus non-Mendelian genetics

Remark

Let the zygotic algebra be for simple Mendelian inheritance for one
gene with two alleles, F and f . The zygotes have three possible
genotypes: FF , Ff and ff . We consider vector space generate by
the basis B = {FF ,Ff ,ff } and according to Mendel laws the
multiplication table is as follows:

FF Ff ff

FF FF 1
2(FF + Ff ) Ff

Ff 1
2(FF + Ff ) 1

4 (FF + ff ) + 1
2 Ff 1

2(ff + Ff )

ff Ff 1
2(ff + Ff ) ff

Then this algebra is not an evolution algebra.
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Evolution Algebras Basic facts about evolution algebras

Properties

Remark

• Evolution algebras are commutative and hence flexible.
• The direct sum of evolution algebras is an evolution algebra.
• The quotient algebra A/I with I ideal of A is an evolution

algebra.
• Evolution algebras are not power associative in general and

therefore it are not, in general, Jordan, alternative or
associative algebras.
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Evolution Algebras Basic facts about evolution algebras

A new product

Remark

Let A be any finite dimensional evolution algebra with a natural
basis B. Suppose x =

∑
i∈Λ αi ei and y =

∑
i∈Λ βi ei arbitrary

elements of A. Then, we have

ξB(xy) = MB

α1β1
...

αnβn

 .

Definition

Let A an evolution algebra and B = {ei | i ∈ Λ} a natural basis of
A. For arbitrary elements x =

∑
i∈Λx

αi ei and y =
∑

i∈Λy

βi ei in A for

certain Λx ,Λy ⊆ Λ, we define

x •B y :=
∑

i∈Λx∩Λy

αiβi ei .

Remark

ξB(xy) = MB (ξB(x) •B ξB(y)) ,
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Evolution Algebras Basic facts about evolution algebras

Change of basis

Theorem

Let A be an evolution algebra and let B = {ei | i ∈ Λ} be a natural
basis of A with structure matrix MB = (ωij).

1 If B′ = {fi | i ∈ Λ} is a natural basis of A with PB′B = (pij)
the change of basis matrices, then

MB(ξB(fi ) •B ξB(fj)) = 0
for every i 6= j with i , j ∈ Λ. Moreover

MB′ = P−1
B′BMBP(2)

B′B,

where P(2)
B′B = (p2

ij).
2 Assume that P = (pij) ∈ CFMΛ(K) is invertible and satisfies

the first above relation. Define B′ = {fi | i ∈ Λ}, where
fi =

∑
j∈Λ

pji ej for every i ∈ Λ. Then B′ is a natural basis and

the second above relation is satisfied.
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Evolution Algebras Basic facts about evolution algebras

Evolution subalgebras. Evolution ideals

Definitions

• An subalgebra A′ of an evolution algebra A with natural basis
B = {ei |i ∈ Λ} is an evolution subalgebra if there exits a
natural basis.

• An ideal I of A is called evolution ideal if it is an evolution
subalgebra.

Remark

1 A subalgebra of an evolution algebra does not need to be an
evolution algebra.

2 An evolution subalgebra does not need to be an ideal.
3 Not every ideal of an evolution algebra has a natural basis.
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Evolution Algebras Basic facts about evolution algebras

Something less restrictive and more algebraically natural

Definition
We say that an subalgebra A′ has the

extension property if there
exists a natural basis B′ of A′ which can be extended to a natural
basis of A.

Remark

Not every evolution subalgebra has the extension property.
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Examples of evolution subalgebras. Homomorphism

Corollary

Let f : A→ A′ be a homomorphism between the evolution
algebras A and A′. Then Im(f ) is an evolution subalgebra of A′.

Remark

In general, Ker(f ) is not an evolution algebra. ⇒ [Evolution
Algebras and their Applications, Theorem 2, p.25] is not valid in
general.
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Non-degenerate evolution algebra

Definition

An evolution algebra A is non-degenerate if it has a natural basis
B = {ei | i ∈ Λ} such that e2

i 6= 0 for every i ∈ Λ.

Remark

Does non-degeneracy depend on the considered natural basis?
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Evolution Algebras Basic facts about evolution algebras

Annihilator. Properties

Definition

Let A be an commutative algebra, we define its annihilator as

ann(A) := {x ∈ A | xA = 0}.

Proposition

Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis.
Denote by Λ0(B) := {i ∈ Λ | e2

i = 0}. Then
1 ann(A) = lin{ei ∈ B | i ∈ Λ0(B)}.
2 ann(A) = 0 if and only if Λ0 = ∅.
3 ann(A) is an evolution ideal of A.
4 |Λ0(B)| = |Λ0(B′)| for every natural basis B′ of A.

Consequently, the definition of non-degenerate evolution algebra
does not depend on the considered natural basis.
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Let I be an ideal of an evolution algebra A. I has the absorption
property if xA ⊆ I implies x ∈ I.

Lemma

• An ideal I of an evolution algebra A has the absorption
property if and only if ann(A/I) = 0.

• If I is a non-zero ideal which it has the absorption property,
then I is an evolution ideal and has the extension property.
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Absorption radical

Remark

The intersection of any family of ideals with the absorption
property is an ideal with the absorption property.

Definition

We define the absorption radical and we denote it by rad(A) as
the intersection of all the ideals of A having the absorption
property. The radical is the smallest ideal of A with the absorption
property.
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Absorption radical. Properties

Proposition

Let A be an evolution algebra. Then rad(A) = 0 if and only if
ann(A) = 0.

Corollary

Let I be an ideal of an evolution algebra A. Then A/rad(A) is a
non-degenerate evolution algebra.
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Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

• Condition Sing.

• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

• Condition Sing.

• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

• Condition Sing.
• Sink ⇒ v2.

• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

• Condition Sing.
• Sink ⇒ v2.

• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.

• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.

• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.

• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

v1 v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.

• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.

• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1

v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.

• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.

• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4

v1

v2

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3

v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3

v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4

v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4

v4v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3

v1 v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3

v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4

v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4

v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.

• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4

v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4v3 v4

v1

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4v3 v4

v1 v3

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4v3 v4

v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Basic concepts about graphs
Consider the following graph E :

v1 v3

v2

v4

f1

f3

f4

f2

v2

v1v1 v3 v4v1

v2

v1 v3v3 v4v4v3v1 v3 v4v3 v4

v1 v3 v4

• Condition Sing.
• Sink ⇒ v2.
• Source ⇒ v1.
• Path ⇒ µ = f2f3f4.
• Path (E ) = {f1, f2, f3, f4, f2f3, f3f4, f2f3f4}.
• Cycle ⇒ f3f4.

• Adjacency matrix
v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark

Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark

Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark
Let A be the evolution algebra with natural basis
B = {e1, e2, e3, e4} and product given by:

e2
1 =−e2+e3 e2

2 = 0 e2
3=−2e4 e2

4=5e3

MB =


e1 0 0 0 0

e2 − 1 0 0 0
e3 1 0 0 5
e4 0 0 − 2 0

e2
1 e2

2 e2
3 e2

4

P =

v1 v2 v3 v4
v1 0 1 1 0

v2 0 0 0 0
v3 0 0 0 1
v4 0 0 1 0

v1 v3

v2

v4

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Basic facts about evolution algebras

Graph associated

Remark

• The graph associated to an evolution algebra depends on the
selected basis.

• Isomorphic evolution algebras ; isomorphic graphs.

Let A be the evolution algebra with natural basis B = {e1, e2} and
product given by e2

1 = e1 + e2 and e2
2 = 0. Consider the natural

basis B′ = {e1 + e2, e2}. Then the graphs associated to the bases
B and B′ are, respectively:

E:

v1 v2

F:

v1 v2
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Evolution Algebras Decomposition of an evolution algebra

Outline
1 Introduction
2 Basic facts about evolution algebras

Evolution algebras
Product and Change of basis
Subalgebras and ideals
Non-degenerate evolution algebras
The graph associated to an evolution algebra

3 Decomposition of an evolution algebra
Ideals generated by one element
Simple evolution algebras
Reducible evolution algebras
The optimal direct-sum decomposition of an evolution

algebra
4 Classification two-dimensional evolution algebras
5 Classification of three-dimensional evolution algebras
6 Further work
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Evolution Algebras Decomposition of an evolution algebra

Let A evolution algebra with structure matrix


0 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 0 1
0 1 0 0 0


v5

v1 v2 v3 v4

• 1 is a chain-start index because 1 has no ascendents.
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v5

v1 v2 v3 v4v1 v2

• D1(1) =
{

k ∈ Λ | e2
1 =

∑
k ωk1ek with ωk1 6= 0

}
= {2}.

• 1 is a chain-start index because 1 has no ascendents.
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Let A evolution algebra with structure matrix
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v5

v1 v2 v3 v4v1 v2

v5

• D2(1) =
⋃

k∈D1(1)
D1(k) = {5}.

• 1 is a chain-start index because 1 has no ascendents.
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Let A evolution algebra with structure matrix
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1 0 0 1 0
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0 0 0 0 1
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v5

v1 v2 v3 v4v1 v2

v5

v3

• D3(1) = {3}.

• 1 is a chain-start index because 1 has no ascendents.
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v5
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• D4(1) = {2}.

• 1 is a chain-start index because 1 has no ascendents.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017
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Let A evolution algebra with structure matrix
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• D(1) =
⋃

m∈N
Dm(1) = {2, 5, 3}.

• 1 is a chain-start index because 1 has no ascendents.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Decomposition of an evolution algebra

Let A evolution algebra with structure matrix


0 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 0 1
0 1 0 0 0


v5

v1 v2 v3 v4

v1 v2

v5

v3v2

• 1 is a chain-start index because 1 has no ascendents.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Decomposition of an evolution algebra

Let A evolution algebra with structure matrix


0 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 0 1
0 1 0 0 0


v5

v1 v2 v3 v4

v1 v2

v5

v3v2

v5

v3v2

• C(2) = {j ∈ Λ | j ∈ D(2) and 2 ∈ D(j)} = {2, 5, 3}.

• 1 is a chain-start index because 1 has no ascendents.
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• A cyclic index i0 is a principal cyclic index if j ∈ D(i0) for
every j ∈ Λ with i0 ∈ D(j).

• 1 is a chain-start index because 1 has no ascendents.
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• 4 is a principal cyclic index.

• 1 is a chain-start index because 1 has no ascendents.
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Evolution Algebras Decomposition of an evolution algebra

Ideal generated by one element

Corollary

Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis.
Then, for every k ∈ Λ,〈

e2
k
〉

= lin{e2
j | j ∈ D(k) ∪ {k}}.

Corollary

Let A be an evolution algebra. For any element x ∈ A,

dim 〈x〉 is at most countable.
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Evolution Algebras Decomposition of an evolution algebra

Simple evolution algebras

Definition

An algebra A is simple if A2 6= 0 and 0 is the only proper ideal.

Proposition

Let A be an evolution algebra and let B = {ei | i ∈ Λ} be a natural
basis of A. If A is simple, therefore:

1 A is non-degenerate.
2 A = lin{e2

i | i ∈ Λ}.
3 If lin{e2

i | i ∈ Λ′} is a non-zero ideal of A for a non-empty
Λ′ ⊆ Λ then |Λ′| = |Λ|.

Moreover, the dimension of A is at most countable and if |Λ| <∞
then the converse is true.
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Evolution Algebras Decomposition of an evolution algebra

Simple evolution algebras

Example

The converse is not true in general. Let A be an evolution algebra
with natural basis {ei | i ∈ N} and product given by:

e2
1 = e3 + e5

e2
3 = e1 + e3 + e5

e2
5 = e5 + e7

e2
7 = e3 + e5 + e7

...

e2
2 = e4 + e6

e2
4 = e2 + e4 + e6

e2
6 = e6 + e8

e2
8 = e4 + e6 + e8

...

Then A satisfies the conditions 1, 2 and 3 but A is not simple as〈
e2

1
〉

and
〈
e2

2
〉

are two non-zero proper ideals.
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Evolution Algebras Decomposition of an evolution algebra

Characterization for finite dimension

Corollary

If A is a finite dimensional evolution algebra and B a natural basis,
then A is simple if and only if |MB(A)| 6= 0 and Λ = D(i) for
every i ∈ Λ.

Corollary

Let A an evolution algebra with dim(A)=n and B = {ei | i ∈ Λ} a
natural basis of A. Then A is simple if and only if |MB(A)| 6= 0 and
B cannot be reordered in such a way that:(

Wm×m Um×(n−m)
0(n−m)×m Y(n−m)×(n−m)

)

for some m ∈ N with m < n and matrices Wm×m, Um×(n−m) and
Y(n−m)×(n−m).
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Evolution Algebras Decomposition of an evolution algebra

Characterizations

Remark

A non-degenerate finite dimensional evolution algebra A with
natural basis B = {ei | i = 1, . . . , n} is reducible if and only if
there exists B′ = {eσ(i) | i = 1, . . . , n} with σ ∈ Sn such that

MB′ =
(

Wm×m 0(n−m)×(n−m)
0(n−m)×m Y(n−m)×(n−m)

)

Corollary

Let A be a non-degenerate evolution algebra, B = {ei | i ∈ Λ} a
natural basis and let E be its associated graph. Then A es
irreducible if and only if E is a connected graph.
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Evolution Algebras Decomposition of an evolution algebra

Optimal direct-sum decomposition

Definition

Let A be a non-zero evolution algebra and assume that A = ⊕γ∈ΓIγ
is a direct sum of irreducible non-zero ideals, then we say that
A = ⊕γ∈ΓIγ is an optimal direct-sum decomposition of A.

Theorem

Let A be a non-degenerate evolution algebra. Then A admits an
optimal direct-sum decomposition. Moreover, it is unique.
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Evolution Algebras Decomposition of an evolution algebra

The fragmentation process

Definition

Let Λ be a finite set and let Υ1, . . . ,Υn be non-empty subsets of Λ
such that Λ = ∪n

i=1Υi . We say that Λ = ∪n
i=1Υi is a

fragmentable union if there exists disjoint non-empty subsets
Λ1,Λ2 of Λ satisfying

Λ = ∪n
i=1Υi = Λ1 ∪ Λ2,

and such that for every i = 1, . . . , n, either Υi ⊆ Λ1 orΥi ⊆ Λ2.

Definition

A fragmentation of a fragmentable union Λ = ∪n
i=1Υi is a union

Λ = ∪k
i=1Λi such that:

1 If i ∈ {1, . . . , k} then Λi = ∪j∈Si Υj for Si a non-empty subset
of {1, . . . , n}.

2 Λi ∩ Λj = ∅, for every i , j ∈ {1, . . . , k}, with i 6= j .
If for every i ∈ {1, . . . , k} the index set Λi = ∪j∈Si Υj is not
fragmentable then we say that Λ = ∪k

i=1Λi is an optimal
fragmentation.
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Evolution Algebras Decomposition of an evolution algebra

The optimal direct-sum decomposition of A

Theorem (The fragmentation process)

Let A be a finite-dimensional evolution algebra with natural basis
B = {ei | i ∈ Λ}. Let {C1, . . . ,Ck} be the set of principal cycles
of Λ, {i1, . . . , im} the set of all chain-start indices of Λ and
consider the decomposition

(†) Λ = Λ(C1) ∪ · · · ∪ Λ(Ck) ∪ Λ(i1) ∪ · · · ∪ Λ(im).

where Λ(S) := S ∪i∈S D(i).
Let Λ = tγ∈ΓΛγ be the optimal fragmentation of (†) and
decompose B = tγ∈ΓBγ , where Bγ = {ei | i ∈ Λγ}. Then
A = ⊕γ∈ΓIγ , for Iγ = lin Bγ , which is an evolution ideal of A.
Moreover, if A is non-degenerate, then A = ⊕γ∈ΓIγ is the optimal
direct-sum decomposition of A.
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Evolution Algebras Decomposition of an evolution algebra

Optimal Fragmentation
PROGRAM 1
Program A

In[1]:=
P =

0 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 1

;

D1[i_, P_] := Select[Table[j, {j, Length[P]}], P[[#, i]] ≠ 0 &];
D1[5, P]
Dm_[i_, P_] := Module[{a, k, s}, a = {}; s = Length[Dm-−1[i, P]];

If[m == 1, D1[i, P],
Union[Flatten[

Table[D1[Dm-−1[i, P][[t]], P], {t, Length[Dm-−1[i, P]]}]]]]];

CycleQ[P_] := Module[{n, x}, n = Length[P];
x = Union[Flatten[Table[

Diagonal[MatrixPower[P, i]], {i, 1, n}]]];
MemberQ[x, 1]];

CycleQ[P]

DYesCycle[i_, P_] := Module[{b, j},
b = {};
For[j = 1, j ≤ Length[P], j++, AppendTo[b, Dj[i, P]]];
Apply[Union, b]];

DNotCycle[i_, P_] := Module[{t, b},
b = {D1[i, P]};
For[t = 1, Dt[i, P] ≠ Dt+1[i, P], t++,
AppendTo[b, Dt+1[i, P]]

];
Apply[Union, b]];

DP[i_, P_] := If[CycleQ[P], DYesCycle[i, P], DNotCycle[i, P]]

Out[3]=
{1, 5}

Out[6]= True

In[10]:=
DP[5, P]

Out[10]=
{1, 2, 5, 7, 8}
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Program B

In[11]:=
CyclicQ[i_, P_] := If[MemberQ[DP[i], i],

Print[i "is a cyclic index"], Print[i " is not a cyclic index"]];
CycleAssociated[i_, P_] := Select[Table[j, {j, Length[P]}],

MemberQ[DP[i, P], #] && MemberQ [DP[#, P], i] &];
Ascendents[i_, P_] := Module[{j, b}, b = {};

For[j = 1, j ≤ Length[P], j++, If[MemberQ[DP[j, P], i], AppendTo[b, j]]]; b];
Subset[A_, B_] := Union[A, B] ⩵ Union[B];
PrincipalCycleQ[i_, P_] :=

If[Subset[Ascendents[i, P], CycleAssociated[i, P]],
Print[i "is a principal cyclic-−index"],
Print[i "is not a principal cyclic-−index"]];

ElementsNotNoneRow[P_] := Module[{j},
Select[Table[j, {j, Length[P]}], P[[#]] ⩵ 0 P[[1]] &]];

(*⋆ La función incad me devuelve los índices i tales que la fila i es nula*⋆)
ChainStartQ[i_, P_] :=

If[MemberQ[ElementsNotNoneRow[P], i], Print[i "is a chain-−start index"],
Print[i " is not a chain-−start index"]];

CycleAssociated[5, P]
Ascendents[5, P]

Out[18]=
{5}

Out[19]=
{5}

Program C

In[20]:=
LambdaPrincipalCycle[P_] := Module[{j, b},

b = {};
For[j = 1, j ≤ Length[P], j++,
If[
Subset[Ascendents[j, P], CycleAssociated[j, P]], AppendTo[b, DP[j, P]]]]

; b];
Λ[i_, P_] := Union[{i}, DP[i, P]];
LambdaChainStart[P_] :=
Table[Λ[ElementsNotNoneRow[P][[i]], P], {i, Length[ElementsNotNoneRow[P]]}]

CanonicalDecomposition[P_] :=
Join[LambdaChainStart[P], LambdaPrincipalCycle[P]];

CanonicalDecomposition[P]

Out[24]=
{{2, 3, 4, 6}, {1, 2, 5, 7, 8}, {2, 3, 4}}

PROGRAM 2

2 programa  dimension 8.nb
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In[25]:=
f[i_, j_, P_] := If[i ⩵ j, 0, If[Intersection[Part[CanonicalDecomposition[P], i],

Part[CanonicalDecomposition[P], j]] ≠ {}, 1, 0]];
Matr[P_] := Table[f[i, j, P], {i, Length[CanonicalDecomposition[P]]},

{j, Length[CanonicalDecomposition[P]]}];
AdjacencyGraph[Matr[P], VertexLabels → "Name"]
OptimalFragmentation[P_] :=
ConnectedComponents[AdjacencyGraph[Matr[P], VertexLabels → "Name"]]

OptimalFragmentation[P]

Out[27]=

Out[29]=
( 1 2 3 )

programa  dimension 8.nb 3
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Evolution Algebras Classification two-dimensional evolution algebras

Classification of 2-dimensional complex evolution algebras

Theorem (Casas J.M., Ladra M., Omirov B.A., and Rozikov U.A.,
2014)

Any 2-dimensional complex evolution algebra E is isomorphic to
one of the following pairwise non isomorphic algebras:

1 dim E 2=1
• E1: e1e1 = e1,
• E2: e1e1 = e1, e2e2 = e1,
• E3: e1e1 = e1 + e2, e2e2 = −e1 − e2,
• E4: e1e1 = e2.

2 dim E 2=2
• E5: e1e1 = e1 + a2e2, e2e2 = a3e1 + e2, 1− a2a3 6= 0, where

E5(a2, a3) ∼= E ′
5(a3, a2),

• E6: e1e1 = e2, e2e2 = e1 + a4e2, a4 6= 0, where E6(a4) ∼= E6(a′
4)

⇔ a′4
a4

= cos 2πk
3 + ı sin 2πk

3 for some k = 0, 1, 2.
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Evolution Algebras Classification two-dimensional evolution algebras

Classification of 2-dimensional evolution algebras

Theorem

Let A be a two-dimensional evolution algebra over a field K where
for every k ∈ K the polynomial xn − k has a root whenever
n = 2, 3.

If dim(A2) = 0 then MB = 0 for any natural basis B of A.

If dim(A2) = 1 then MB is one of the following four matrices:

1 MB =
(

1 0
0 0

)
,

2 MB =
(

1 −1
1 −1

)
,

3 MB =
(

1 1
0 0

)
,

4 MB =
(

0 1
0 0

)
.

They are mutually non-isomorphic.
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Evolution Algebras Classification two-dimensional evolution algebras

Classification of 2-dimensional evolution algebras

Theorem

If dim(A2) = 2 then MB is one of the following three types of
matrices:

5 MB(α, β) =
(

1 α
β 1

)
for some α, β ∈ K× and 1− αβ 6= 0.

6 MB(α) =
(

1 α
0 1

)
for some α ∈ K×.

7 MB =
(

1 0
0 1

)

8 MB =
(

0 1
1 0

)
,

9 MB(γ) =
(

0 1
1 γ

)
for some γ ∈ K×.

They are mutually non-isomorphic except in the case
{MB(γ) | γ ∈ K} when γ

γ′
is a 3rd root of unity.
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Evolution Algebras Classification two-dimensional evolution algebras

dim(A2) = 1

Fix a two-dimensional evolution algebra A and a natural basis
B = {e1, e2}. Let

MB =
(
ω1 ω3
ω2 ω4

)

• Suppose that {e2
1} is a basis of A2. Since e2

2 ∈ A2, there exists
c1 ∈ K such that e2

2 = c1e2
1 = c1(ω1e1 + ω2e2).

• Extend the basis {e2
1} of A2 to a new basis B′ = {e′1, e′2} of A

(B′ is not necessarily a natural basis) with change of basis
matrix PB′B

PB′B =
(
ω1 p1
ω2 p2

)
.
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Evolution Algebras Classification two-dimensional evolution algebras

dim(A2) = 1

• When is B′ a natural basis?

• (e2
1 )2 = ω2

1e2
1 + ω2

2e2
2 = ω2

1e2
1 + ω2

2(c2e2
1 ) = (ω2

1 + ω2
2c2)e2

1 .

• e′2
2 = p2

1e2
1 + p2

2e2
2 = (p2

1 + p2
2c2)e2

1 .

• e2
1 e′

2 = (ω1e1 + ω2e2)(p1e1 + p2e2) = (ω1p1 + ω2p2c2)e2
1 = 0.

• Distinguish different cases depending on ω1p1 + ω2p2c2 is zero
or not.
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Evolution Algebras Classification two-dimensional evolution algebras

Summarizing

Type

A2 has EP dim(ann(A)) A has a ideal Î

(
1 0
0 0

)

Yes 1 I =< e1 >

(
1 −1
1 −1

)

No 0 No

(
1 1
0 0

)

Yes 0 I =< e1 >

(
0 1
0 0

)

Yes 1 No

EP = Extension property
Î is a non-degenerate principal ideal.
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Î is a non-degenerate principal ideal.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Classification two-dimensional evolution algebras

Summarizing

Type A2 has EP dim(ann(A))

A has a ideal Î
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Evolution Algebras Classification two-dimensional evolution algebras

dim(A2) = 2

• The number of non-zero entries in the structure matrix (main
diagonal) is an invariant. Then, we have the following
possibilities:

(
1 0
0 1

)
,
(

1 α
0 1

)
,
(

1 α
β 1

)
,
(

0 1
1 0

)
and

(
0 1
1 γ

)

• We study if the parametric families of evolution algebras are
isomorphic when we change of parameters.
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Evolution Algebras Classification of three-dimensional evolution algebras
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Action of S3 o (K×)3 on M3(K)

1 G =

{(
α 0 0
0 β 0
0 0 γ

)
| α, β, γ ∈ K×

}
=
{

(α, β, γ) | α, β, γ ∈ K×
}
.

2 S3 =

{
id3,

(
0 1 0
1 0 0
0 0 1

)
,

(
0 0 1
0 1 0
1 0 0

)
,

(
1 0 0
0 0 1
0 1 0

)
,

(
0 1 0
0 0 1
1 0 0

)
,

(
0 0 1
1 0 0
0 1 0

)}
3 H = {σ(α, β, γ) | σ ∈ S3, (α, β, γ) ∈ (K×)3} ={

(α, β, γ),

(
0 α 0
β 0 0
0 0 γ

)
,

(
0 0 α
0 β 0
γ 0 0

)
,

(
α 0 0
0 0 β
0 γ 0

)
,

(
0 α 0
0 0 β
γ 0 0

)
,

(
0 0 α
β 0 0
0 γ 0

)}

4 σ(α1, α2, α3)τ(β1, β2, β3) = στ(ατ(1)β1, ατ(2)β2, ατ(3)β3).

5 Semidirect product of S3 and (K×)3 is denoted by S3 o (K×)3.

6 The action of P on M can be formulated as follows:

P ·M := P−1MP(2).
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Evolution Algebras Classification of three-dimensional evolution algebras

Proposition

For any P ∈ S3 o (K×)3 and any M ∈ M3(K) we have:
1 The number of zero entries in M coincides with the number of

zero entries in P ·M.
2 The number of zero entries in the main diagonal of M

coincides with the number of zero entries in the main diagonal
of P ·M.

3 The rank of M and the rank of P ·M coincide.
4 Let MB be the structure matrix of an evolution algebra A such

that A2 = A. If N is the structure matrix of A relative to a
natural basis B′ then there exists Q ∈ S3 o (K×)3 such that
N = Q ·MB.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017
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Evolution Algebras Classification of three-dimensional evolution algebras

Three-dimensional evolution algebras

Let A be a three-dimensional evolution K-algebra where K is a
field of characteristic different from 2 and such that for any k ∈ K
the polynomial of the form xn − k has a root whenever n = 2, 3, 7.

X If dim(A2) = 0 then MB = 0 for any natural basis B of A.

X If dim(A2) = 1. Let MB = (ωij) be the structure matrix.

• We may assume e2
1 6= 0.

e2
1 = ω1e1 + ω2e2 + ω3e3

e2
2 = c1e2

1 = c1(ω1e1 + ω2e2 + ω3e3)
e2

3 = c2e2
1 = c2(ω1e1 + ω2e2 + ω3e3).
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Evolution Algebras Classification of three-dimensional evolution algebras

• We analyze when A2 has the extension property, i.e., if there
exists a natural basis B′ = {e2

1 , e′2, e′3} of A with

PB′B =

ω1 α δ
ω2 β ν
ω3 γ η


• The conditions are as follows:

αω1 + βω2c1 + γω3c2 = 0
δω1 + νω2c1 + ηω3c2 = 0

αδ + βνc1 + γηc2 = 0
|PB′B| 6= 0

• A2 has the extension property if and only if

ω2
1 + ω2

2c1 + ω2
3c2 6= 0

.
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Evolution Algebras Classification of three-dimensional evolution algebras

• We analyze when A2 has the extension property, i.e., if there
exists a natural basis B′ = {e2

1 , e′2, e′3} of A with

PB′B =

ω1 α δ
ω2 β ν
ω3 γ η



• The conditions are as follows:

αω1 + βω2c1 + γω3c2 = 0
δω1 + νω2c1 + ηω3c2 = 0

αδ + βνc1 + γηc2 = 0
|PB′B| 6= 0

• A2 has the extension property if and only if

ω2
1 + ω2

2c1 + ω2
3c2 6= 0

.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Classification of three-dimensional evolution algebras

• We analyze when A2 has the extension property, i.e., if there
exists a natural basis B′ = {e2

1 , e′2, e′3} of A with

PB′B =

ω1 α δ
ω2 β ν
ω3 γ η


• The conditions are as follows:

αω1 + βω2c1 + γω3c2 = 0
δω1 + νω2c1 + ηω3c2 = 0

αδ + βνc1 + γηc2 = 0
|PB′B| 6= 0

• A2 has the extension property if and only if

ω2
1 + ω2

2c1 + ω2
3c2 6= 0

.

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



Evolution Algebras Classification of three-dimensional evolution algebras

• We analyze when A2 has the extension property, i.e., if there
exists a natural basis B′ = {e2

1 , e′2, e′3} of A with

PB′B =

ω1 α δ
ω2 β ν
ω3 γ η


• The conditions are as follows:

αω1 + βω2c1 + γω3c2 = 0
δω1 + νω2c1 + ηω3c2 = 0

αδ + βνc1 + γηc2 = 0
|PB′B| 6= 0

• A2 has the extension property if and only if

ω2
1 + ω2

2c1 + ω2
3c2 6= 0

.
Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017



dim(A2) = 1

Type

A2 has the extension dimension of A has a principal degenerate
property ann(A) two-dimensional evolution ideal

(
1 −1 1
1 −1 1
0 0 0

)

No 0 I =< e3 >

(
1 −1 0
1 −1 0
0 0 0

)

No 1 I =< e1 + e2 + e3 >

(
1 1 1
0 0 0
0 0 0

)

Yes 0 No

(
1 0 1
0 0 0
0 0 0

)

Yes 1 No

(
1 0 0
0 0 0
0 0 0

)

Yes 2 No

(
0 1 1
0 0 0
0 0 0

)

Yes 1 I =< e3 >

(
0 0 1
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Evolution Algebras Classification of three-dimensional evolution algebras

dim(A2) = 2

• We resolve the homogeneous systems and we obtain that:

p11p12 = −c1p31p32; p21p22 = −c2p31p32;

p11p13 = −c1p31p33; p21p23 = −c2p31p33;

p12p13 = −c1p32p33; p22p23 = −c2p32p33.

• We distinguish several cases depending on c1 and c2.
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Evolution Algebras Classification of three-dimensional evolution algebras

dim(A2) = 2

♣ If c1c2 6= 0.
• We prove that PB′B ∈ S3 o (K×)3.
• We study depending on the number of non-zero entries in MB.
• The minimum number of non-zero entries is four.
• PB′B = σ(α, β, γ) with σ ∈ S3 and (α, β, γ) ∈ G .
• Using (α, β, γ) we try to place as many ones as possible.
• We list the results in Tables where we apply the action of σ

on the structure matrix.
• We study what happen when we change the parameters. Are

the corresponding evolution algebras isomorphic?
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Evolution Algebras Classification of three-dimensional evolution algebras

Four non-zero entries

• There are 3(15-6-3)=18 cases.

(1,2) (1,3) (2,3) (1,2,3) (1,3,2)

0 0 0
0 1 1
1 0 c1


1 0 1

0 0 0
0 1 c1


c1 0 1

1 1 0
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0 0 0
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0 1 1
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Evolution Algebras Classification of three-dimensional evolution algebras

c1 = 0 and c2 6= 0

♣ c1 = 0 and c2 6= 0.
• We have

p11p12 = 0; p21p22 = −c2p31p32;

p11p13 = 0; p21p23 = −c2p31p33;

p12p13 = 0; p22p23 = −c2p32p33.

• The possible change of basis matrices are:


p11 0 0

0 p22 0

0 0 p33

 ,
p11 0 0

0 0 p23

0 p32 0

 ,


p11 0 0

0 p22
−p32p33

p22

0 p32 p33


.
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Evolution Algebras Classification of three-dimensional evolution algebras

c1 = 0 and c2 6= 0

We classify in three steps:
• We focus on the first two families of matrices (they leave

invariant the number of non-zero entries in the first and
second columns).

• Are the resulting families of evolution algebras included into
other families?

• There are eight subtypes:

S =

{(1 0 0
0 1 1
0 α α

)
,

(0 1 1
1 0 0
α 0 0

)
,

(
α 1 1
0 1 1
0 β β

)
,

(0 0 0
1 1 1
α β β

)
,

(1 1 1
α 0 0
β 0 0

)
,

(1 0 0
α 1 1
β γ γ

)
,

(0 1 1
α 1 1
β γ γ

)
,

(
α 1 1
β 1 1
γ λ λ

)}
.

• We see if their evolution algebras are mutually isomorphic.
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Evolution Algebras Classification of three-dimensional evolution algebras

c1 = c2 = 0

♣ If c1 = c2 = 0.
• The possible change of basis matrices are:

{(
p11 0 0
0 p22 0

p31 p32 p33

)
,

(
0 p12 0

p21 0 0
p31 p32 p33

)}
.

• The number of non-zero entries in the first and second rows is
preserved.

• The only possibilities are:

• We make as many ones as possible.
• Are the parametric families evolution algebras isomorphic?.
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Evolution Algebras Classification of three-dimensional evolution algebras

dim(A2) = 3

X If dim(A2) = 3.
• The only change of basis matrices are S3 o (K×)3.
• The number of non-zero entries is invariant.
• The minimum number of non-zero entries is three.
• We make as many ones as possible.
• We study when the parametric families of evolution algebras

are isomorphic.
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Evolution Algebras Further work

Outline
1 Introduction
2 Basic facts about evolution algebras

Evolution algebras
Product and Change of basis
Subalgebras and ideals
Non-degenerate evolution algebras
The graph associated to an evolution algebra

3 Decomposition of an evolution algebra
Ideals generated by one element
Simple evolution algebras
Reducible evolution algebras
The optimal direct-sum decomposition of an evolution

algebra
4 Classification two-dimensional evolution algebras
5 Classification of three-dimensional evolution algebras
6 Further work
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Evolution Algebras Further work

Further works

• Another properties from the evolution algebras that can be
read in terms of its underlying graph, and conversely.

• Will the optimal direct-sum decomposition have an impact
from the biological point of view?.

• Biological application of the classification of evolution algebras
• Classification of the alternative evolution algebras.
• The different methods use to obtain the classification can be

generalized to arbitrary finite-dimensional evolution algebras.
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Evolution Algebras Further work

“The lack of real contact between mathematics and biology
is either a tragedy, a scandal or a challenge, it is hard to

decide which.”

Gian Carlo Rota

Thanks!

Yolanda Cabrera Casado (Universidad de Málaga) 16 December 2017
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