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1.Intro
Problem description

Study of existing implementations



Problem description 
Definitions

 Clustering: task of assigning a set of objects into 

groups.

 k-means clustering:

 method of clustering

 partition n data points into k clusters (n >> k)

 each point belongs to the cluster with the nearest mean.

 The nearness: usually Euclidean or Manhattan 

distance.

 Assumption: data points are independent of each 

other.



Problem description 
The algorithm

Input: set of N points with D dimensions

K (number of clusters)

Output: partition of N points in K clusters

1. Place centroids c1, c2, …, cK at random locations

2. Iterate until convergence condition is met

3. For each point xi, i=1..N:

4. For each cluster cj, j=1..K:

5. Get distance to cj, given all D dimensions

6. Assign membership of xi to nearest cluster j

7. For each cluster cj, j=1..K:

8. cj = mean of all points whose membership is j

O(#iterations x N x D x K)



Study of existing implementations

Implementation Approach Device

1. Rodinia OpenMP CPU

OpenCL GPU

CUDA GPU

2. OpenDwarfs OpenCL CPU | GPU 

FPGA | MIC

3. NU-MineBench OpenMP CPU 

4. Hetero-Mark OpenCL CPU | GPU

5. CyberPoint MPI CPUs

Web references:
1. https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-Means

2. https://github.com/vtsynergy/OpenDwarfs

3. http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html

4. http://www.ece.neu.edu/groups/nucar/software/hetero-mark/

5. https://github.com/CyberPoint/libem

http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
https://github.com/CyberPoint/libem


2.Our strategy
Available platforms

Implementation decisions



Available platforms

Intel® Core™ i7-6700K

2 x NVIDIA TITAN X 

Altera Terasic Stratix V 

DE5-NET FPGA



Implementation decisions

 Considerations:

 Points don’t change between iterations. They 

need to be distributed only once among 

devices.

 The application is regular

 Rodinia OpenCL as a starting point

 GPU focused. 

 Develop a kernel tuned for the FPGA

 CPU

 Just update centroids and control convergence 



3.Implementation
FPGA + CPU

(2x)GPU + CPU

FPGA + CPU + (2x)GPU



FPGA + CPU
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FPGA + CPU

Comparison of SIMD Parallelism Versus Pipeline Parallelism

OpenCL on FPGAs for GPU Programmers, Intel Altera

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-

for-gpu-programmers.pdf



FPGA + CPU v0

> 200 s/iter

8192p

D=2

K=2



FPGA + CPU

Loop Unrolling Example

OpenCL on FPGAs for GPU Programmers, Intel Altera

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-

for-gpu-programmers.pdf



FPGA + CPU v1



FPGA + CPU v2



FPGA + CPU v3



FPGA + CPU v4

0.34 s/iter

8192p

D=2

K=2



FPGA + CPU
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(2x)GPU + CPU
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(2x)GPU + CPU
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(2x)GPU + CPU
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(2x)GPU + CPU

 Both devices 

are identical, 

so the load 
can be evenly 

distributed
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FPGA + CPU + (2x)GPU
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4.Overall results
Methodology

Test results



Methodology Datasets used:

 8192 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

 65536 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

 4194304 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

Compare execution time:

 Base system: Sequential

 OpenMP (8 threads)

 1 GPU

 2 GPUs

 FPGA

 CPU-(2x)GPU-FPGA
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FPGA + CPU
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(2x)GPU + CPU
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FPGA + CPU + (2x)GPU
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5.Conclusions



Conclusions

 Small datasets  => OMP is the best choice (delegating 
on other devices is not worth it – high I/O time).

 Large datasets  => GPUs (massive parallelism).

 Difficult to get advantage of FPGA’s resources by 
pipelining the k-means algorithm.

 Integrated GPU & FPGA version to further analyze the 
tradeoff between the overall execution time and the 
power usage.

 Dynamic load balancer - split the workload depending 
on specific criteria (e.g. execution time of previous 
iterations for each device).

O(#iterations x N x D x K)

328 x speedup!



References

1. Tang, Q. Y., & Khalid, M. A. (2016). Acceleration of K-Means
Algorithm Using Altera SDK for OpenCL. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 10(1), 6.

2. K-Means. Rodinia. Retrieved April 23, 2017, from
www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-
Means

3. OpenMP. Retrieved April 23, 2017, from www.openmp.org/

4. Khronos Group. OpenCL - The open standard for parallel 
programming of heterogeneous systems. Retrieved April 23, 
2017, from www.khronos.org/opencl/

5. Intel. Intel FPGA SDK for OpenCL. Retrieved April 23, 2017, 
from www.altera.com/en_US/pdfs/literature/hb/opencl-
sdk/aocl-best-practices-guide.pdf

http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-Means
http://www.openmp.org/
http://www.khronos.org/opencl/
http://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf


Source Code

https://github.com/

MarcosCM/Heterogeniuses

https://github.com/MarcosCM/Heterogeniuses
https://github.com/MarcosCM/Heterogeniuses

