
Three is not a crowd
A CPU-GPU-FPGA K-means implementation

Borja Pérez Pavón University of Cantabria

Carlos Escuín Blasco Polytechnic University of Catalonia

Denisa-Andreea Constantinescu University of Malaga

Jorge Cáncer Gil University of Zaragoza

Marcos Canales Mayo (team leader) University of Zaragoza

HiPEAC 2017 | April 27 – 28 | 2017, Zagreb

The team

University of
Malaga

Denisa

Carlos

Polytechnic
University of
Catalonia

University of
Zaragoza

Jorge

Marcos

University of
Cantabria

Borja

Table of contents

Intro
• Problem description

• Study of existing implementations

Our strategy
• Available platforms

• Implementation decisions

Implementation

• OpenMP

• FPGA + CPU

• (2x)GPU + CPU

• FPGA + CPU + (2x)GPU

Overall results

• Methodology

• Test results

• Conclusions

1.Intro
Problem description

Study of existing implementations

Problem description
Definitions

 Clustering: task of assigning a set of objects into

groups.

 k-means clustering:

 method of clustering

 partition n data points into k clusters (n >> k)

 each point belongs to the cluster with the nearest mean.

 The nearness: usually Euclidean or Manhattan

distance.

 Assumption: data points are independent of each

other.

Problem description
The algorithm

Input: set of N points with D dimensions

K (number of clusters)

Output: partition of N points in K clusters

1. Place centroids c1, c2, …, cK at random locations

2. Iterate until convergence condition is met

3. For each point xi, i=1..N:

4. For each cluster cj, j=1..K:

5. Get distance to cj, given all D dimensions

6. Assign membership of xi to nearest cluster j

7. For each cluster cj, j=1..K:

8. cj = mean of all points whose membership is j

O(#iterations x N x D x K)

Study of existing implementations

Implementation Approach Device

1. Rodinia OpenMP CPU

OpenCL GPU

CUDA GPU

2. OpenDwarfs OpenCL CPU | GPU

FPGA | MIC

3. NU-MineBench OpenMP CPU

4. Hetero-Mark OpenCL CPU | GPU

5. CyberPoint MPI CPUs

Web references:
1. https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-Means

2. https://github.com/vtsynergy/OpenDwarfs

3. http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html

4. http://www.ece.neu.edu/groups/nucar/software/hetero-mark/

5. https://github.com/CyberPoint/libem

http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
http://www.ece.neu.edu/groups/nucar/software/hetero-mark/
https://github.com/CyberPoint/libem

2.Our strategy
Available platforms

Implementation decisions

Available platforms

Intel® Core™ i7-6700K

2 x NVIDIA TITAN X

Altera Terasic Stratix V

DE5-NET FPGA

Implementation decisions

 Considerations:

 Points don’t change between iterations. They

need to be distributed only once among

devices.

 The application is regular

 Rodinia OpenCL as a starting point

 GPU focused.

 Develop a kernel tuned for the FPGA

 CPU

 Just update centroids and control convergence

3.Implementation
FPGA + CPU

(2x)GPU + CPU

FPGA + CPU + (2x)GPU

FPGA + CPU

FPGA
Calculate

distances

Merge & Update

clusters centroids

CPU

Get membership

of each point

C/C++

OpenCL

OpenMP

CPU

Clusters

no

yes

Dataset, k

Ready?

FPGA

FPGA + CPU

Comparison of SIMD Parallelism Versus Pipeline Parallelism

OpenCL on FPGAs for GPU Programmers, Intel Altera

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-

for-gpu-programmers.pdf

FPGA + CPU v0

> 200 s/iter

8192p

D=2

K=2

FPGA + CPU

Loop Unrolling Example

OpenCL on FPGAs for GPU Programmers, Intel Altera

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-

for-gpu-programmers.pdf

FPGA + CPU v1

FPGA + CPU v2

FPGA + CPU v3

FPGA + CPU v4

0.34 s/iter

8192p

D=2

K=2

FPGA + CPU

FPGA
Calculate

distances

Merge & Update

clusters centroids

CPU

CPU
Get membership

of each point

C/C++

OpenCL

OpenMP

CPU

Clusters

no

yes

Dataset, k

Ready?

(2x)GPU + CPU

GPU0 GPU1
OpenCL
K-means

Kernel

CPUOpenMP
Reduce

partial results

from kernels

Dataset, k

Divide

dataset

Clusters

Ready?

yes

no

Load

balancing
(CPU)

Merge &

update centers

 No need to

adapt the

kernel

 Focus on

orchestrating

both devices

(2x)GPU + CPU

GPU0 GPU1
OpenCL
K-means

Kernel

CPUOpenMP
Reduce

partial results

from kernels

Dataset, k

Divide

dataset

Clusters

Ready?

yes

no

Load

balancing
(CPU)

Merge &

update centers

 OpenCL buffer

sharing causes

performance

degradation

(2x)GPU + CPU

GPU0 GPU1
OpenCL
K-means

Kernel

CPUOpenMP
Reduce

partial results

from kernels

Dataset, k

Divide

dataset

Clusters

Ready?

yes

no

Load

balancing
(CPU)

Merge &

update centers

 To preserve

coalescing,

input points

must be stored

as a SoA

 Buffers must

be swapped

(2x)GPU + CPU

 Both devices

are identical,

so the load
can be evenly

distributed

GPU0 GPU1
OpenCL
K-means

Kernel

CPUOpenMP
Reduce

partial results

from kernels

Dataset, k

Divide

dataset

Clusters

Ready?

yes

no

Load

balancing
(CPU)

Merge &

update centers

FPGA + CPU + (2x)GPU

GPU0 GPU1 FPGA
Calculate distances

Merge & Update

clusters centroids

CPU
Split work for all

devices

CPU
Get membership of

each point
GPU0 GPU1

C/C++

OpenCL

OpenMP

CPU

Clusters

Ready?
no

yes

4.Overall results
Methodology

Test results

Methodology Datasets used:

 8192 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

 65536 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

 4194304 points

 2 dimensions

 16 dimensions

 128 dimensions

 1024 dimensions

Compare execution time:

 Base system: Sequential

 OpenMP (8 threads)

 1 GPU

 2 GPUs

 FPGA

 CPU-(2x)GPU-FPGA

OpenMP

0

1

2

3

4

5

6

7

8

9

K=16 K=1024 K=16 K=1024 K=16 K=1024 K=16 K=1024

D=2 D=16 D=128 D=1024

sp
e

e
d

u
p

8192p

65536p

FPGA + CPU

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00
8192p 65536p

sp
e

e
d

u
p

D=2 K=2

D=2 K=1024

D=16 K=2

D=16 K=1024

(2x)GPU + CPU

0

50

100

150

200

250

300

350

2k 16k 128k 1024k

2f

sp
e

e
d

u
p

1GPU

8192p

65536p

4194304p

0

50

100

150

200

250

300

350

2k 16k 128k 1024k

2f

sp
e

e
d

u
p

2 x GPUs

8192p

65536p

4194304p

 The 2 GPU implementation requires large problem

sizes for the distribution to be worthy

D=2
D=2

164 x

speedup
328 x

speedup

FPGA + CPU + (2x)GPU

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

8192p 65536p

25%FPGA 50%FPGA 25%FPGA 50%FPGA

sp
e

e
d

u
p

D=2 K=2

D=2 K=1024

1,0E-3

1,0E-2

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

D=2 D=16 D=128 D=1024

OMP 1 GPU 2 GPUs FPGA 2 GPUs + 25%FPGA 2 GPUs + 50%FPGA

Speedup comparison Npoints = 65536

1,0E-3

1,0E-2

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3
K

=
2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

K
=

2

K
=

1
6

K
=

1
2
8

K
=

1
0
2

4

D=2 D=16 D=128 D=1024

8192p 65536p 4194304p

Npoints 2-GPUS Speedup Comparison

5.Conclusions

Conclusions

 Small datasets => OMP is the best choice (delegating
on other devices is not worth it – high I/O time).

 Large datasets => GPUs (massive parallelism).

 Difficult to get advantage of FPGA’s resources by
pipelining the k-means algorithm.

 Integrated GPU & FPGA version to further analyze the
tradeoff between the overall execution time and the
power usage.

 Dynamic load balancer - split the workload depending
on specific criteria (e.g. execution time of previous
iterations for each device).

O(#iterations x N x D x K)

328 x speedup!

References

1. Tang, Q. Y., & Khalid, M. A. (2016). Acceleration of K-Means
Algorithm Using Altera SDK for OpenCL. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 10(1), 6.

2. K-Means. Rodinia. Retrieved April 23, 2017, from
www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-
Means

3. OpenMP. Retrieved April 23, 2017, from www.openmp.org/

4. Khronos Group. OpenCL - The open standard for parallel
programming of heterogeneous systems. Retrieved April 23,
2017, from www.khronos.org/opencl/

5. Intel. Intel FPGA SDK for OpenCL. Retrieved April 23, 2017,
from www.altera.com/en_US/pdfs/literature/hb/opencl-
sdk/aocl-best-practices-guide.pdf

http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/K-Means
http://www.openmp.org/
http://www.khronos.org/opencl/
http://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

Source Code

https://github.com/

MarcosCM/Heterogeniuses

https://github.com/MarcosCM/Heterogeniuses
https://github.com/MarcosCM/Heterogeniuses

