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Abstract—The Beckmann fading is a general multipath fading
model which includes Rice, Hoyt and Rayleigh fading as par-
ticular cases. However, the generality of the Beckmann fading
also implies a significant increased mathematical complexity.
Thus, relatively few analytical results have been reported for
this otherwise useful fading model. The performance of energy
detection for multi-branch receivers operating under Beckmann
fading is here studied, and the inherent analytical complexity is
here circumvented by the derivation of a closed-form expression
for the generalized moment generating function (MGF) of the
received signal-to-noise ratio (SNR), which is a new and useful
result, as it is key for evaluating the receiver operating character-
istics. The impact of fading severity on the probability of missed
detection is shown to be less critical as the SNR decreases. Monte
Carlo simulations have been carried out in order to validate the
obtained theoretical expressions.

I. INTRODUCTION

The need of a more efficient use of radio spectrum has
boosted the research on cognitive radio systems in the last
decade [1]. In such scenarios, the search for unused channels
on which opportunistically transmit without causing or expe-
riencing interference is of paramount relevance for a proper
system operation [2]. Under these conditions, the reliable
detection of user activity or inactivity in a certain time or
frequency resource becomes critical.

The problem of detecting a signal of unknown form in the
presence of noise is a classical problem in communication
theory, ever since the detection of unknown but deterministic
signals using an energy-measuring device was studied by
Urkowitz [3]. However, the effect of multipath fading clearly
has an impact on the detection performance as it introduces
a random fluctuation on the signal of interest. This was
addressed in [4], on which the performance of energy detection
techniques in Rayleigh and Nakagami-m fading channels was
evaluated. In this milestone work, several diversity combining
strategies were proposed, which showed a significant perfor-
mance improvement over no-diversity schemes even in the
presence of branch correlation.

In the last years, the performance evaluation of energy
detection schemes operating in more sophisticated fading
scenarios has been a hot research topic. Some examples
include Rice, Hoyt [5], κ-µ [6], η-µ [7], hyper-Rayleigh
[8] and cascaded fading channels [9, 10] just to name a

few. While these works illustrate the interest on knowing the
effect of different fading conditions on the performance of
energy detectors, the consideration of more general fading
models usually comes at the price of increased mathematical
complexity.

A very general fading distribution was introduced by Beck-
mann to characterize scattering from rough surfaces [11]
in the form of a four-parameter distribution modeling the
envelope of a complex Gaussian random variable (RV) with
arbitrary mean and variance for both the in-phase and quadra-
ture components. This distribution includes Rice, Hoyt and
Rayleigh fading models as particular cases. Besides, it allows
for modeling line-of-sight (LOS) propagation conditions with
a Hoyt-distributed diffuse component, which accurately fit
field measurements in different scenarios [12–14]. Despite
being very general, the fact that its probability density function
(PDF) and cumulative probability function (CDF) have integral
form clearly hindered the performance evaluation of wireless
communication systems operating this otherwise intuitive and
physically-justified fading model. Remarkable efforts have
been made in order to analyze different performance metrics
under Beckmann fading [15–17], but the analysis of energy
detection in this scenario is still largely unknown.

In this work, we aim to fill this gap by analyzing the
performance of multi-branch energy detection receivers in the
presence of Beckmann fading. In the course of our derivations,
we obtain an exact and closed-form expression for the gener-
alized MGF of the received signal-to-noise ratio (SNR) under
Beckmann fading in terms of a finite number of elementary
functions, which is also a new and useful result. Interestingly,
the expressions derived herein have similar complexity to those
obtained for the Rician or Hoyt cases.

The remainder of this paper is organized as follows. In
Section II we describe the channel model and introduce
some definitions, whereas the main mathematical contributions
are included in Section III. Section IV uses these results
to calculate the average detection probability under square-
law combining (SLC) and maximal ratio combining (MRC)
strategies. Numerical results are given in Section V, whereas
concluding remarks are presented in Section VI.



II. PRELIMINARY DEFINITION AND CHANNEL MODEL

We present some definitions which will be of later use in
the analysis.

Definition 1 (Generalized MGF): Let ξ be a continuous
random variable with PDF fξ(·). The generalized MGF of
ξ is defined as

ϕ
(n)
ξ (s) , E

{
ξneξs

}
=

∫ ∞

0

xnexsfξ (x) dx, (1)

where E {·} denotes the expectation operator.
In the sequel, we will assume n ∈ N. Note that in this case
the generalized MGF coincides with the nth order derivative
of the MGF ϕξ (s) , E

{
eξs
}
= ϕ

(0)
ξ (s).

Definition 2 (Beckmann envelope distribution): Let
v = X + jY be a complex Gaussian RV such as
X ∼ N (µx, σ

2
x) and Y ∼ N (µy, σ

2
y), being X and Y

independent. Then, the RV R = |v| representing the signal
envelope, is said to be Beckmann distributed and its PDF is
given by [18, eq. (31)]

fV (v) =
v

2πσxσy

∫ 2π

0

e
− (v cos(θ)−µx)2

2σ2
x

− (v sin(θ)−µy)2

2σ2
y dθ (2)

The Beckmann distribution includes the most popular fading
distributions such as Rayleigh, Hoyt and Rician as particular
cases, by simply specializing the four parameters µx, µy , σx

and σy . For convenience of discussion, an alternative definition
for the parameters of the Beckmann distribution is usually
preferred [19, eq. (2.39)].

Definition 3 (Beckmann distribution parameters): Let R be
a Beckmann distributed RV with parameters µx, µy , σ2

x and
σ2
y . Then, the following parameters are defined in order to

univoquely define the Beckmann distribution:

q2 ,σ2
x

σ2
y

, r2 , µ2
x

µ2
y

, K ,
µ2
x + µ2

y

σ2
x + σ2

y

, (3)

Ω ,µ2
x + µ2

y + σ2
x + σ2

y. (4)

The parameter K accounts for the ratio between the LOS
and non-LOS (NLOS) power, similarly to the definition of
the Rician K parameter. In the same way, the parameter q
measures the power imbalance between the in-phase (I) and
quadrature (Q) NLOS components as in the Hoyt (Nakagami-
q) fading model. The parameter r also indicates a power
imbalance between the I and Q components, but now for the
LOS component1. Finally the parameter Ω can be regarded
as the average received power Ω = E

{
|v|2
}
= E

{
R2
}

. The
connection between the Beckmann distribution and the special
cases included therein can easily be set by using the previous
definitions for q, r and K, and is formally stated in Table I.

1Note that the parameters q and r can take values within the whole range
[0,∞), showing a symmetric behavior in the intervals [0, 1] and [1,∞).

Table I
CONNECTIONS BETWEEN BECKMANN FADING AND OTHER FADING

MODELS IN THE LITERATURE. THE BECKMANN FADING PARAMETERS ARE
UNDERLINED TO AVOID CONFUSION WITH THE SPECIAL CASES.

Channels Beckmann Fading Parameters

One-sided Gaussian r = 1, q = 0, K = 0

Rayleigh r = 1, q = 1, K = 0

Hoyt (Nakagami-q) r = 1, q = q, K = 0

Rician with parameter K r = 1, q = 1, K = K

LOS with diffuse Hoyt r = 1, q = q, K = K

Symmetrical η-κ [20] r = η, q = η, K = κ

Asymmetrical η-κ [21] r = 0, q = η, K = κ

III. MATHEMATICAL RESULTS

We now present the main mathematical contributions of this
work, which will be of use in the forthcoming derivations.

Lemma 1: Let R be a Beckmann distributed RV with
E
{
R2
}

= Ω. Let γ , R2Es/N0 be the received SNR
under Beckmann fading, where Es is the symbol energy and
N0 is the one-sided AWGN power spectral density, and let
γ̄ = ΩEs/N0 denote its average. Then, the generalized MGF
of γ, ϕ(n)

γ (s), is given by (5).
Proof: Let R2 denote the power envelope of the Beck-

mann distribution, i.e., R2 , X2 + Y 2 such that X ∼
N (µx, σ

2
x) and Y ∼ N (µy, σ

2
y), being X and Y independent.

Both X2 and Y 2 follow a non-central chi-squared distribution,
which PDF is given by [22, eq. (2.1-115)]

f(z) =
1√

2πzσi

exp

[
−(z + µ2

i )

2σ2
i

]
cosh

(
µi
√
z

σ2
i

)
, z ≥ 0,

(6)

where the subindex i denotes either x or y.
Given that R2n =

∑n
k=0

(
n
k

)
X2kY 2(n−k) and assuming

the independence of X and Y , the desired expected value
is obtained by averaging over both distributions, considering
that each one of them follows (6), yielding,

ER2{R2nesR
2

} =

n∑
k=0

(
n

k

)
E{X2kesX

2

}E{Y 2(n−k)esY
2

}

=
1

2πσxσy

n∑
k=0

(
n

k

)
×
∫ ∞

0

y
k−1/2
1 exp

[
sy1 −

y1 + µ2
x

2σ2
x

]
cosh

(
µx

√
y1

σ2
x

)
dy1

×
∫ ∞

0

y
n−k−1/2
2 exp

[
sy2 −

y2 + µ2
y

2σ2
y

]
cosh

(
µy

√
y2

σ2
y

)
dy2.

(7)



ϕ(n)
γ (s) =

(
1 + q2

)
(1 +K)√

[(1 + q2) (1 +K)− 2q2γs] [(1 + q2) (1 +K)− 2γs]

× exp

[
K 1

1+r2

(
1 + q2

)
γs

(1 + q2) (1 +K)− 2γs
+

K r2

1+r2

(
1 + q2

)
γs

(1 + q2) (1 +K)− 2q2γs

]

× γn n!

2n

n∑
k=0

(2k)! (2(n− k))!

k! (n− k)!

(
q2

(1 + q2) (1 +K)− 2q2γs

)k (
1

(1 + q2) (1 +K)− 2γs

)n−k

×

 k∑
m=0

1

(k −m)! (2m)!

 2r2

1+r2
(1+q2)

2

q2 K (1 +K)

(1 + q2) (1 +K)− 2q2γs


m

n−k∑
m=0

1

(n− k −m)! (2m)!

 2
(1+r2)

(
1 + q2

)2
K (1 +K)

(1 + q2) (1 +K)− 2γs

m
(5)

In order to solve these integrals it is convenient to calculate
the Laplace transform

F (z) = L
{
xm−1/2 cosh(a

√
x); z

}
=

1

2

∫ ∞

0

xm−1/2e−zx
[
ea

√
x + e−a

√
x
]
dx

=

∫ ∞

0

y2m exp
[
−zy2 + ay

]
dy

+

∫ ∞

0

y2m exp
[
−zy2 − ay

]
dy,

(8)

where we have made the change of variables y =
√
x. Now,

let us introduce [23, eq. (3.462.1)]∫ ∞

0

yν−1 exp
[
−βy2 − αy

]
dy

= (2β)−ν/2Γ(ν) exp

[
α2

8β

]
D−ν

(
α√
2β

)
;

ℜ(ν) > 0 ∧ ℜ(β) > 0,

(9)

where ℜ(z) denotes the real part of complex number z, and
Dν(z) is the parabolic-cylinder function defined in [23, eq.
(9.240)] as

Dν(z) = 2ν/2e−z2/4
√
π

[
1

Γ( 1−ν
2 )

1F1

(
−ν

2
;
1

2
;
z2

2

)
− a

√
2

Γ(−ν
2 )

1F1

(
1− ν

2
;
3

2
;
z2

2

)]
,

(10)

where 1F1 (a; b;x) is the confluent hypergeometric function
of the first kind as defined in [24, eq. (13.1.2)]. Then, we can
write

F (z) = (2z)−m−1/2Γ(2m+ 1) exp

[
a2

8z

]
×
[
D−2m−1

(
−a√
2z

)
+D−2m−1

(
a√
2z

)]
;

ℜ(m) > −1/2 ∧ ℜ(z) > 0.

(11)

Now, introducing (10) into (11) we obtain

F (z) = 2−2m
√
π
(2m)!

m!
z−m−1/2

1F1

(
m+

1

2
;
1

2
;
a2

4z

)
,

ℜ(m) > −1/2 ∧ ℜ(z) > 0.
(12)

Therefore, (7) becomes

ER2{R2nesR
2

} =
1

2πσxσy
exp

[
− µ2

x

2σ2
x

−
µ2
y

2σ2
y

]
n∑

k=0

(
n

k

)
× L

{
xk−1/2 cosh(

µx

σ2
x

√
x);

1

2σ2
x

− s

}
× L

{
xn−k−1/2 cosh(

µy

σ2
y

√
x);

1

2σ2
y

− s

}
.

(13)

Therefore, considering (8) and (12), after some manipulations
we obtain

ϕ
(n)
R2 (s) =

1

σyσx22n+1
exp

[
− µ2

x

2σ2
x

−
µ2
y

2σ2
y

]
n∑

k=0

(
n

k

)

× (2k)!(2(n− k))!

k!(n− k)!

(
2σ2

x

1− 2σ2
xs

)k+ 1
2

(
2σ2

y

1− 2σ2
ys

)n−k+ 1
2

× 1F1

(
k +

1

2
;
1

2
;

µ2
x

2σ2
x(1− 2σ2

xs)

)
× 1F1

(
n− k +

1

2
;
1

2
;

µ2
y

2σ2
y(1− 2σ2

ys)

)
,

(14)

Taking into account that, for the parameter values in (14), the
confluent hypergeometric function can be expressed, using [25,
eq. (07.20.03.0007.01) and (05.08.06.0006.01)], in terms of a
finite combination of elementary functions as

1F1 (a; a− n; z) =
(−1)nez

(1− a)n

×
n∑

m=0

(−n)m(a− n+m)n−m

m!
(−z)m,

(15)



where (a)n denotes the Pochhammer symbol, and with the
help of equalities(

1

2
+m

)
k−m

=
1

22(k−m)

(2k)!

k!

m!

(2m)!
, for k > m, (16)

(−k)m = (−1)
m k!

(k −m)!
, for k > m, (17)(

1

2
− k

)
k

= (−1)
k (2k)!

k!22k
, (18)

which can be easily demonstrated by mathematical induction,
after some manipulation we can write

ϕ
(n)
R2 (s) =

1√
(1− 2σ2

xs)
(
1− 2σ2

ys
)

× exp

(
µ2
xs

1− 2σ2
xs

+
µ2
ys

1− 2σ2
xs

)

× n!

22n

n∑
k=0

(2k)! (2(n− k))!

k! (n− k)!

×
(

2σ2
x

1− 2σ2
xs

)k
(

2σ2
y

1− 2σ2
ys

)n−k

×

(
k∑

m=0

(4zx)
m

(k −m)! (2m)!

)(
n−k∑
m=0

(4zy)
m

(n− k −m)! (2m)!

)
(19)

where zx =
µ2
x

2σ2
x(1−2σ2

xs)
, zy =

µ2
y

2σ2
y(1−2σ2

ys)
.

Considering now that γ = R2Es/N0 = (X2 + Y 2)Es/N0,
the statistics of γ will be the same as the ones for R2 by just
scaling parameters µx, µy , σx and σy by

√
Es/N0. Therefore,

from (19) and using the parameters defined in Section II, after
some algebraic manipulation, (5) is obtained.

IV. AVERAGE DETECTION PROBABILITY

The average probability of detection Pd of an unknown
deterministic signal in the presence of noise in a wireless
fading channel can be calculated, assuming that the PDF of
the received SNR is denoted by fγ(γ), as [26]

Pd =

∫ ∞

0

Qu

(√
2γ,

√
λ
)
fγ(γ)dγ. (20)

where u = TW is the product of the one-side bandwidth
W and the observation time interval T , which can be easily
adjusted to get u ∈ N, λ is the energy detection threshold and
Qu (., .) is the uth order generalized Marcum-Q function [19,
eq. (4.60)],

In the following derivations, we leverage the approach in
[5] to obtain an analytical expression for (20), on which using
the series expansion of the generalized Marcum-Q function
given by

Qu

(√
2γ,

√
λ
)
=

∞∑
n=0

γne−γ

n!

Γ (u+ n, λ/2)

Γ(u+ n)
, (21)

the average detection probability can be obtained by combin-
ing (21) and (20), yielding

Pd =

∞∑
n=0

Γ (u+ n, λ/2)

n!Γ(u+ n)
ϕ(n)
γ (s)

∣∣∣∣
s=−1

=
∞∑

n=0

u+n−1∑
q=0

(
λ

2

)q
e−λ/2

n!q!
ϕ(n)
γ (s)

∣∣∣
s=−1

,

(22)

where ϕ
(n)
γ (s) is the generalized MGF of γ. Then, the average

detection probability of an energy detector in Beckmann fading
can be obtained by plugging (5) into (22). The so-called
receiver operating characteristic (ROC) curve is obtained by
representing Pd vs. Pf , for different values of u and λ, where
Pf is the false alarm probability (detection, in the absence of
signal, of noise which is erroneously considered to be signal),
and which is given by [26]

Pf =
Γ (u, λ/2)

Γ(u)
= e−λ/2

u−1∑
k=0

(λ/2)k

k!
, (23)

where Γ (a, x) =
∫∞
x

ta−1e−tdt, is the upper incomplete
Gamma function and Γ (a) = Γ (a, 0) is the Gamma function.
The last equality in (23) is obtained when u is a positive
integer, considering [23, eq. (8.352.2)].

Alternatively, a complementary ROC curve is obtained by
representing Pm = 1−Pd, defined as the probability of missed
detection (i.e., failing to detect a signal which is present in the
channel) vs. Pf , which can be interpreted in a simple way:
the lower the complementary ROC curve, the better system
performance for energy detection.

A. Average detection probability with diversity combining

In the previous analysis, we assumed a single-antenna con-
figuration for the energy detection receiver. We now study the
effect of using maximal ratio combining (MRC) and square-
law combining (SLC) on the energy detection performance,
considering receivers equipped with L antennas.

1) Maximal Ratio Combining (MRC): In MRC, the instan-
taneous combined SNR is given by γMRC =

∑L
k=1 γk, where

γk is the instantaneous SNR at the k branch. Assuming that
the receive signals at every branch are independent, with the
help of the multinomial theorem we can write

ϕ
(n)
MRC(s) =

∑
τ(n,L)

n!

q1!q2! · · · qL!
ϕ(q1)
γ1

(s)ϕ(q2)
γ2

(s) · · ·ϕ(qL)
γL

(s),

(24)

where τ(n,L) is defined as the set of L-tuples such
that τ(k, L) =

{
(q1, q2, · · · , qL) : qm ∈ N,

∑L
m=1 qm = k

}
.

Combining now (22) and (24), Pd becomes

Pd,MRC =

∞∑
n=0

Γ (u+ n, λ/2)

n!Γ(u+ n)
ϕ
(n)
MRC(s)

∣∣∣∣
s=−1

=

∞∑
n=0

∑
τ(n,L)

u+n−1∑
m=0

(
λ
2

)m
e−λ/2

m!

ϕ
(q1)
γ1 (s)

q1!
· · · ϕ

(qL)
γL (s)

qL!

∣∣∣∣∣
s=−1

,

(25)
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Figure 1. Complementary ROC curve under Beckmann fading for different
numbers of receive diversity branches L and sampling policies. Parameters
values: average SNR per branch γ̄k = 15 dB; q = 0.5; K = 2; r = 1;
u = 5.

where in the last equality we assumed that u ∈ N. Under this
scheme, Pf is also given by (23).

2) Squared Law Combining (SLC): This is a post-detection
combining method, that is, the decision variable is combined
after sampling [22, sec. 5.4]. Again, γSLC =

∑L
k=1 γk as in

the MRC case, therefore ϕ
(n)
SLC = ϕ

(n)
MRC as given in (24).

However, the number of samples to be considered is not u but
Lu. Hence, Pd and Pf are obtained, respectively as in (25).
and (23). by just substituting L by Lu.

V. NUMERICAL RESULTS

Complementary ROC curves are represented in this section
for different fading parameters and diversity schemes. For the
sake of simplicity in the discussion, we assume (independent
identically distributed (i.i.d.) signals, although this restriction
is not necessary in our framework.

In Fig. 1 we can see the influence of the number of
diversity branches in the energy detection performance, as
well as the influence of the sampling policy. The ROC curves
decrease in a very appreciable manner when the number of
branches increases. For a given receive array size, the MRC
strategy shows a better behavior than SLC, at the expense of
requiring a precise channel knowledge. Also, as the number
of diversity branches increases, the more significant is the
improvement provided by MRC. We have performed Monte
Carlo simulations in order to validate the theoretical results,
which are included in the figures with marker dots, and show
a perfect agreement.

In Fig. 2 the influence of fading severity is evaluated. As
expected, the probability of a wrong detection is much lower
in the high-SNR regime (γ̄k = 25 dB), but it is relevant how
the fading severity and the sampling policy increment their
influence at this regime. Conversely, in the low SNR-regime
(γ̄k = 5 dB), the differences are smaller. Indeed, MRC shows
again a better performance than the SLC policy.
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Figure 3. Complementary ROC curve under Beckmann fading for different
values of K. Parameters values: average SNR per branch γ̄k = 10 dB; L = 3;
r = 0.7; q = 0.5, and u = 5.

Fig. 3 and Fig. 4 explore the influence of parameters K
and r, respectively. Fig. 3 shows how the presence of a strong
Line-of-Sight (LOS), represented by K = 10, substantially
improves the performance. Fig. 4 shows that the best detection
performance is attained when the average in-phase and quadra-
ture LOS powers are equal, r = 1, whereas the performance
is degraded as r is decreased. This is coherent with the fact
that the parameter r affects fading severity in a similar way
as the Hoyt parameter q.

VI. CONCLUSIONS

In this work, we analyzed the performance of different
multi-branch energy detectors in the presence of Beckmann
fading. Thanks to the novel closed-form expression for the
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Figure 4. Complementary ROC curve under Beckmann fading for different
values of r. Parameters values: average SNR per branch γ̄k = 10 dB; L = 3;
K = 1; q = 0.5, and u = 5.

generalized MGF of the received SNR under Beckmann fading
here derived, analytical expressions for the probability of
detection were obtained with similar complexity to those
available for Rician or Hoyt fading. The ROC curves cor-
responding to pre-detection (MRC) and post-detection (SLC)
combining strategies have been obtained as an infinite sum of
elementary functions with a reasonably fast convergence. As
a general conclusion, any unbalance between the underlying
Gaussian RVs inherent to Beckmann fading, either in the LOS
(parameter r) or diffuse (parameter q) parts, has a negative
impact on the detection probability compared to the balanced
cases (r = 1 or q = 1).
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