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Abstract— We introduce the Fluctuating Two-Ray (FTR)
fading model, a new statistical channel model that consists of
two fluctuating specular components with random phases plus a
diffuse component. The PDF and MGF are expressed in closed-
form, having a functional form similar to other state-of-the-
art fading models. We also provide an approximate closed-form
expressions for the PDF, which allow for a simple evaluation of
these statistics to an arbitrary level of precision. We show that
the FTR fading model provides a much better fit than Rician
fading for recent small-scale fading measurements in 28 GHz
outdoor millimeter-wave channels.

I. INTRODUCTION

Very recently [1], the small-scale fading statistics obtained
from a 28 GHz outdoor measurement campaign showed that
Rician fading was more suited than Rayleigh even in NLOS
environments. However, a deeper look into the results of [1]
indicates that conventional fading models in the literature fall
short in accurately modeling the random fluctuations suffered
by the received signal. We here propose a new model to
capture this behavior: the Fluctuating Two-Ray (FTR) fading
model, as a natural generalization of the TWDP fading model
by allowing the constant-amplitude specular waves associated
to LOS propagation to randomly fluctuate. Remarkably, this
larger flexibility does not come at the price of an increased
mathematical complexity, but instead facilitates a simpler
statistical characterization than the TWDP model.

II. STATISTICAL CHARACTERIZATION OF THE FTR MODEL

Let us consider that the complex baseband received signal
can be written as

Vr =
√
ζV1 exp (jφ1) +

√
ζV2 exp (jφ2) +X + jY. (1)

where φ1, φ2 ∼ U [0, 2π), X,Y ∼ N (0, σ2) and ζ is a unit-
mean Gamma distributed random variable with PDF

fζ (u) =
mmum−1

Γ (m)
e−mu. (2)
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This model will be subsequently denoted as the Fluctuating
Two-Ray (FTR) and is conveniently expressed in terms of the
parameters K and ∆, defined as

K =
V 2

1 + V 2
2

2σ2
, ∆ =

2V1V2

V 2
1 + V 2

2

. (3)

Lemma 1: Let us consider the FTR fading model as de-
scribed in (1). Then, the MGF of the received SNR γ (or,
equivalently, the power envelope) will be given by

Mγ (s) =
mm (1 +K) (1 +K − γ̄s)m−1(√

R (m, k,∆; s)
)m

× Pm−1

(
m (1 +K)− (m+K) γ̄s√

R (m, k,∆; s)

)
,

(4)

where R (m, k,∆; s) is a polynomial in s defined as

R (m, k,∆; s) =
[
(m+K)

2 −∆2K2
]
γ̄2s2

− 2m (1 +K) (m+K) γ̄s+m2 (1 +K)
2
,

(5)

γ̄ is the average SNR and Pµ(·) is the Legendre function of
the first kind of degree µ.

Proof: See [2]
The FTR fading model introduced here is well-suited to

recreate the propagation conditions in a wide variety of wire-
less scenarios, ranging from very favorable ones to worse-than
Rayleigh fading. It also includes many important well-known
statistical fading models as particular cases, i.e., TWDP, Rician
shadowed, Rician, Rayleigh. one-sided Gaussian, Nakagami-m
and Nakagami-q (Hoyt).

Lemma 2: When m ∈ Z+, the PDF of the SNR γ in a
FTR fading channel can be expressed in terms of the confluent
hypergeometric function Φ2(·) defined in [3, p. 34, (8)], as
given in (7).

Proof: See [2]
Lemma 3: When m ∈ Z+, the PDF of the SNR γ in a

FTR fading channel can be approximated by a finite sum of
elementary functions, as given, in (8), where M > dK∆e,
β = K+1

γ̄ and the coefficients αi and δi are defined as

αi =
2(−1)i

(2M − 1)(2M − i)!(i− 1)!

∫ 2M−1

0

2M∏
k=1

k=i

(u− k + i) du,

δi = ∆ cos

(
(i− i)π
2M − 1

)
. (6)

Proof: See [2]
The PDF of the received signal envelope r can be easily

derived by a simple change of variables. Specifically, fr(r) =



2

fγ (x) =
1

2m−1

1 +K

γ̄

 m√
(m+K)

2 −K2∆2

m b(m−1)/2c∑
q=0

(−1)
q
Cm−1
q

 m+K√
(m+K)

2 −K2∆2

m−1−2q

× Φ
(4)
2

(
1 + 2q −m,m− q − 1

2
,m− q − 1

2
, 1−m; 1;

−m (1 +K)

(m+K) γ̄
x,− m (1 +K)

(m+K (1 + ∆)) γ̄
x,− m (1 +K)

(m+K (1−∆)) γ̄
x,−1 +K

γ̄
x

)
.

(7)

f̂γ(x) ≈
M∑
i=1

αi
2
{Gm (x;β,K(1− δi)) + Gm (x;β,K(1 + δi))} , (8)

Gm (x;β,K) =

(
m

K +m

)m
βe−βx

m−1∑
n=0

(
m− 1

n

)(
Kβx

K +m

)n
1

n!
; (9)

2rfγ(r2) and replacing γ̄ by Ω, where Ω = E{r2}. In Fig. 1
we show the effect of the FTR fading model parameters K,
∆ and m on the shape of the signal envelope PDF.
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Fig. 1. FTR signal envelope for different values of m, with K = 15,
∆ = 0.9 and Ω = 1. Solid lines: exact PDF. Markers: approximate PDF.

III. EMPIRICAL VALIDATION

We use the empirical results presented in [1] to validate
the FTR fading model in the context of small-scale fading
modeling of mmWave outdoor communications in the 28
GHz band. A modified version of the Kolmogorov-Smirnov
(KS) statistic has been used to define the error factor ε used
to quantify the goodness of fit between the empirical and
theoretical CDFs, denoted by F̂r(·) and Fr(·) respectively, i.e,

ε , max
x
| log10 F̂r(x)− log10 Fr(x)|. (10)

In Fig. 2 we compare the set of measurements correspond-
ing to the NLOS cross-polarized scenarios described in [1, Fig.
6]. For this set of measurements, the empirical CDFs lie within
the theoretical CDFs corresponding to a Rician distribution
with values of K ranging from 2 to 7 (i.e. 3 to 8 dB).

According to the KS statistic, the values of K that provide the
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Fig. 2. Empirical vs theoretical CDFs of the received signal amplitude
for NLOS scenario. Parameter values are KRice = 4.78 and KFTR = 32.7,
∆ = 0.8331, m = 10. Measured data obtained from [1, Fig. 6, NLOS].

best fit to the Rician distribution is KRice
NLOS = 4.78. Such value

of K yield an error factor value of εRice
NLOS = 0.3571. Now, using

the proposed FTR fading model, we obtain the following set
of parameters: FTRNLOS = (K = 32.7,∆ = 0.8331,m = 10).
The error factor value obtained by the FTR fit is εFTR

NLOS =
0.2681. Thus, a remarkable improvement is attained when
using the FTR fading model with respect to the Rician model.
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