Built-in Variant Generation and Unification, and their Applications in Maude 2.7^*

Francisco Durán¹, Steven Eker², Santiago Escobar³, Narciso Martí-Oliet⁴, José Meseguer⁵, and Carolyn Talcott⁶

¹ Universidad de Málaga, Spain. duran@lcc.uma.es
² SRI International, CA, USA. eker@csl.sri.com
³ Universitat Politècnica de València, Spain. sescobar@dsic.upv.es
⁴ Universidad Complutense de Madrid, Spain. narciso@ucm.es
⁵ University of Illinois at Urbana-Champaign, USA. meseguer@illinois.edu
⁶ SRI International, CA, USA. clt@cs.stanford.edu

Abstract. This paper introduces some novel features of Maude 2.7. We have added support for: (i) built-in order-sorted unification modulo associativity, commutativity, and identity, (ii) built-in variant generation, (iii) built-in order-sorted unification modulo a finite variant theory, and (iv) symbolic reachability modulo a finite variant theory.

^{*} Appeared in the Proceedings of 8th International Joint Conference on Automated Reasoning (IJCAR 2016), Lecture Notes in Computer Science 9706, Springer 2016.