
Optimizing One Million Variable NK Landscapes by Hybridizing
Deterministic Recombination and Local Search

Francisco Chicano

University of Málaga

Bulevar Louis Pasteur, 35

Malaga, Spain 29071

chicano@lcc.uma.es

Darrell Whitley

Colorado State University

1100 Center Avenue Mall

Fort Collins, Colorado, USA 80523-1873

whitley@cs.colostate.edu

Gabriela Ochoa

University of Stirling

Stirling FK9 4LA

Stirling, Scotland, UK

gabriela.ochoa@cs.stir.ac.uk

Renato Tinós

University of São Paulo

Av. Bandeirantes, 3900

Ribeirão Preto, São Paulo, Brazil 14040901

rtinos@�clrp.usp.br

ABSTRACT
In gray-box optimization, the search algorithms have access to

the variable interaction graph (VIG) of the optimization problem.

For Mk Landscapes (and NK Landscapes) we can use the VIG to

identify an improving solution in the Hamming neighborhood in

constant time. In addition, using the VIG, deterministic Partition

Crossover is able to explore an exponential number of solutions in

a time that is linear in the size of the problem. Both methods have

been used in isolation in previous search algorithms. We present

two new gray-box algorithms that combine Partition Crossover

with highly e�cient local search. �e best algorithms are able to

locate the global optimum on Adjacent NK Landscape instances

with one million variables. �e algorithms are compared with a

state-of-the-art algorithm for pseudo-Boolean optimization: Gray-

Box Parameterless Population Pyramid. �e results show that the

best algorithm is always one combining Partition Crossover and

highly e�cient local search. But the results also illustrate that the

best optimizer di�ers on Adjacent and Random NK Landscapes.

CCS CONCEPTS
•�eory of computation →Random search heuristics;

KEYWORDS
Gray-box optimization, pseudo-Boolean optimization, Partition

Crossover, Hamming Ball Hill Climber

ACM Reference format:
Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós.

2017. Optimizing One Million Variable NK Landscapes by Hybridizing

Deterministic Recombination and Local Search. In Proceedings of GECCO
’17, Berlin, Germany, July 15-19, 2017, 8 pages.

DOI: h�p://dx.doi.org/10.1145/3071178.3071285

1 INTRODUCTION
NK Landscapes [5] have o�en been used as benchmark problems

for testing algorithms designed to solve k-bounded pseudo-Boolean

optimization problems, as well as evolutionary algorithms designed

to work with a binary representation. �ere are two common

forms of NK Landscapes. Adjacent NK Landscapes can be solved

in polynomial time using dynamic programming. Random NK

Landscapes are NP-Hard [12].

Two innovations in recent years have resulted in improved algo-

rithms for solving k-bounded pseudo-Boolean optimization prob-

lems. One innovation is the use of lookahead methods that can

identify improving moves in constant time [1, 9]. �is makes tra-

ditional random mutation operators unnecessary. �e second in-

novation is the development of Partition Crossover [8]. Partition

Crossover is a deterministic form of recombination that analytically

decomposes parents into recombining components. �ese recom-

bining components, in turn, decompose the evaluation function

into linearly separable subfunctions during recombination. If q
recombining components are found, Partition Crossover �nds the

best of 2
q

o�spring in linear time.

By combining constant time identi�cation of improving moves

with Partition Crossover, we are able to �nd globally optimal solu-

tions on Adjacent NK landscape instances with one million vari-

ables. We have developed two algorithms that combine 1) e�cient

local search using the identi�cation of improving moves and 2)

Partition Crossover. One algorithm is hierarchical in construction

and the other algorithm is more linear in construction. We compare

these algorithms to Goldman’s Parameterless Population Pyramid

algorithm, which is one of the best state-of-the-art algorithms for

pseudo-Boolean optimization in a gray-box se�ing [2]. We also

analyze the Local Optima Networks induced by the runs of the

algorithms and capture some internal metrics to understand the

working principles of the algorithms.

�e rest of the paper is organized as follows. Section 2 presents

the background work. �e two algorithms proposed in this paper

are described in Section 3. Section 4 describes the experimental

studies performed and their results, explaining their meaning and

providing some insight on the working principles of the algorithms.

�e paper �nishes with some conclusions and future work outlined

in Section 5.



GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

2 BACKGROUND
A pseudo-Boolean function is a real-valued function of Boolean

variables. A k-bounded pseudo-Boolean function f of N variables

is wri�en as a sum of M subfunctions, each one depending on at

most k variables:

f (x ) =
M∑
l=1

fl (x ), (1)

where fl (x ) is a subfunction depending on k decision variables.

�ese functions are also called Mk Landscapes by Whitley et al. [11].

Well known examples of these kind of functions are NK Landscapes

(with k = K + 1), MAX-kSAT and Unconstrained �adratic Opti-

mization (with k = 2). In Gray-Box Optimization the search algo-

rithm has access to the structure of the objective function given

in Equation (1), but makes no assumption on the subfunctions

themselves.

NKQ landscapes are a kind of Mk landscape where there is a sub-

function per variable (M = N ), subfunction fi depends on variable

xi and other K = k − 1 variables, and the codomain of each sub-

function is the set {0, 1, . . . ,Q − 1}. �e subfunctions are randomly

initialized. If subfunction fi depends on consecutive variables (xi ,
xi+1, . . ., xi+k−1

) the NKQ landscapes follow an adjacent model. If

fi depends on xi and other K = k − 1 random variables, the model

is random. �ere are some other models in between [11], but the

adjacent and random models are extreme in the sense that one is

very easy to solve and the other is very hard to solve. Adjacent

NKQ landscapes can be optimized in polynomial time O (N ) using

dynamic programming [12]. Random NKQ landscapes, however,

are NP-hard when K = k − 1 ≥ 2.

2.1 Variable Interaction Graph
An important tool which can be constructed under Gray Box Op-

timization is the Variable Interaction Graph (VIG) [11]. �e VIG

is a graph G = (V ,E), where V is the set of Boolean variables and

edges E contains all the pairs of variables (xi ,x j ) that have non-
linear interactions. �ese nonlinear interactions can be captured

in two ways. 1) We can assume that every pair of variables that

appear together in a subfunction has a nonlinear interaction. For

NK Landscapes, this assumption is virtually always true. 2) An

alternative method for constructing the VIG is to convert the k-

bounded pseudo-Boolean function into a Walsh polynomial [3],

and then look at every pair of variables to determine if there is

Walsh coe�cient indexed by that pair of variables. �is second

method is more precise, and in some cases the di�erence may be

signi�cant. �is alternative method is also e�cient because the

Walsh polynomial can be constructed in O (N ) time.

�e following illustrates the construction of a Variable Inter-

action Graph for a Random NK Landscape. �e NK Lanscape

has 18 variables and subfunctions (numbered from 0 to 17), and

K = 2 (k = 3). We will refer to variables using numbers, e.g., 9 = x9.

�e NK Landscape sums over the following 18 subfunctions:

f0 (0, 6, 14) f5 (5, 4, 2) f10 (10, 2, 17) f15 (15, 7, 13)
f1 (1, 0, 6) f6 (6, 10, 13) f11 (11, 16, 17) f16 (16, 9, 11)
f2 (2, 1, 6) f7 (7, 12, 15) f12 (12, 10, 17) f17 (17, 5, 16)
f3 (3, 7, 13) f8 (8, 3, 6) f13 (13, 12, 15)
f4 (4, 1, 14) f9 (9, 11, 14) f14 (14, 4, 16)

2

4

5

6

9
0

1

10

11

12

13

15

17

3

14

8

16

7

Figure 1: Sample Variable Interaction Graph (VIG).

2

9
0

1
11

12

13

15

3

8

16

7

Figure 2: Recombination Graph for the solutions (parents)
P1 = 000000000000000000 and P2 = 111100011101110110.

From these subfunctions, assume we extract the nonlinear in-

teractions that are shown in Figure 1. In this example, every pair

of variables that appear together in a subfunction has a nonlinear

interaction.

2.2 Partition Crossover
We can use the Variable Interaction Graph to construct a determin-

istic recombination operator: Partition Crossover (PX) [8]. If the

parent strings are locally optimal then Partition Crossover acts as

a tunneling algorithm that can move directly from local optima to

local optima with high probability. In our case a local optimum is

de�ned as a solution with �tness value no lower than its neighbors.

Partition Crossover is a form of greedy, deterministic recombina-
tion. It takes two solutions (parents), extracts the variable assign-

ments they share, and then uses these shared variable assignments

to decompose both the VIG and the evaluation function. Referring

to the illustration in Figure 1, let the two parents be

P1 = 000000000000000000 and P2 = 111100011101110110

�erefore, x4 = x5 = x6 = x10 = x14 = x17 = 0 in both parents.

Otherwise, xi = 0 in P1 and xi = 1 in P2 for all of the other bits. Both

parents reside in a hyperplane denoted byh = ∗∗∗∗000∗∗∗0∗∗∗0∗∗0

where ∗ denotes the bits that are di�erent in the two solutions, and

0 marks the positions where they have the same bits values (again,

without loss of generality).

We use the hyperplaneh = ∗∗∗∗000∗∗∗0∗∗∗0∗∗0 to decompose

the VIG in order to produce a Recombination Graph. We remove

all of the variables (vertices) that have the same “shared variable

assignments” and also remove all edges that are incident on the

vertices corresponding to these bits. �is yields the recombination

graph shown in Figure 2.

We can search for connected components of the recombination

graph to identify the recombining components. �e decomposition



Optimizing 1M Var. NK Landscapes Using Deterministic Recombination and LS GECCO ’17, July 15-19, 2017, Berlin, Germany

shown in Figure 2 results in q = 3 recombining components. All

of the variables that appear together in the same recombining

component in the recombination graph must be inherited together

from one of the two parents. �e recombination graph also de�nes

a reduced evaluation function. �is new evaluation function is

linearly separable, and decomposes into q subfunctions de�ned

over the recombining components.

д(x ′) = a + д1 (9, 11, 16) + д2 (0, 1, 2) + д3 (3, 7, 8, 12, 13, 15),

where д(x ′) = f |h (x
′) and x ′ is restricted to a subspace of the

hyperplane h that contains the parent strings P1 and P2 as well

as all of their potential o�spring under Partition Crossover. �e

constant a = f (x ′)−
∑

3

i=1
дi (x

′) depends on the common variables.

We can now see how Partition Crossover works. Every recom-

bination over q recombining components induces a new separable
function д(x ′) that is de�ned as:

д(x ′) = a +

q∑
i=1

дi (x
′). (2)

Since д(x ′) is a separable function, Partition Crossover can be

greedy and select which parent yields the best partial solution for

each subfunction дi (x
′). �e following Partition Crossover �e-

orem was originally proven to hold for the Traveling Salesman

Problem [10]. Tinós et al. [8] have proven the following result also

holds for all k-bounded pseudo-Boolean functions.

Theorem 2.1 (The Partition Crossover Theorem). Given q
linearly separable recombining components, Partition Crossover re-
turns the best of 2

q−2 reachable solutions distinct from parent solution
P1 and P2 in O (N ) time.

2.3 Hamming Ball Hill Climber
For Mk landscapes, Whitley and Chen [9] proved that the location

of improving moves can be determined in constant time for the

Hamming distance 1 neighborhood. Two solutions are neighbors

if they di�er by a single bit �ip. �is result was later generalized

by Chicano et al. [1], who proposed a hill climber that explores the

solutions contained in a Hamming ball of radius r around a solution

in constant time. �e concept of a Score function is at the core of

both results [4]. For v,x ∈ Bn , and a pseudo-Boolean function

f : Bn → R, we denote the Score of x with respect to move v as

Sv (x ), de�ned as follows:

Sv (x ) = f (x ⊕ v ) − f (x ), (3)

where ⊕ denotes the exclusive OR bitwise operation. �e Score

Sv (x ) is the change in the objective function when we move from

solution x to solution x ⊕ v , that is obtained by �ipping in x all

the bits that are 1 in v . If a move can be decomposed in two non-

interating moves v1 and v2 (they are sets of nonadjacent variables

in the VIG) then the score can be wri�en as the sum of two other

scores [1]:

Sv1∪v2
(x ) = Sv1

(x ) + Sv2
(x ). (4)

�is result makes it possible to explore all the solutions at Ham-

ming distance r or less, with the help of the scores of those moves

of size at most r whose variables are connected in the VIG. If the

number of subfunctions a variable appears in is bounded by a con-

stant, then the number of scores to store in memory is O (N ) and

the identi�cation of an improving move can be done in constant

time [1]. When Partition Crossover is combined with Hamming

Ball Hill Climbing (HBHC), we can copy some scores from the

parents to the child, with the goal of saving some computation
1
.

In this paper, we restrict our a�ention to the Hamming distance

1 neighborhood. �is is for two reasons. 1) While the r -ball looka-

head is still O (N ) in complexity, the cost is exponential in r . �ere

are also more restrictions on the form of the evaluation function for

the r -ball lookahead compared to the Hamming distance 1 neigh-

borhood. 2) �e use of Partition Crossover in the current paper

also appears to accelerate search more e�ciently than the r -ball

lookahead.

3 ALGORITHMS
We present in this section the two algorithms combining e�cient

Hamming distance 1 local search and Partition Crossover.

3.1 Hierarchical Recombinative Local Search
(HiReLS)

One of the simplest things we can do to combine HBHC and PX

is to apply local search to pairs of random solutions (to generate

local optima), and then combine these local optima using PX; we

can then apply local search to the resulting solution. �is way we

obtain a local optimal solution with a �tness value that is no worse

than that of the parents. Let us name level-1 local optima to these

solutions and level-0 local optima to the solutions generated a�er

applying local search to random solutions. �e average �tness value

of level-1 local optima is higher than that of level-0 local optima (we

are maximizing). We can obtain level-2 local optima recombining

two level-1 local optima using PX and then applying HBHC. �e

average �tness of the solutions implicitly explored by PX is the

average �tness of the parent solutions. �is is a trivial consequence

of the separability of д(x ′) in (2). �us, combining level-1 local

optima should provide be�er solutions, in general, than combining

level-1 and level-0 local optima. �is idea can be iteratively applied

to �nd local optima at di�erent levels with increasing average

�tness values. �is is what HiReLS does, whose pseudocode is in

Algorithm 1. Figure 3 shows a graphical illustration of the search

space exploration of HiReLS. Only one solution per level needs to

be stored. As the search progresses new solutions are stored in

memory. In our experiments no more than 11 levels were required.

3.2 Deterministic Recombination and Iterated
Local Search (DRILS)

Partition Crossover provides potentially be�er solutions when the

number of connected components in the recombination graph is

large. In order to increase this number, the solutions to recombine

should not be too di�erent, meaning that the Hamming distance

between them should not be too large. �us, the recombination

with a random local optimum (as HiReLS does) is probably not the

best way to exploit Partition Crossover.

DRILS is a kind of Iterated Local Search, where HBHC is used as

the local search algorithm and PX is used to recombine consecutive

solutions. DRILS �rst uses local search to �nd a local optimum.

1
�e details of this saving in computation are in Appendix A (supplementary material).



GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

Algorithm 1 HiReLS

1: stack← ∅

2: while not stopping condition do
3: current← HBHC(random());

4: current.level← 0;

5: if stack.isEmpty() or stack.peek().level > 0 then
6: stack.push(current);

7: else
8: pxSuccess← true;

9: while !stack.isEmpty() and pxSuccess and
stack.peek().level = current.level do

10: top← stack.pop();

11: child← PX(top, current);

12: pxSuccess← child , top and child , current;

13: if pxSuccess then
14: current← HBHC(child);

15: current.level++;

16: end if
17: end while
18: if pxSuccess then
19: stack.push(current);

20: end if
21: end if
22: end while

PX PX PX

PX

level-0

level-1

Random solutions

Figure 3: An illustration of HiReLS. Filled circles are local
optima and curly arrows represent the HBHC.

�en DRILS perturbs the local optimum by randomly �ipping αN
bits, where α is a small fraction (below 0.15 in the experiments).

We call the parameter α the perturbation factor. �is process results

in a so� restart and, a�er applying HBHC, it generates a new local

optimum that should be relative close in Hamming distance to

the previous local optimum. �ese two consecutively generated

local optima can now be recombined using Partition Crossover.

�e o�spring solution can also be improved by HBHC if necessary.

�e process is then iterated: the most recently discovered local

optimum is perturbed and a new local optimum is generated. A

Algorithm 2 DRILS

1: current← HBHC(random());

2: while not stopping condition do
3: next← HBHC (perturb(current));

4: child← PX(current, next);

5: if child = current or child = next then
6: current← next;

7: else
8: current← HBHC(child);

9: end if
10: end while

PX PX

Figure 4: Graphical illustration of DRILS. Curly arrows rep-
resent HBHCwhile normal arrows represent a perturbation
�ipping αN random bits.

graphical illustration of the algorithm is presented in Figure 4 and

the pseudocode is shown in Algorithm 2.

4 EXPERIMENTAL STUDY
In this section we analyze the performance of our two proposals on

adjacent and random NKQ Landscapes. We will also compare the

performance with one of the best state-of-the-art algorithms for

pseudo-Boolean optimization in a gray-box se�ing: the Gray-Box

Parameterless Population Pyramid algorithm (GB-P3) [2].

In all the experiments the radius of the neighborhood in the

Hamming Ball Hill Climber was set to 1. �e machine used in

the experiments is a multicore machine with four Intel Xeon CPU

(E5-2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB of memory and

Ubuntu 14.04 LTS. HiReLS and DRILS were implemented in Java 1.6

and the memory usage was limited to 3GB during all the executions.

�e source code is freely available in GitHub
2
.

4.1 Solving Adjacent NKQ Landscapes
In a �rst experiment we run HiReLS, DRILS and GB-P3 using 50

di�erent instances of the adjacent NKQ Landscapes and 10 indepen-

dent runs per instance. �e stopping condition for all algorithms

is to reach �ve minutes of computation
3
. �e number of variables

is N = 100, 000, the value for Q is 64 and the value for K = k − 1

was changed from 1 to 5 (10 instances were generated for each

value of K). In the case of DRILS we used di�erent values for the

perturbation factor α : 0.005, 0.01, 0.05, 0.10 and 0.15. In Figures 5

and 6 we plot the average �tness (over 100 samples, 10 instances

and 10 runs) found by the algorithms at each time. For the sake of

clarity we omi�ed the results of DRILS of perturbation factors 0.05

and 0.10 and we only show the plots for K = 1 and K = 5.

2
h�ps://github.com/jfrchicanog/E�cientHillClimbers

3
�e stopping condition is arbitrary, but most of the algorithms seem to converge a�er

�ve minutes. A stopping condition based on the algorithm progress should be used in

future work.



Optimizing 1M Var. NK Landscapes Using Deterministic Recombination and LS GECCO ’17, July 15-19, 2017, Berlin, Germany

HiReLS

GB-P3

DRILS 0.005

DRILS 0.01

DRILS 0.15

0 50 100 150 200 250 300

4.42×106

4.44×106

4.46×106

4.48×106

4.50×106

4.52×106

4.54×106

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 5: Average �tness over time for HiReLS, DRILS and
GB-P3 in the adjacent NKQ landscapes for K = 1 (k = 2).

HiReLS

GB-P3

DRILS 0.005

DRILS 0.01

DRILS 0.15

0 50 100 150 200 250 300
4.4×106

4.5×106

4.6×106

4.7×106

4.8×106

4.9×106

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 6: Average �tness value over time for HiReLS, DRILS
and GB-P3 in the adjacent NKQ landscapes for K = 5.

Experiments indicate that HiReLS and DRILS with α = 0.15 are

the best algorithms for low values of K . When the value of K in-

creases, making the problem harder, HiReLS is clearly outperformed

by DRILS. In particular, the version with the highest perturbation

factor (α = 0.15) is always the best in this set of experiments. As the

perturbation factor decreases, the performance of DRILS is worse.

We can also observe that the curves of HiReLS and GB-P3 have a

stair-like shape. �is is a consequence of their leveled structure.

Both algorithms proceed by promoting (or generating) solutions

from one level to another. �e solutions at the highest levels are

of be�er quality. But reaching the highest level requires a good

amount of time, which increases with K .

HiReLS and DRILS can scale to 1 million variables NKQ Land-

scapes. Figure 7 shows the average �tness over time of these al-

gorithms when K = 3. �e behaviour of the algorithms is similar

to the case of 100, 000 variables with K = 1. We also observe the

same relative performance for the other values of K we tried (from

1 to 5). We also run GB-P3 using 1 million variables, but it does not

�nd any solution in �ve minutes. In fact, GB-P3 requires almost 10

hours for the initialization phase. �is is the reason why its results

do not appear in Figure 7.

4.1.1 Scalability to find the global optimum. We noticed that

HiReLS is able to �nd the global optimum in a short time for low

HiReLS

DRILS 0.005

DRILS 0.01

DRILS 0.15

0 50 100 150 200 250 300

4.5×107

4.6×107

4.7×107

4.8×107

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 7: Average �tness value over time for HiReLS and
DRILS in the adjacentNKQ landscapes forK = 3 andN = 10

6.

��������

▲ Q1 ◆ Q2 ▼ Q3 ● Mean

▲▲▲ ▲ ▲

▲

▲

◆◆◆ ◆ ◆

◆

◆

▼▼▼
▼

▼

▼

▼

●●● ●
●

●

●

0 200000 400000 600000 800000 1×106
0

500

1000

1500

2000

2500

N

Ti
m
e
(s
)

Figure 8: �artiles and mean of the time (in seconds) re-
quired by HiReLS to �nd the global optimum for increasing
values of N in an adjacent NKQ Landscapes with K = 2.

values ofK . We wonder how fast can HiReLS �nd a global optimum

as N increases. To answer this question we run HiReLS to solve

Adjacent NKQ Landscapes with values of N ranging from 1,000

to 1,000,000. �e stopping condition was set to reach the global

optimum, which we previously computed using Wright et al.’s
dynamic programming algorithm [12]. We generated 30 instances

with K = 2 and run the algorithms 30 times per instance (sample

size of 900 values per N ). In Figure 8 we show the �rst and third

quartiles (do�ed lines), median (dashed line) and average time

(solid line) in seconds required by HiReLS to solve the instances to

optimality.

�e required time increases linearly with the size of the instance.

�is is a nice �nding, because HiReLS is not designed to solve the

adjacent NKQ Landscapes (as is dynamic programming); it uses

only the information in the VIG, and this is enough to solve the

adjacent model to optimality in polynomial time.

4.1.2 The influence of K in the runtime. �e large increase in

the time required to �nd the global optimum when K is increased

suggests that K has a big in�uence in the runtime. �is is well-

known in the case of the dynamic programming algorithm, where



GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

the runtime increases linearly with N but exponentially with K .

In this section we analyze the time required by HiReLS to �nd

the global optimum when K is increased. For this experiment we

used N = 1, 000 and K varies from 1 to 5. For each value of K we

generated 30 random instances and we run HiReLS 30 times per

instance (a sample of 900 values per K). In Figure 9 we show the

�rst and third quartiles (do�ed lines), the median (dashed line) and

the average (solid line) of each sample for each value of K . �e

time (in seconds) is shown in logarithmic scale. We can observe a

growth in time that is slightly higher than exponential, con�rming

our hypothesis about the in�uence of K in the runtime.

��������

▲ Q1 ◆ Q2 ▼ Q3 ● Mean

▲

▲

▲

▲

▲

◆

◆

◆

◆

◆

▼

▼

▼

▼

▼

●

●

●

●

●

1 2 3 4 5
0.1

1

10

100

K

Ti
m
e
(s
)

Figure 9: �artiles and mean of the time (in logarithmic
scale) required by HiReLS to �nd the global optimum for
increasing values of K in an adjacent NKQ Landscapes with
N = 1, 000.

4.2 Solving Random NKQ Landscapes
�is section focuses on solving the random model of NKQ Land-

scapes. For K ≥ 2 (k ≥ 3), this model is NP-hard and we want to

evaluate how our algorithms perform on NP-hard problems. We

run HiReLS, DRILS and GB-P3 to solve 50 di�erent instances of the

random NKQ Landscapes (10 instances for each value of K ). In all

the cases 10 independent runs were executed per algorithm and

the average was computed with a sample of 100 values. All the

algorithms are con�gured to stop a�er �ve minutes of computation.

In Figures 10 and 11 we show the plots with the average �tness

for K = 1 and K = 5, respectively. �ree variants of DRILS with

di�erent perturbation factors are shown (the most representative

ones), while the other two are omi�ed.

HiReLS has a completely di�erent behavior for K = 1 and K > 1.

When K = 1 HiReLS is one of the best algorithms, together with

DRILS for higher values of the perturbation factor. However, when

K > 1, HiReLS is the worst algorithm. �e value ofK has a dramatic

impact in the performance of HiReLS in the random model. �is

is not observed in the adjacent model. Interestingly, the random

model withK = 1 is solvable in polynomial time. �us, we conclude

that HiReLS is among the best algorithms solving “easy” problems.

For K > 1 the best algorithm is always DRILS with an appropriate

perturbation factor. As K increases, the fraction of �ipped variables

HiReLS

GB-P3

DRILS 0.005

DRILS 0.01

DRILS 0.15

0 50 100 150 200 250 300
4.38×106

4.40×106

4.42×106

4.44×106

4.46×106

4.48×106

4.50×106

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 10: Average�tness value over time forHiReLS,DRILS
and GB-P3 in the random NKQ landscapes for K = 1.

HiReLS

GB-P3

DRILS 0.01

DRILS 0.10

DRILS 0.15

0 50 100 150 200 250 300

4.60×106

4.65×106

4.70×106

4.75×106

4.80×106

4.85×106

4.90×106

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 11: Average�tness value over time forHiReLS,DRILS
and GB-P3 in the random NKQ landscapes for K = 5.

during the perturbation should be decreased. �is was also observed

in the adjacent model. We will analyze the reason for this behavior

in Section 4.4. Finally, GB-P3 is always outperformed by a DRILS

with an appropriate factor.

�e results of HiReLS and DRILS for 1 million variables random

NKQ Landscapes, shown in Figure 12, follow the same trend as in

the case ofN = 100, 000 variables. For all the values ofK we observe

the same relative performance for N = 100, 000 and N = 1, 000, 000.

We couldn’t run GB-P3 due to its long initialization time.

4.3 Local Optima Network Visualization
In order to be�er understand the search dynamics of HiReLS and

DRILS, we visualized the Local Optima Networks (LON) [7] in-

duced by example runs of the algorithms. A Local Optima Network

(LON) is a graph where nodes are local optima and edges repre-

sent transitions among them with a given search operator. In our

case the local optima are traced during one run of each algorithm

solving 1 million variable NKQ Landscapes. In HiReLS, transitions

between local optima can only occur via recombination, which

is represented by red arcs in the LONs (an arc from each parent

to the child). In DRILS there are two possible transitions among

local optima: using Partition Crossover and using a perturbation

followed by local search. Crossover transitions are visualized with



Optimizing 1M Var. NK Landscapes Using Deterministic Recombination and LS GECCO ’17, July 15-19, 2017, Berlin, Germany

red arcs and perturbation followed by local search are represented

with blue arcs. Figures 13 and 14, show representative LONs for

the two algorithms and landscape models.

HiReLS

DRILS 0.01

DRILS 0.05

DRILS 0.15

0 50 100 150 200 250 300

4.55×107

4.60×107

4.65×107

4.70×107

4.75×107

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 12: Average �tness value over time for HiReLS and
DRILS in the randomNKQ landscapes forK = 3 and N = 10

6.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

(a) Adjacent

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

(b) Random

Figure 13: Local Optima Network for one run of HiReLS
with N = 10

6, K = 3. �e best local optimum is highlighted
in black.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

(a) Adjacent

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

(b) Random

Figure 14: Local Optima Network for one run of DRILS with
N = 1, 000, 000, K = 3.

�e LONs illustrate quite well how the algorithms work (com-

pare these LONs with Figures 3 and 4). In both algorithms the

number of local optima visited during search is lower for the ran-

dom model. Ochoa et al. [7] showed that the random model of NK

Landscapes has fewer local optima than the adjacent model. �e

basins of a�raction must be larger in the random model, thus local

search requires more steps to reach local optima. Since we stop the

algorithms a�er �ve minutes, fewer local optima can be visited in

the random model.

For HiReLS (Figure 3) we observe some isolated connected com-

ponents. �ese local optima correspond to solutions that were used

to build a local optimum for which Partition Crossover failed to

generate an o�spring (it cannot improve the parents). �e presence

of many isolated components reduces the e�cacy of the algorithm.

In DRILS all the recombinations were successful (a crossover failure

should appear in the LON as a node with one incoming and one

outgoing blue arc). In fact, the goal of adding a perturbation to

DRILS is to increase the probability of successful recombination

(because the solutions are near enough in the search space). We

can see in the LON that this perturbation is working properly.

4.4 On the Perturbation Factor of DRILS
We can easily �x the perturbation factor of DRILS using an auto-

matic parameter tuning tool, like iRace [6]. However, we noticed

a trend in the optimal value of the perturbation factor. As K in-

creases the optimal value is lower. We think the performance of

the algorithm is related to the number of components identi�ed by

Partition Crossover. In order to �nd evidences of this hypothesis

we summed the number of connected components found by each

application of PX in every single run, we averaged these numbers

over all the independent runs on the same instance and the same

perturbation factor, and we computed a rank of perturbation factors

in terms of connected components (the lower the rank the higher

the number of connected components). We did the same for the

�nal �tness value (a�er �ve minutes). �en, we averaged these

ranks over all the instances with the same value of K . �e resulting

averaged ranks are in Table 1 for the random NKQ Landscapes with

1 million variables.

We observe a direct correlation between the rank by the �tness

value and the rank by the number of connected components. In

the cases where they di�er (highlighted in boldface), the di�er-

ence is at most one unit. �us, we conclude that increasing the

number of connected components found by PX should improve

performance. �e average number of connected components q of

the recombination graph is shown in Table 2. �ere are high values

of q for some combinations of K and α . For example, q = 16, 259

for K = 1 and α = 0.15, which means that the best of more than

2
16,259 = 10

4,894
solutions are obtained in some applications of

Partition Crossover. We also notice that the best rank in Table 1

does not always correspond with the highest value of q in Table 2.

�e ranking of Table 1 is computed using the sum of connected

components found by all the applications of PX in one run, which

takes into account also the number of times that PX is applied.

Table 2 shows averages and does not consider how many times PX

is applied. �e number of times that PX is successfully applied is

also important to performance.



GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

Table 1: Average ranking of the perturbation factor values
(across rows) in terms of sum of number of components
found by PX and average �nal �tness value in the runs of
DRILS for the random NKQ Landscapes with N = 10

6.

Perturbation Factor (α )

0.005 0.01 0.05 0.10 0.15

K PX Fit PX Fit PX Fit PX Fit PX Fit

1 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 1.0 1.0

2 5.0 5.0 4.0 4.0 1.1 1.3 1.9 1.7 3.0 3.0

3 3.0 3.3 2.0 2.0 1.0 1.0 4.0 3.7 5.0 5.0

4 2.0 3.0 1.0 1.0 3.0 2.0 4.0 4.0 5.0 5.0

5 1.9 2.7 1.1 1.0 3.0 2.3 4.0 4.0 5.0 5.0

Table 2: Average number of components q found by Parti-
tion Crossover in the runs of DRILS for the random NKQ
Landscapes with N = 10

6 and di�erent values for α and K .

Perturbation Factor (α )

K 0.005 0.01 0.05 0.10 0.15

1 683 1,314 6,059 11,442 16,259

2 967 1,772 6,938 11,426 13,428

3 1,041 1,810 4,970 3,639 2,367

4 993 1,657 1,780 661 301

5 903 1,344 517 100 38

It is not hard to theoretically compute the optimal value for the

perturbation factor for the Adjacent NK Landscape if no hill climb-

ing is applied to the perturbed solution (see Appendix B in supple-

mentary material). �e optimal perturbation factor is 1/(K + 1) and

the expected number of components is approximately Ne−1/(K+1).
DRILS applies HBHC a�er the perturbation and, for this reason,

the previous expressions are not strictly correct. However, as we

increase K the optimal perturbation factor decreases and the same

happens with the number of components (and performance). In the

case of the Random NK Landscape the theoretical prediction is not

so easy to do, but we also observe in Table 1 and Figures 10 and 11

an empirical inverse relationship between the optimal perturbation

factor and performance.

5 CONCLUSIONS
We have presented two algorithms, HiReLS and DRILS, combining

two gray-box operators: Hamming Ball Hill Climbing and Partition

Crossover. �ese two operators, especially Partition Crossover,

are able to avoid exploring many low quality solutions thanks to

the use of the VIG. In a typical 5-minutes run of DRILS solving

random NKQ Landscapes with N = 1, 000, 000, K = 3 and α = 0.05,

it applied 48 successful recombinations of local optima, with an

average of 4,970 components found in each of them (see Table 2),

discarding 2
4,970

solutions in each recombination. HBHC found

98 local optima, discarding 1 million solutions in each of them. In

total, the number of implicitly considered solutions in 300 seconds

is around 10
1,497

. �is is equivalent to evaluating 10
1,485

solutions

per nanosecond using a black-box algorithm, which is impossible

using current technology. We have also shown that HiReLS and

DRILS beat Goldman’s Gray-Box Parameterless Population Pyramid

(a state-of-the-art algorithm for pseudo-Boolean optimization) in

random and adjacent NKQ Landscapes.

Overall, we conclude that DRILS is the best algorithm in practice

from the ones compared here. In particular, it has been always the

best in the random model, which is NP-hard. One of the disadvan-

tages of DRILS is that it contains a parameter that has to be tuned:

the perturbation factor. We observed in the experiments that this

parameter can have a high impact in the performance. �e optimal

value for the perturbation factor of DRILS depends on the variable

interaction graph of the instance. Future work should address how

to set a near optimal value for this parameter, or even how to op-

timally perform the perturbation in DRILS using the information

contained in the variable interaction graph.

Industrial problems are not as structured as the adjacent NKQ

Landscapes or as random as the random model. Future work should

study how the proposed algorithms perform in semi-structured

instances that re�ect industrial and real-world problems.

ACKNOWLEDGEMENTS
Funding was provided by the Fulbright program, the Spanish Ministry

of Education, Culture and Sport (CAS12/00274), the Spanish Ministry of

Economy and Competitiveness and FEDER (TIN2014-57341-R), the Univer-

sity of Málaga, Andalucı́a Tech, the Air Force O�ce of Scienti�c Research,

(FA9550-11-1-0088), the Leverhulme Trust (RPG-2015-395), the FAPESP

(2015/06462-1) and CNPq (304400/2014-9).

REFERENCES
[1] Francisco Chicano, Darrell Whitley, and Andrew M. Su�on. 2014. E�cient

identi�cation of improving moves in a ball for pseudo-boolean problems. In

Proceedings of GECCO, Vancouver, BC, Canada, July 12-16, 2014, Dirk V. Arnold

(Ed.). ACM, NY, USA, 437–444. DOI:h�p://dx.doi.org/10.1145/2576768.2598304

[2] Brian W. Goldman and William F. Punch. 2015. Gray-Box Optimization Using

the Parameter-less Population Pyramid. In Proceedings of GECCO. ACM, New

York, NY, USA, 855–862. DOI:h�p://dx.doi.org/10.1145/2739480.2754775

[3] Robert B. Heckendorn, Soraya Rana, and Darrell Whitley. 1999. Polynomial Time

Summary Statistics for a Generalization of MAXSAT. In Proceedings of GECCO -
Volume 1. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 281–288.

h�p://dl.acm.org/citation.cfm?id=2933923.2933952

[4] Holger H. Hoos and �omas Stützle. 2004. Stochastic Local Search: Foundations
and Applications. Morgan Kaufman.

[5] Stuart A. Kau�man and Edward D. Weinberger. 1989. �e NK model of rugged

�tness landscapes and its application to maturation of the immune response.

Journal of �eoretical Biology 141, 2 (1989), 211 – 245. DOI:h�p://dx.doi.org/10.

1016/S0022-5193(89)80019-0

[6] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez-Cáceres, Mauro

Bira�ari, and �omas Stützle. 2016. �e irace package: Iterated racing for

automatic algorithm con�guration. Operations Research Perspectives 3 (2016), 43

– 58. DOI:h�p://dx.doi.org/10.1016/j.orp.2016.09.002

[7] Gabriela Ochoa, Francisco Chicano, Renato Tinós, and Darrell Whitley. 2015.

Tunnelling Crossover Networks. In Proceedings of GECCO. ACM, New York, NY,

USA, 449–456. DOI:h�p://dx.doi.org/10.1145/2739480.2754657

[8] Renato Tinós, Darrell Whitley, and Francisco Chicano. 2015. Partition Crossover

for Pseudo-Boolean Optimization. In Proceedings of FOGA. ACM, New York, NY,

USA, 137–149. DOI:h�p://dx.doi.org/10.1145/2725494.2725497

[9] Darrell Whitley and Wenxiang Chen. 2012. Constant time steepest descent

local search with lookahead for NK-landscapes and MAX-kSAT. In Proceedings
of GECCO. ACM, NY, USA, 1357–1364. DOI:h�p://dx.doi.org/10.1145/2330163.

2330351

[10] Darrell Whitley, Doug Hains, and Adele Howe. 2009. Tunneling Between Optima:

Partition Crossover for the Traveling Salesman Problem. In Proceedings of GECCO.

ACM, NY, USA, 915–922. DOI:h�p://dx.doi.org/10.1145/1569901.1570026

[11] L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray Box

Optimization for Mk Landscapes (NK Landscapes and MAX-kSAT). Evolutionary
Computation 24 (Jan-09-2016 2016), 491 – 519. DOI:h�p://dx.doi.org/10.1162/

EVCO a 00184

[12] Alden Wright, Richard �ompson, and Jian Zhang. 2000. �e computational com-

plexity of NK �tness functions. IEEE Transactions on Evolutionary Computation
4, 4 (2000), 373–379.

http://dx.doi.org/10.1145/2576768.2598304
http://dx.doi.org/10.1145/2739480.2754775
http://dl.acm.org/citation.cfm?id=2933923.2933952
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1145/2739480.2754657
http://dx.doi.org/10.1145/2725494.2725497
http://dx.doi.org/10.1145/2330163.2330351
http://dx.doi.org/10.1145/2330163.2330351
http://dx.doi.org/10.1145/1569901.1570026
http://dx.doi.org/10.1162/EVCO_a_00184
http://dx.doi.org/10.1162/EVCO_a_00184

	Abstract
	1 Introduction
	2 Background
	2.1 Variable Interaction Graph
	2.2 Partition Crossover
	2.3 Hamming Ball Hill Climber

	3 Algorithms
	3.1 Hierarchical Recombinative Local Search (HiReLS)
	3.2 Deterministic Recombination and Iterated Local Search (DRILS)

	4 Experimental Study
	4.1 Solving Adjacent NKQ Landscapes
	4.2 Solving Random NKQ Landscapes
	4.3 Local Optima Network Visualization
	4.4 On the Perturbation Factor of DRILS

	5 Conclusions
	References

