
Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

New Security Definitions, Constructions and Applications
of Proxy Re-Encryption

David Nuñez

Advisors:
Isaac Agudo and Javier Lopez

Department of Computer Science
Universidad de Málaga, Spain

Email: dnunez@lcc.uma.es

STM 2017 – Oslo, Norway

1 / 93

mailto:dnunez@lcc.uma.es

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Outline

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption

5. Conclusions and Future Work

2 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Motivation: Cloud computing

Great expectations: better performance, cost reduction, etc.

Great concerns: security and privacy risks

Conventional security premise:
⇒attackers should not get inside the security domain
• Goal: Keep the attacker away from the protected assets
• Measures: access control systems, firewalls, etc.
• Cloud provider must be fully trusted to not bypass these measures

A more realistic premise:
⇒attackers have potential access to users’ data
• Implication: Data must be stored in encrypted form
• Trust in the cloud provider can be reduced

3 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario

Consumer DomainOwner Domain

Storage Domain

Cloud Service Provider

Data Owner

Other CSPs

Data
Consumers

Data owner's
devices

Encrypted data

outsources data storage

retrieves
data

grants access to data

Producer Domain

produces data

Data
Producers

Data owner's
devices

4 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario

Producer Domain

Heart rate monitor

Consumer DomainOwner Domain

Storage Domain

Cloud Service Provider

Doctor

Encrypted data

outsource data storage

retrieves
data

shares data

produces data

5 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Encrypted data in the cloud

Critical requirement: the provider should not have access to the decryption keys

Not an easy task:
• Symmetric encryption cannot be used alone, since it implies that the same key is

shared or agreed
• Public-key encryption implies fixing a recipient in advance
• Increasingly complex problem: multiple pieces of data, diverse producers and

consumers

Need for non-traditional cryptosystems that provide advanced functionalities

6 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Proxy Re-Encryption

Alice
(Delegator)

Bob
(Delegatee)

Proxy

delegation of decryption rights

cB = ReEnc(rkA→B , cA)cA = Enc(pkA, m)

rkA→B

(pkA, skA) (pkB , skB)

7 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario and PRE

Owner Domain

Data Owner

(pkA, skA)

Re-Encryption
Keys Generation

Data owner's
public and private keys

8 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario and PRE

Owner Domain

Data Owner

Producer Domain

Data
Producers

(pkA, skA)

pkA

Re-Encryption
Keys Generation

Data owner's
public key

Data owner's
public and private keys

8 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario and PRE

Consumer DomainOwner Domain

Data Owner

Data
Consumers

Producer Domain

Data
Producers

(pkA, skA)

(pkB , skB)

pkA

Re-Encryption
Keys Generation

Data owner's
public key

Data owner's
public and private keys

Data consumer's
public and private keys

8 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Secure Data Sharing Scenario and PRE

Consumer DomainOwner Domain

Storage Domain

Cloud Service Provider

Data Owner

Data
Consumers

Encrypted
data

Re-Encryption
keys

Re-Encryption
Service

Producer Domain

Data
Producers

rkA→B

(pkA, skA)

(pkB , skB)

pkA

Re-Encryption
Keys Generation

Data owner's
public key

Data owner's
public and private keys

Data consumer's
public and private keys

8 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Bibliometric Analysis of PRE Applications

Criteria Classification Coverage

Functionality
Access Control 67%
Key Management 24%
Communication 4%

Objective

Confidentiality 80%
Privacy 10%
Authentication 8%
Accountability 2%

Scenarios
Cloud 53%
Wireless Network 8%
Others 33%

9 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Application to the Real World

Growing interest:

In 2013, Toshiba deployed in Japan a cloud storage service with PRE

Increasing number of patents
⇒ Toshiba, Huawei, Mitsubishi, Nokia, Gemalto, ...

Some start-ups have appeared in the past months

10 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Goals of this Thesis

1. Better understanding:

Great variety of PRE schemes and applications
⇒ Review and analyze the state of the art

Lack of unified definitions of the very idea of security in PRE
⇒ Achieve definitional unity

Reuse of concepts and techniques from PKE
⇒ Analyze the implications in the PRE context

2. More security:

Most PRE schemes achieve weak security notions
⇒ Define techniques for strengthening security

11 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Goals of this Thesis

3. Better performance:

PRE is ideally suited to the secure data sharing scenario
⇒ Efficiency is a core aspect

4. Bringing theory and practice together:

Proposals often lack a practical treatment
⇒ Integration of PRE within real systems

12 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption
Definitions of Security
Relations among security notions
Attack to PRE scheme from PKC’2014
Summary

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption

5. Conclusions and Future Work

13 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Syntax of a Proxy Re-Encryption Scheme

A PRE scheme is composed of functions KeyGen, Enc, Dec, ReKeyGen, and ReEnc:

KeyGen(n)→ (pki, ski). On input security parameter n, the key generation
algorithm KeyGen outputs a pair of public and secret keys (pki, ski) for user i.

Enc(pki,m)→ ci. On input the public key pki and a message m ∈M, the
encryption algorithm Enc outputs a ciphertext ci ∈ C.

Dec(ski, ci)→ m. On input the secret key ski and a ciphertext ci ∈ C, the
decryption algorithm Dec outputs a message m ∈M or the symbol ⊥ indicating
ci is invalid.

14 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Syntax of a Proxy Re-Encryption Scheme

ReKeyGen(pki, ski, pkj , skj)→ rki→j . On input the pair of public and secret keys
(pki, ski) for user i and the pair of public and secret keys (pkj , skj) for user j, the
re-encryption key generation algorithm ReKeyGen outputs a re-encryption key
rki→j .

ReEnc(rki→j , ci)→ cj . On input a re-encryption key rki→j and a ciphertext
ci ∈ C, the re-encryption algorithm ReEnc outputs a second ciphertext cj ∈ C or
the symbol ⊥ indicating ci is invalid.

15 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The Indistinguishability game (IND)

It formalizes the inability of an adversary to distinguish which message, from two
possible options m0 and m1, is encrypted under ciphertext c∗.

Challenger Adversary

m0,m1←−−−−−−−−−−−−−−−−−−
c∗−−−−−−−−−−−−−−−−−−→
m?←−−−−−−−−−−−−−−−−−−

The adversary has some capabilities in the form of oracles

16 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The Indistinguishability game (IND): Phase 1

Challenger Adversary (A1)

(pk∗, sk∗)← KeyGen(n)
pk∗−−−−−−−−−−−−−−−−−−→

...
Queries to oracles Ω1←−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−→
...

m0,m1←−−−−−−−−−−−−−−−−−−

17 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The Indistinguishability game (IND): Phase 2

Challenger Adversary (A2)

δ
R←− {0, 1}

c∗ ← Enc(pk∗,mδ)
c∗−−−−−−−−−−−−−−−−−−→
...

Queries to oracles Ω2←−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−→

...

δ
?
= δ′

δ′←−−−−−−−−−−−−−−−−−−

18 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Definitions of Security for Public-Key Encryption

Decryption oracle: Odec(c)→ m

The IND game admits different attack models:
• CPA ⇒ Ω1 = ∅ Ω2 = ∅
• CCA1 ⇒ Ω1 = {Odec} Ω2 = ∅
• CCA2 ⇒ Ω1 = {Odec} Ω2 = {Odec}

Attack models for PKE: {CCAi | 0 ≤ i ≤ 2}
⇒ The index i indicates the last phase of the game where Odec is available:
CCA0 (= CPA), CCA1, CCA2

[Bellare et al., CRYPTO 1998]

19 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Definitions of Security for Proxy Re-Encryption

Reuse of PKE definitions of security:
• The Indistinguishability (IND) game

• Decryption oracle: Odec(pk, c)→ m

In PRE, we also need to add a re-encryption oracle:

Oreenc(pk, pk′, c)→ c′

This addition makes the definitions of security more complex.

20 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Parametrizing attack models

Attack models for PKE: {CCAi | 0 ≤ i ≤ 2}
The index i indicates the last phase of the security game where Odec is available

Contribution: Parametric family of attack models

Attack models for PRE: {CCAi,j | 0 ≤ i, j ≤ 2}
The index i indicates the last phase of the security game where Odec is available

The index j indicates the last phase of the security game where Oreenc is available

21 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Parametric Family of Attack Models for PRE

Ω1 Ω2 Attack model

∅ ∅ CCA0,0 = CPA

{Oreenc} ∅ CCA0,1

{Oreenc} {Oreenc} CCA0,2

{Odec} ∅ CCA1,0

{Odec,Oreenc} ∅ CCA1,1

{Odec,Oreenc} {Oreenc} CCA1,2

{Odec} {Odec} CCA2,0

{Odec,Oreenc} {Odec} CCA2,1

{Odec,Oreenc} {Odec,Oreenc} CCA2,2

22 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Trivial implications between PRE security notions

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0

Thm. 4.7

23 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Separations between PRE security notions

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0

Thm. 4.8

Thm. 4.7

24 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Separations between PRE security notions

These separations arise from the violation of the following property:

Contribution: Private Re-Encryption Keys property

“The adversary should not be able to learn the re-encryption key from a ciphertext
and its re-encryption”

Re-Encryption rk?
c

c′

If this property is violated, then the scheme is vulnerable to chosen-ciphertext attacks
that use the re-encryption oracle

25 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Exploiting the re-encryption key leakage

Contribution: Impossibility result

A PRE scheme that violates the private re-encryption keys property can only be IND-CCAi,0, for

i ∈ {0, 1, 2} (i.e., a security notion without Oreenc)

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0

26 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The PRE scheme from Kirshanova (PKC’14)

Lattice-based scheme

Unidirectional, collusion-resistant, non-interactive

Allegedly ‘CCA1 secure’ ⇒ We show a IND-CCA1,1 attack

Actually, the scheme is IND-CCA1,0 secure because it does not fulfill the private
re-encryption keys property

27 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The PRE scheme from Kirshanova (PKC’14)

Ciphertexts are integer vectors b

Re-encryption key is a matrix rk

Re-encryption is simply a vector-matrix multiplication:

b′ = b · rk

28 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The heart of the attack

Challenger Adversary

Oreenc

b

b′ = b · rk

29 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The heart of the attack

Challenger Adversary

Oreenc

b = 1

b′ = rk

30 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The heart of the attack

Challenger Adversary

Oreenc

bt (row vector)

b′t = bt · rk (rk is a matrix)

31 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The heart of the attack

Challenger Adversary

Oreenc

(1, 0, ..., 0)t

b′t = (1, 0, ..., 0)t · rk = row1(rk)

32 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

The heart of the attack

Challenger Adversary

Oreenc

(0, 1, ..., 0)t

b′t = (0, 1, ..., 0)t · rk = row2(rk)

33 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Finalizing the attack

The adversary can extract arbitrary rows of rk

The scheme violates the privacy of re-encryption keys
⇒ The scheme cannot be IND-CCA1,1

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0

34 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary

We propose a parametric family of attack models for PRE

We formalize the private re-encryption keys property and show what happens
when it is violated
⇒ Attacks can be based exclusively on Oreenc

We exemplify this by showing an attack to a PRE scheme

35 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions
NTRUReEncrypt
Generic CCA-Secure Transformations
Summary

4. Some Applications of Proxy Re-Encryption

5. Conclusions and Future Work

36 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

New Proxy Re-Encryption Constructions

Part of the motivation of this thesis is to investigate more concrete aspects of PRE
schemes, such as those related to performance and security constructions.
• Design faster PRE schemes
• Increase security of PRE schemes

Two separate contributions:
• We explore the use of lattice-based crypto to construct more efficient PRE schemes
• We study the application of generic transformations to increase the security of PRE

schemes

37 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRUReEncrypt: Efficient PRE scheme based on NTRU

We propose new PRE schemes based on NTRU, a widely known lattice-based
cryptosystem.

Lattice-based cryptography is a promising field:
• Post-quantum security
• Efficiency through parallelization

We provide two different schemes:
• The first is based on the conventional NTRU cryptosystem
• The second is based on an NTRU variant that is CPA-secure under the Ring-LWE

assumption.

Our experimental results show that the first scheme outperforms previous
proposals by an order of magnitude.

38 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRU: Overview

One of the first PKE schemes based on lattices

Proposed by Hoffstein, Pipher and Silverman in 1996

NTRUEncrypt is very efficient, orders of magnitude faster than other PKE
schemes

IEEE Standard 1363.1-2008 and ANSI X9.98-2010

It lacks a formal proof of security

39 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRU

Based on integer polynomials: keys, messages, ciphertexts

Operations are additions and multiplications modulo p and q

Private key: sk = f Public key: pk = h

Encryption:
• Plaintext M Public key h Random noise s
• Ciphertext C = h · s+M mod q

Decryption:
• Secret key f Ciphertext C
• Compute C ′ = f · C mod q
• Output m = C ′ mod p

40 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRUReEncrypt

Contribution: NTRUReEncrypt

We extended NTRU to support re-encryption of ciphertexts

Private key: skA = fA Public key: pkA = hA

Re-Encryption Key Generation:

• Secret keys skA = fA and skB = fB
• Re-encryption key

rkA→B = skA · sk−1B = fA · f−1B
Re-Encryption:

• Re-encryption key rkA→B Ciphertext CA Random noise e
• Re-encrypted ciphertext

CB = CA · rkA→B + p · e

41 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRUReEncrypt: Re-Encryption

Limited Multihop:

The scheme does not support unlimited re-encryptions

The noise e added during the re-encryption accumulates on each hop, until
eventually, decryption fails

This depends heavily on the choice of parameters

42 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRUReEncrypt: Analysis

Computational costs:

The core operation is the multiplication of polynomials

Permits parallelization ⇒ Multicore architectures and GPUs

Encryption, decryption and re-encryption only need a single multiplication ⇒
The scheme has great performance

43 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Comparison of NTRUReEncrypt to other schemes

Encryption Decryption Re-Encryption
0

5

10

15

20

0.43
1.22 1.151.17

0.47

20.5

11.07 11.21 11.48

22.52

11.89

22.29

T
im

e
(m

s)

NTRUReEncrypt Aono et al.

BBS Weng et al.

44 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

NTRUReEncrypt: Analysis

Space costs:

Keys and ciphertexts are polynomials of size O(n · log2 q) bits

Other lattice-based schemes have ciphertexts of size O(n2)

Table: Comparison of space costs (in KB)

Size Aono et al. NTRUReEncrypt

Public keys 60.00 1.57

Secret key 60.00 1.57

Re-Encryption key 2520.00 1.57

Ciphertext 0.66 1.57

45 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

PS-NTRUReEncrypt

NTRUReEncrypt does not have a proof of security

Contribution: PS-NTRUReEncrypt

Provable secure version of NTRUReEncrypt

IND-CPA secure under the Ring-LWE assumption

Extension of the NTRU variant proposed by Stehlé and Steinfeld [Eurocrypt’11]

More of theoretical interest
⇒ Not very efficient with current parameters

46 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions
NTRUReEncrypt
Generic CCA-Secure Transformations
Summary

4. Some Applications of Proxy Re-Encryption

5. Conclusions and Future Work

47 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Motivation

We just described a PRE scheme that is proven CPA-secure.

An immediate objective would be to improve its security notion, hopefully
achieving full CCA-security

Two possible strategies can be applied:
• Redesign, from scratch, a new scheme based on the original
• Bootstrap the achieved security notion into a stronger one by means of a generic

method.

We focus on the second strategy

48 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Motivation

Several generic methods exist for achieving CCA-security PKE schemes from
weakly secure cryptosystems
⇒ E.g., Fujisaki-Okamoto, REACT, GEM

This is not the case of proxy re-encryption

Several flawed attempts to reuse these transformations

Goal ⇒ To explore the adaptation of these methods to PRE

49 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Fujisaki-Okamoto Transformation (FOT) [J. Crypto, 2013]

Let PKE be a public-key encryption scheme, Sym a symmetric encryption scheme,
and H and G hash functions

Encryption:

1. Samples a random σ
2. c← Sym.Enc(G(σ),m)
3. e← PKE.Enc(pk, σ;H(σ, c))
4. Output (e, c)

Decryption:

1. σ ← PKE.Dec(sk, e)
2. m← Sym.Dec(G(σ), c)

3. Check: e
?
= PKE.Enc(pk, σ;H(σ, c))

4. Output m if check holds;
otherwise output ⊥

50 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Fujisaki-Okamoto Transformation (FOT) [J. Crypto, 2013]

Let PKE be a public-key encryption scheme, Sym a symmetric encryption scheme,
and H and G hash functions

Encryption:

1. Samples a random σ
2. c← Sym.Enc(G(σ),m)
3. e← PKE.Enc(pk, σ;H(σ, c))
4. Output (e, c)

Decryption:

1. σ ← PKE.Dec(sk, e)
2. m← Sym.Dec(G(σ), c)

3. Check: e
?
= PKE.Enc(pk, σ;H(σ, c))

4. Output m if check holds;
otherwise output ⊥

50 / 93

FOT produces a CCA-secure scheme in
the Random Oracle Model if PKE is
OW-CPA secure

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption

It is tempting to directly use FOT in PRE

Re-Encryption: input (e, c)

1. e′ ← PRE.ReEnc(rk, e)
2. Output (e, c)

Recall that the check during decryption involves reconstructing the ciphertext

If the re-encryption alters the randomness of the ciphertext, the check will fail

The “CCA-secure” PRE scheme by Aono et al. [IndoCrypt 2013] suffers from this
flaw

51 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Perfect Key-Switching

A solution could be to require that the PRE scheme does not alter the
randomness during re-encryption

Contribution: Perfect Key-Switching property

Re-encryption simply “switches” one public key for another, without altering the
original randomness

ReEnc(rki→j ,Enc(pki,m; r)) = Enc(pkj ,m; r)

E.g.: PRE scheme from Blaze, Bleumer, and Strauss

((ga)︸︷︷︸
pkA

r, gr ·m)
Re-encryption−−−−−−−−→ ((gb)︸︷︷︸

pkB

r
, gr ·m)

52 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Perfect Key-Switching

A solution could be to require that the PRE scheme does not alter the
randomness during re-encryption

Contribution: Perfect Key-Switching property

Re-encryption simply “switches” one public key for another, without altering the
original randomness

ReEnc(rki→j ,

Enc(pki,m; r)

) = Enc(pkj ,m; r)

E.g.: PRE scheme from Blaze, Bleumer, and Strauss

((ga)︸︷︷︸
pkA

r, gr ·m)
Re-encryption−−−−−−−−→ ((gb)︸︷︷︸

pkB

r
, gr ·m)

52 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Perfect Key-Switching

A solution could be to require that the PRE scheme does not alter the
randomness during re-encryption

Contribution: Perfect Key-Switching property

Re-encryption simply “switches” one public key for another, without altering the
original randomness

ReEnc(rki→j ,Enc(pki,m; r))

= Enc(pkj ,m; r)

E.g.: PRE scheme from Blaze, Bleumer, and Strauss

((ga)︸︷︷︸
pkA

r, gr ·m)
Re-encryption−−−−−−−−→ ((gb)︸︷︷︸

pkB

r
, gr ·m)

52 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Perfect Key-Switching

A solution could be to require that the PRE scheme does not alter the
randomness during re-encryption

Contribution: Perfect Key-Switching property

Re-encryption simply “switches” one public key for another, without altering the
original randomness

ReEnc(rki→j ,Enc(pki,m; r)) = Enc(pkj ,m; r)

E.g.: PRE scheme from Blaze, Bleumer, and Strauss

((ga)︸︷︷︸
pkA

r, gr ·m)
Re-encryption−−−−−−−−→ ((gb)︸︷︷︸

pkB

r
, gr ·m)

52 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Perfect Key-Switching

A solution could be to require that the PRE scheme does not alter the
randomness during re-encryption

Contribution: Perfect Key-Switching property

Re-encryption simply “switches” one public key for another, without altering the
original randomness

ReEnc(rki→j ,Enc(pki,m; r)) = Enc(pkj ,m; r)

E.g.: PRE scheme from Blaze, Bleumer, and Strauss

((ga)︸︷︷︸
pkA

r, gr ·m)
Re-encryption−−−−−−−−→ ((gb)︸︷︷︸

pkB

r
, gr ·m)

52 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption

Encryption: input pk,m

1. Samples a random σ
2. c← Sym.Enc(G(σ),m)
3. e← PRE.Enc(pk, σ;H(σ, c))
4. Output (e, c)

Decryption: input sk, (e, c)

1. σ ← PRE.Dec(sk, e)
2. m← Sym.Dec(G(σ), c)

3. Check: e
?
= PRE.Enc(pk, σ;H(σ, c))

4. Output m if check holds; otherwise output ⊥

Re-Encryption: input rk, (e, c)

1. e′ ← PRE.ReEnc(rk, e)
2. Output (e′, c)

53 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption

Encryption: input pk,m

1. Samples a random σ
2. c← Sym.Enc(G(σ),m)
3. e← PRE.Enc(pk, σ;H(σ, c))
4. Output (e, c)

Decryption: input sk, (e, c)

1. σ ← PRE.Dec(sk, e)
2. m← Sym.Dec(G(σ), c)

3. Check: e
?
= PRE.Enc(pk, σ;H(σ, c))

4. Output m if check holds; otherwise output ⊥

Re-Encryption: input rk, (e, c)

1. e′ ← PRE.ReEnc(rk, e)
2. Output (e′, c)

53 / 93

Contribution: Correctness

This extension satisfies PRE correctness
if the original PRE scheme satisfies the
Perfect Key-Switching property

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption: Security

In the original security proof of FOT, Odec is constructed using only the random oracle
table LH :

Algorithm Odec(pki, (e, c))
Search (σ, c, h) ∈ LH , such that e = PKE.Enc(pki, σ;h)
If such tuple does not exist, then return ⊥
Return Sym.Dec(G(σ), c)

Searches in LH for the σ encrypted in e, and uses it to decrypt c

It is tempting to reuse this idea for Oreenc:
Algorithm Oreenc(pki, pkj , (e, c))

Search (σ, c, h) ∈ LH , such that e = PRE.Enc(pki, σ;h)
If such tuple does not exist, then return ⊥
Return (PRE.Enc(pkj , σ;h), c)

54 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption: Security

However, there is a flaw...
• Suppose the adversary creates an ill-formed ciphertext (e, c) where the randomness

in e does not come from H:

e = PRE.Enc(pk, σ; r), for random r

• If (e, c) is inputed to the re-encryption oracle, it will get rejected
• This behavior does not match the real execution

This strategy results in invalid proofs...although it is used by >10 PRE schemes

Conclusion ⇒ The security proof cannot rely on the random oracle tables for
constructing the re-encryption oracle

55 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Applying FOT to Proxy Re-Encryption: Security

Alternative: strengthen the requirements
on the underlying PRE scheme
⇒ We require IND-CCA0,1 security

Security proof:
⇒ Reduction to the IND-CCA0,1

security of the PRE scheme
⇒ Without using the random oracle
tables for Oreenc
IND-CCA2,1 security in the ROM

Contribution: Extending FOT to PRE

We provide a security proof for FOT in PRE

56 / 93

IND-CCA2,2

IND-CCA2,1

IND-CCA2,0

IND-CCA1,2

IND-CCA1,1

IND-CCA1,0

IND-CCA0,2

IND-CCA0,1

IND-CCA0,0

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary

NTRUReEncrypt is a highly-efficient proxy re-encryption scheme based on the
NTRU cryptosystem

The main strength of this scheme is its performance
⇒ Outperforms other schemes by an order of magnitude

We also propose PS-NTRUReEncrypt, a provably-secure variant that is
CPA-secure under the Ring-LWE assumption

57 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary

We analyze the integration of generic transformations to PRE

Negative results:
• It is not possible to apply known transformations directly
• >10 PRE schemes are flawed

Positive results:
• FOT can be applied if the PRE scheme satisfies Perfect Key-Switching and is

IND-CCA0,1 secure
• It achieves IND-CCA2,1 security in the random oracle model

These results can be extended to other generic transformations (e.g., REACT,
GEM)

58 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption
BlindIdM: Privacy-Preserving IdM as a Service
Delegated Access to Hadoop clusters
Escrowed Decryption System
Summary

5. Conclusions and Future Work

59 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Motivation

Identity Management is a ubiquitous service

Costly ⇒ specific applications and personnel

Identity Management as a Service (IDaaS)

60 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Identity Management as a Service

Cloud Identity Provider Service Provider

Host Organization
Employee

belongs to

requests
service

outsources
identity

management

direct
trust direct

trust

indirect trust

retrieves identity

provides identity
information

61 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Motivation

Classic problem of cloud computing
⇒ Organizations lose control of their data

Now we are talking about identity data...
⇒ Data protection laws and regulations

Trust problem ⇒ Organizations have to trust the provider

Goal: Cryptographic safeguards that support IdM service without compromising users’
data

62 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Proposal

Contribution: BlindIdM

Privacy-preserving IDaaS system based on PRE

Identity attributes are encrypted by the user and decrypted by the requester

The Identity Provider (IdP) stores encrypted attributes
⇒ Still capable of offering an identity service

Integrated with SAML 2.0
⇒ IdM standard for the description and exchange of identity information (e.g.,
attributes)

First proposal that tackles this problem

63 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Our idea

Cloud Identity
Provider

Service
Provider

Host
Organization

rkH→SP(pkH , skH) (pkSP , skSP)

ca c�a

Honest-but-curious provider: The cloud provider will respect protocol
fulfillment, but will try to read users’ data

64 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

BlindIdM: Integration with SAML

User agent Service Provider Cloud Identity Provider Host Organization

Request service

Discovery of the IdP

SAML AuthnRequest

AuthnRequest (User redirection)

SAML AuthnRequest

AuthnRequest (User redirection)

User authentication SAML
Response

Response (User redirection)

Re-encryption of user attributes and
creation of SAML Response

Response (User redirection)

Decryption of user attributes and
verification of SAML Response

Access to service

65 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption
BlindIdM: Privacy-Preserving IdM as a Service
Delegated Access to Hadoop clusters
Escrowed Decryption System
Summary

5. Conclusions and Future Work

66 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Motivation

Big Data ⇒ use of vast amounts of data that makes processing and maintenance
virtually impossible from the traditional perspective of information management

SMEs are not capable of acquiring and maintaining the infrastructure for running
Big Data Analytics on-premise

67 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data in the Cloud

The Cloud is a natural solution to this problem
⇒ On-demand high-end clusters

68 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Security and privacy challenges

Multi-tenant environment ⇒ Jobs and data from different customers are kept
together under the same cluster

Data may be sensitive or personal

Malicious agents (insiders and outsiders) can make a profit by selling or exploiting
this data

Security is usually delegated to access control layers

69 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Our proposal

Contribution

Delegated Access System for Hadoop based on PRE

Cryptographically-enforced access control system

Data remains encrypted in the filesystem until it is needed for processing

Experimental results show that the overhead is reasonable

70 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Apache Hadoop

The most prominent framework for processing big datasets.

Storing and processing of datasets by clusters of machines.

The workload is divided into parts and distributed throughout the cluster.

Hadoop was not designed with security in mind

However, it is widely used by organizations that have strong security requirements
regarding data protection.

71 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Hadoop operation

TaskTracker

TaskTracker

Data store
(e.g. HDFS)

JobTracker

Map

Map

·
·
·

Input Splits

TaskTracker

Red

·
·
·

·
·
·

Map phase Reduce phase

Distribution of workload and coordination

72 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Our proposal

TaskTracker

TaskTracker

Encrypted
Lockbox

Encrypted data

Plaintext data

Encrypted
data

JobTracker

MapDec Enc

MapDec Enc

·
·
·

Encrypted
Splits

(Blocks)

TaskTracker

RedDec Enc

·
·
·

·
·
·

Re-Encrypted
Lockbox

Map phase Reduce phase

73 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Big Data: Experiment

Execution of the WordCount benchmark, a simple application that counts the
occurrence of words over a set of files.

The job input was a set of 1800 encrypted files of 64 MB each

Almost 30 billions of words, approximately 112.5 GB.

Execution time:

• Clean version: 1932.09 seconds

• Prototype: 1960.74 seconds

• Difference: 28.74 seconds : Overhead: 1.49%

74 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption
BlindIdM: Privacy-Preserving IdM as a Service
Delegated Access to Hadoop clusters
Escrowed Decryption System
Summary

5. Conclusions and Future Work

75 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Motivation

Dilemma between data confidentiality and law enforcement investigations

Perception of “impunity” derived from the use of confidential communications.

Growing concern coming from governments and law enforcement agencies (LEAs)

Demand for mechanisms that break confidentiality of communications

Lack of accountability from the government and LEAs

76 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Original idea

Accountable Escrowed Encryption: Proposed by Liu, Ryan and Chen in CSF
2013

PKE scheme with Escrowed Decryption

This solution does not involve key escrow

Authorities can request decryption of ciphertexts to a coalition of third-party
entities called custodians

Custodians log all requests in a public log : Accountability

Drawbacks:

• The custodians can decrypt any message if they collude
• The protocol for escrow decryption is composed of 2 synchronous rounds involving

all custodians

77 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Our idea

Contribution

Escrow decryption system based on PRE

Authorities can request the re-encryption of a ciphertext to custodians and
decrypt the result

Re-encryption should be “shared” by the custodians
⇒ Re-encryption key is split in escrow shares

Our proposal uses a multiplicative homomorphism:

rk =

n∏
i=1

rki

ReEnc(rk, CT) =

n∏
i=1

ReEnc(rki, CT)

78 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Our idea

Escrow sharesKey generation request

Certified public key

Alice Certification
Authority

Custodians

79 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Our idea

Custodians

Encrypted message

Alice Bob

Message
intercepted

Escrow decryption

Law
Enforcement

Agency

80 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Escrowed Decryption: Analysis

IND-CPA secure under the 1-weak Decisional Bilinear Diffie-Hellman Inversion
assumption (1-wDBDHI)

Our solution only requires one round of communications per escrow decryption

81 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary: BlindIdM

We propose an IDaaS system that handles encrypted attributes and still provides
an identity service

Our system is based on SAML and Proxy Re-Encryption

The cloud identity provider transforms encrypted attributes from the original users
to ciphertexts for the requesters using re-encryption

82 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary: Big Data

We propose a cryptographically-enforced access control system for Hadoop, based
on PRE

Stored data is always encrypted and encryption keys do not need to be shared
between different data sources.

Experimental results show that the overhead produced by the encryption and
decryption operations is reasonable

83 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Summary: Escrowed Decryption

We propose an escrowed decryption system based on PRE

Inspired by the Accountable Escrowed Encryption scheme from Liu, Ryan and
Chen

Escrowed decryption is based on a “shared” re-encryption process

Authorities can request the escrow decryption to custodians and decrypt the
response themselves

84 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

1. Introduction

2. Security Definitions for Proxy Re-Encryption

3. New Proxy Re-Encryption Constructions

4. Some Applications of Proxy Re-Encryption

5. Conclusions and Future Work
Contributions
Open Issues and Future Work

85 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Contributions

We reviewed the basic concepts of PRE:
• Definitions
• Security models
• Properties.

We analyzed the state of the art:
• Review of the main PRE schemes
• Applications of PRE, with a focus secure data sharing problem.

86 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Contributions

We examined the notions of security for PRE:
• We propose a parametric family of attack models
• Fine-grained security notions, whose relations we also analyze.
• We define the Private Re-Encryption Keys property and show why it is relevant

We present new proxy re-encryption schemes:
• NTRUReEncrypt, based on the NTRU cryptosystem and extremely efficient
• PS-NTRUReEncrypt, a provably-secure version that is CPA-secure under

lattice-based assumptions.

87 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Contributions

We study the application of generic CCA-secure transformations to PRE:
• We focus on the Fujisaki-Okamoto transformation and formulate sufficient

conditions that allow to use it directly in PRE.

• These conditions include a new property called perfect key-switching

• We detect flaws in 12 PRE schemes that are allegedly “CCA-secure”.

We propose several applications of PRE:
• A model for privacy-preserving Identity Management as a Service

• A system for delegating access to encrypted information in Big Data

• An escrowed decryption system

88 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Contributions

- Parametric Family of Attack Models for Proxy Re-Encryption

- Application of Generic CCA-Secure Transformations

- NTRUReEncrypt

- Escrowed Decryption System

- Data Confidentiality in Big Data

- Blind Identity Management as a Service

- Survey of Proxy Re-Encryption Constructions and Applications

Security
Definitions

Constructions

Applications

↳IEEE CSF 2015

↳Security and Communication Networks

↳ACM AsiaCCS 2015

↳Journal of Network and Computer Applications

↳Manuscript

↳IEEE CloudCom 2014

↳International Journal of Information Security
↳IEEE CloudCom 2012

↳Commercial applications and patents
89 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Publications

Articles in ISI-JCR Journals

D. Nuñez, I. Agudo, and J. Lopez.
Proxy Re-Encryption: Analysis of Constructions and its Application to Secure Access Delegation
Journal of Network and Computer Applications, 87:193-209, 2017.

D. Nuñez, I. Agudo, and J. Lopez.
On the Application of Generic CCA-Secure Transformations to Proxy Re-Encryption.
Security and Communication Networks, 9(12):1769-1785, 2016.

D. Nuñez, and I. Agudo.
BlindIdM: A Privacy-Preserving Approach for Identity Management as a Service.
International Journal of Information Security, 13(2):199-215, 2014.

International conference papers

D. Nuñez, I. Agudo, and J. Lopez.
A Parametric Family of Attack Models for Proxy Re-Encryption.
IEEE CSF 2015, pp. 290-301.

D. Nuñez, I. Agudo, and J. Lopez.
NTRUReEncrypt: An Efficient Proxy Re-Encryption Scheme Based on NTRU.
ACM AsiaCCS 2015, pp. 179-189.

D. Nuñez, I. Agudo, and J. Lopez.
Delegated Access for Hadoop Clusters in the Cloud.
IEEE CloudCom 2014, pp. 374-379.

D. Nuñez, I. Agudo, and J. Lopez.
Integrating OpenID with Proxy Re-Encryption to enhance privacy in cloud-based identity services.
IEEE CloudCom 2012, pp. 241-248.

90 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Open Issues and Future Work

Family of attack models and security notions for PRE
• We studied some of the relations between these notions

• We do not rule out the possibility of additional separations and implications

NTRUReEncrypt:
• Achieving CCA-security

91 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

Open Issues and Future Work

Generic transformations:
• Concrete estimations of the obtained security level
⇒ Permit to define sets of parameters and to perform meaningful comparison

• Transformations that are not defined in the random oracle model

Applications
• BlindIdM ⇒ Integration with other IdM standards

• Big Data ⇒ Improve the integration with the Hadoop

• Escrow ⇒ Reduce trust in the Certification Authority

92 / 93

Introduction Security Definitions for PRE New PRE Constructions Applications Conclusions

New Security Definitions, Constructions and Applications
of Proxy Re-Encryption

David Nuñez

Advisors:
Isaac Agudo and Javier Lopez

Department of Computer Science
Universidad de Málaga, Spain

Email: dnunez@lcc.uma.es

STM 2017 – Oslo, Norway

93 / 93

mailto:dnunez@lcc.uma.es

94 / 93

Creating an Encrypted Lockbox

Data Symmetric
encryption

PRE
encryption

Data key

Data owner's
public key

Encrypted lockbox

95 / 93

Delegating an Encrypted Lockbox

Re-Encryption

Re-Encryption key

Encrypted lockbox Encrypted lockbox

96 / 93

Opening an Encrypted Lockbox

DataSymmetric
decryption

PRE
decryption

Data key

Delegatee's
Private key

Encrypted lockbox

97 / 93

Definitions of Security for PKE

Definition (IND-atk game (Bellare et al., CRYPTO’98))

Let Π=(KeyGen, Enc, Dec) be a public-key encryption scheme, A = (A1, A2) a polynomial-time
adversary, and Ω1 and Ω2 the set of available oracles for A1 and A2, respectively. For atk ∈ {CPA,
CCA1, CCA2}, n ∈ N, and δ ∈ {0, 1}, the indistinguishability of encryptions game is defined by the
experiment

Experiment ExpIND-atk
Π,A,δ (n)

(pk∗, sk∗)
R←− KeyGen(n); (m0,m1, s)← A1(pk∗);

c∗ ← Enc(pk∗,mδ); d← A2(m0,m1, s, c
∗);

return d

where

If atk = CPA(= CCA0) then Ω1 = ∅ and Ω2 = ∅
If atk = CCA1 then Ω1 = {Odec} and Ω2 = ∅
If atk = CCA2 then Ω1 = {Odec} and Ω2 = {Odec}

98 / 93

PRE Oracles

Honest key generation Ohonest: The oracle obtains a new keypair
(pki, ski)← KeyGen(n), and returns the public key pki.

Corrupt key generation Ocorrupt: The oracle obtains a new keypair
(pki, ski)← KeyGen(n), and returns the pair (pki, ski).

Re-encryption key generation Orkgen: On input a pair of public keys (pki, pkj),
the oracle returns the re-encryption key rki→j ← ReKeyGen(pki, ski, pkj , skj).
• The adversary is only allowed to make queries where i 6= j, and i and j are both

either honest or corrupt.

99 / 93

PRE Oracles

Re-encryption Oreenc: On input (pki, pkj , c), where i 6= j the oracle returns the
re-encrypted ciphertext c′ ← ReEnc(rki→j , c).
• The adversary is not allowed to make queries where j is a corrupt user and (pki, c) is

a derivative of (pk∗, c∗).

Decryption Odec: On input (pki, c), the oracle returns m← Dec(ski, c).
• The adversary is not allowed to make queries where (pki, c) is a derivative of

(pk∗, c∗).

100 / 93

Derivatives of the challenge

Definition (Derivatives of the challenge (Canetti and Hohenberger, CCS’07))

The set of derivatives of (pk∗, c∗) is defined inductively, as follows:

(pk∗, c∗) is a derivative of itself.

If (pkj , cj) is a derivative of (pki, ci) and (pki, ci) is a derivative of (pk∗, c∗), then (pkj , cj) is a

derivative of (pk∗, c∗).

If the adversary has issued a Oreenc query (pki, pkj , ci) and obtained a ciphertext cj as response,

then (pkj , cj) is a derivative of (pki, ci).

If the adversary has issued a Orkg query (pki, pkj), and Dec(pkj , cj) ∈ {m0,m1}, then (pkj , cj)

is a derivative of all pairs (pki, c).

101 / 93

Private Re-Encryption Keys

Definition (Private Re-Encryption Keys)

Let Π be a proxy re-encryption scheme and A a polynomial-time adversary. Let
Ω = {Ohonest,Ocorrupt,Oreenc} be the set of available oracles for A, and pk the public
key of a honest user. The scheme Π satisfies the private re-encryption keys property if
the probability that A computes a valid rkpk→pk′ , for some public key pk′ of her
choice, is negligible.

102 / 93

Separation strategies

We show two separation strategies:

1. Leaking re-encryption keys from the target user to a honest user

• The adversary does not know the secret key of honest users

2. Leaking re-encryption keys from the target user to a corrupt user

• The adversary knows the secret key of corrupt users

103 / 93

Exploiting the target-to-honest re-encryption key leakage

Suppose that a PRE scheme leaks rkpk∗→pkh through Oreenc
The attack strategy works as follows:

1. Extract rkpk∗→pkh from Oreenc queries
2. Obtain the challenge ciphertext c∗

3. Re-encrypt the challenge ciphertext locally: c′ = ReEnc(rkpk∗→pkh , c
∗)

4. Call the decryption oracle Odec with (pkh, c
′) to obtain mδ

We need Oreenc at some phase and Odec in phase 2

Separation IND-CCA2,0 6⇒ IND-CCA2,1 (Theorem 4.7)

104 / 93

Exploiting the target-to-corrupt re-encryption key leakage

Suppose that a PRE scheme leaks rkpk∗→pkx through Oreenc
The attack strategy works as follows:

1. Extract rkpk∗→pkx from Oreenc queries
2. Obtain the challenge ciphertext c∗

3. Re-encrypt the challenge ciphertext locally: c′ = ReEnc(rkpk∗→pkx , c
∗)

4. Decrypt c′ locally: mδ = Dec(skx, c
′)

We only need Oreenc at some phase

Separation IND-CCA2,0 6⇒ IND-CCA0,1 (Theorem 4.8)

Impossibility result

A PRE scheme that violates the private re-encryption keys property can only be IND-CCAi,0, for

i ∈ {0, 1, 2} (i.e., a security notion without Oreenc)

105 / 93

The PRE scheme from Kirshanova (PKC’14)

KeyGen(n):

1. Choose A0 ← Zn×m̄q , R1, R2 ← DR and an invertible matrix H ← Znk×nkq

2. Define A1 = −A0R1 ∈ Zn×nkq and A2 = −A0R2 ∈ Zn×nkq

3. Compose the matrix A = [A0|A1|A2] ∈ Zn×mq

4. The public key is the pair pk = (A,H). The secret key is matrix
sk = [R1|R2] ∈ Zm̄×2nk

106 / 93

The PRE scheme from Kirshanova (PKC’14)

Enc(pk = ([A0|A1|A2], H),m ∈ {0, 1}nk):

1. Choose a non-zero invertible matrix Hu, and a vector s← Znq
2. Set Au = [A0|A1 +HG|A2 +HuG]

3. Sample error vector e← De

4. Compute
bt = 2(stAu mod q) + et + (0, 0, enc(m))t mod 2q

where the first zero vector has dimension m̄, the second has dimension nk and
enc is an encoding function

5. Output the ciphertext c = (Hu, b) ∈ Zn×nq × Zm2q

: The main part of the ciphertext is vector b

107 / 93

The PRE scheme from Kirshanova (PKC’14)

Dec(pk = ([A0|A1|A2], H), sk = [R1|R2], c = (Hu, b)):

1. Using matrix Hu, compute Au = [A0|A1 +HG|A2 +HuG]

2. With the secret key call algorithm InvertO([R1|R2], Au, b mod q,Hu). As output
we receive two vectors z ∈ Znq and e ∈ Zmq that satisfy bt = ztA+ et mod q

3. Let v = b− e mod 2q

4. Compute

vt

 R1 R2

I 0
0 I

 mod 2q

and apply enc−1 to the last nk coordinates

108 / 93

The PRE scheme from Kirshanova (PKC’14)

ReKeyGen(pk = ([A0|A1|A2], H), sk = [R1|R2], pk′ = ([A′0|A′1|A′2], H ′)):

1. Let Y = [A′0|A′1 +H ′G|A′2 −A2] and yi be the i-th column of Y

2. Execute SampleO(yi, [A0|A1], R1, H) for each column vector yi and concatenate the column

vector outputs to form matrix X. This matrix satisfies that [A0|A1]X = Y

3. Parse matrix X as [X0|X1|X2], where the block X0 ∈ Z(m̄+nk)×m̄ is the output corresponding to

the first part of Y , X1 ∈ Z(m̄+nk)×nk to the second one, and X2 ∈ Z(m̄+nk)×nk to the last part

4. Finally, output the re-encryption key rkpk→pk′ :

rkpk→pk′ =

[
X0 X1 X2

0 0 I

]

: The re-encryption key is a matrix

109 / 93

The PRE scheme from Kirshanova (PKC’14)

ReEnc(rkpk→pk′ , c = (Hu, b)): to change the underlying public key in the ciphertext
component b, compute

b
′t = bt · rkpk→pk′

Finally, output c′ = (Hu, b
′).

: The only operation during re-encryption is the multiplication of a vector b (the
ciphertext) by a matrix (the re-encryption key), obtaining another vector b′ (the
re-encrypted ciphertext)

110 / 93

Finalizing the attack

Using the unit vectors as input ciphertexts to the re-encryption oracle, one can
extract arbitrary rows of the re-encryption key matrix.

The adversary queries the re-encryption oracle from the target user to a corrupt
one.

After m̄+ nk queries the adversary can reconstruct the re-encryption key
rkpk∗→pkx
The adversary continues the generic attack strategy when target-to-corrupt
re-encryption keys are leaked:

1. Extract rkpk∗→pkx from Oreenc queries
2. Obtain the challenge ciphertext c∗

3. Re-encrypt the challenge ciphertext locally: c′ = ReEnc(rkpk∗→pkx , c
∗)

4. Decrypt c′ locally: mδ = Dec(skx, c
′)

111 / 93

Refining the attack

One could argue that unit vectors don’t look as ciphertexts...

In fact, the probability that a unit vector is output from the encryption function is
negligible.

The oracle could take the risk and reject them or return garbage.

The adversary doesn’t know whether these ciphertexts were valid encryptions
under pk∗

112 / 93

Refining the attack

Instead using unit vectors as ciphertexts, the adversary uses the encryption of
random messages.

She constructs a square matrix P out of these ciphertexts.

The LWE assumption ensures that the distribution of ciphertexts is
indistinguishable from the uniform distribution.

The matrix P will be invertible with overwhelming probability. Otherwise,
resample and produce a new P .

After m queries to Oreenc, the adversary obtains P · rk
She only has to compute P−1 · P · rk = rk

She continues with the attack as before.

113 / 93

NTRUEncrypt: Setup and Key Generation

Setup:

Quotient ring RNTRU = Z[x]/(xn − 1), where n is a prime parameter

Other parameters: Integer q, small polynomial p ∈ RNTRU
Operations are performed in RNTRU/q or RNTRU/p

Private key: sk = f

f is chosen at random ∈ RNTRU
f must be invertible in RNTRU/q ⇒ f−1

f must be congruent to 1 mod p

Public key: pk = h = p · g · f−1 mod q

g ∈ RNTRU is chosen at random

114 / 93

NTRUEncrypt: Encryption and Decryption

Encryption:

plaintext M from message space RNTRU/p
public key h = p · g · f−1 mod q

noise term s is a small random polynomial in RNTRU
ciphertext C = h · s+M mod q = p · g · s · f−1 +M mod q

Decryption:

Secret key f

Compute C′ = f · C mod q

Output m = C′ mod p

Why does it work?

C′ = f · (p · g · f−1 · s+M) mod q = p · g · s+ f ·M mod q

���p · g · s+ f ·M mod p = f ·M mod p = M

Decryption is consistent if f · C is “small enough”

115 / 93

NTRUReEncrypt

Setup and Key Generation are identical to NTRUEncrypt

Private key: skA = fA ∈ RNTRU
Public key: pkA = hA = p · gA · f−1

A mod q

116 / 93

NTRUReEncrypt: Encryption and Decryption

Encryption:

plaintext M from message space RNTRU/p
public key hA

ciphertext CA = hA · s+M mod q

noise term s is a small random polynomial in RNTRU
Decryption:

Compute C ′A = f · CA mod q

Compute m = C ′A mod p

117 / 93

NTRUReEncrypt: Re-Encryption Key Generation

Re-Encryption Key Generation:

Input: secret keys skA = fA and skB = fB

The re-encryption key between users A and B is

rkA→B = skA · sk−1
B = fA · f−1

B

Three-party protocol, so neither A, B nor the proxy learns any secret key.
• A selects a random r ∈ RNTRU/q
• A sends r · fA mod q to B and r to the proxy
• B sends r · fA · f−1B mod q to the proxy
• The proxy computes rkA→B = fA · f−1B mod q

118 / 93

NTRUReEncrypt: Re-Encryption

Re-Encryption

Input: a re-encryption key rkA→B and a ciphertext CA

Samples a random polynomial e ∈ RNTRU
Output re-encrypted ciphertext

CB = CA · rkA→B + p · e

The noise e prevents B from extracting A’s private key

119 / 93

NTRUReEncrypt: Re-Encryption

Why does it work?

Re-encrypted ciphertext:

CB = CA · rkA→B + p · e mod q

= (p · g · f−1
A · s+M) · fA · f−1

B + p · e mod q

= p · g · f−1
B · s+ fA · f−1

B ·M + p · e mod q

Decrypting a re-encrypted ciphertext:

fB · CB mod p =((((
(((((p · g · s+ p · e) + fA ·M mod p

= fA ·M mod p

= M

120 / 93

NTRUReEncrypt: Analysis

Bidirectional: Given rkA→B = fAf
−1
B , one can easily compute

rkB→A = (rkA→B)−1 = fBf
−1
A

Limited multihop

Not collusion-safe: Secret keys can be extracted from the re-encryption key if the
proxy colludes with a user involved

fA = rkB→A · fB

This is common in interactive bidirectional PRE schemes

121 / 93

Preliminaries

Φ(x) is the cyclotomic polynomial xn + 1, with n a power of 2

q is a prime integer such that q = 1 mod 2n

R is the ring Z[x]/Φ(x)

Rq = R/q = Zq[x]/Φ(x)

R×q is the set of invertible elements of Rq

122 / 93

The Ring-LWE problem

The Ring Learning With Errors (Ring-LWE) problem is a hard decisional problem based
on lattices

We use a variant of this problem proposed by Stehlé and Steinfeld.

s ∈ Rq and ψ a distribution over R×q
A×s,ψ is the distribution that samples pairs of the form (a, b)

• a is chosen uniformly from R×q
• b = a · s+ e, for some e sampled from ψ

The Ring-LWE problem is to distinguish distribution A×s,ψ from a uniform distribution over

R×q ×Rq
The Ring-LWE assumption is that this problem is computationally infeasible

123 / 93

PS-NTRUReEncrypt: Setup and Key Generation

Setup:

Global parameters: (n, q, p, α, σ)

Key Generation:

DZn,σ is a Gaussian distribution over Zn with standard deviation σ

The keys are computed as follows:

1. Sample f ′ from DZn,σ

Let fA = 1 + p · f ′; if (fA mod q) 6∈ R×q , resample
2. Sample gA from DZn,σ; if (gA mod q) 6∈ R×q , resample

3. Compute hA = p · gA · f−1A
4. Return secret key skA = fA and pkA = hA

124 / 93

PS-NTRUReEncrypt: Encryption and Decryption

Encryption:

Input: public key pkA and message M ∈M
Sample noise polynomials s, e from a distribution Ψα

Output ciphertext:
CA = hAs+ pe+M ∈ Rq

Decryption:

Input: secret key skA = fA and ciphertext CA

Compute C ′A = CA · fA
Output the message M = (C ′A mod p) ∈M

125 / 93

PS-NTRUReEncrypt: Re-Encryption Key Generation and Re-Encryption

Re-Encryption Key Generation:

Input: secret keys skA = fA and skB = fB

The re-encryption key between users A and B is

rkA→B = skA · sk−1
B = fA · f−1

B

Re-Encryption:

Input: a re-encryption key rkA→B and a ciphertext CA

Samples a random polynomial e′ from a distribution Ψα

Output re-encrypted ciphertext

CB = CA · rkA→B + pe′

126 / 93

Multihop Correctness

Ciphertext re-encrypted N times:

CN = pg0f
−1
N s+ pe0f0f

−1
N + pe1f1f

−1
N + ...

+ peN−1fN−1f
−1
N + peN +Mf0f

−1
N

= pg0f
−1
N s+

[
N−1∑
i=0

peifif
−1
N

]
+ peN +Mf0f

−1
N

When decrypting CN (assuming no decryption failures):

C ′N = CN · fN = pg0s+

[
N∑
i=0

peifi

]
+Mf0

Since, f0 = 1 mod p and pg0s = peifi = 0 mod p, then:

C ′N mod p = M

127 / 93

Experimental setting

Implementation of our proposals:

• NTRUReEncrypt is implemented on top of an available open-source Java
implementation of NTRU

• PS-NTRUReEncrypt was coded from scratch, using the Java Lattice-Based
Cryptography (jLBC) library

Execution enviroment: Intel Core 2 Duo @ 2.66 GHz

128 / 93

Performance of NTRUReEncrypt

Table: Computation time (in ms) and number of hops of NTRUReEncrypt for different
parameters

Parameters Enc. Dec. Re-Enc. # Hops

(439, no, 128) 0.64 0.30 0.24 5

(439, yes, 128) 0.16 0.30 0.23 5

(1087, no, 256) 1.39 1.25 1.05 21

(1087, yes, 256) 0.48 1.26 1.07 15

(1171, no, 256) 0.80 1.12 1.14 21

(1171, yes, 256) 0.43 1.22 1.15 14
(1499, no, 256) 0.74 1.78 1.73 50

(1499, yes, 256) 0.32 1.67 1.66 42

129 / 93

Comparison of NTRUReEncrypt to other schemes

Table: Computation time of several proxy re-encryption schemes (in ms)

Scheme Enc. Dec. Re-Enc.

NTRUReEncrypt 0.43 1.22 1.15

Aono et al 1.17 0.47 20.5

BBS 11.07 11.21 11.48

Weng et al 22.52 11.89 22.29

Ateniese et al 22.76 13.76 83.52

Libert and Vergnaud 155.27 443.87 386.93

130 / 93

Performance of PS-NTRUReEncrypt

Table: Computation time (in ms) and size (in KB) of PS-NTRUReEncrypt for different
parameters

n log2 q Enc. Dec. Re-Enc. Size

32 23 0.93 0.99 1.05 0.09

64 28 4.53 4.23 4.32 0.22

128 32 17.28 17.32 17.45 0.50

256 37 80.64 81.045 86.56 1.16

512 41 333.75 334.07 359.54 2.56

1024 46 1333.03 1344.10 1461.46 5.75

131 / 93

Perfect Key-Switching: Example

PRE scheme from Blaze, Bleumer, and Strauss

Based on ElGamal:
• Private key: a ∈ Zq Public key: pk = ga

• Ciphertexts: ((ga)r, gr ·m), random r
• Re-Encryption Key: rkA→B = b/a
• Re-Encryption: ((gar)b/a, gr ·m)

Satisfies the Perfect Key-Switching property:

ReEnc(rkA→B,Enc(pkA,m; r))

= ReEnc(b/a, ((ga)r, gr ·m))

= ((gar)b/a, gr ·m)

= (gbr, gr ·m)

= Enc(pkB,m; r)

132 / 93

Economic analysis

Most of proposals do not analyze their economic impact

Cryptographic operations have an economic cost due to computation,
communication, etc.
⇒ Cloud provider incurs in expenses due to energy consumption, personnel, ...

Our estimations are based on a research from Chen & Sion
⇒ They give estimations for computation, storage and communication costs,
expressed in picocents (1 picocent = 10E−12 USD cent)

We estimate the number of CPU cycles to give an approximation of the costs

133 / 93

Economic analysis: costs

Table: Costs in picocents for the main operations

Operation Cost per operation Operations per cent

Encryption 4.34E+08 2304

Re-encryption 4.79E+08 2087

Decryption 5.70E+08 1755

134 / 93

Economic analysis: example scenario

IDaaS provider that handles 1 million attribute requests per day ⇒ 1 million
re-encryptions per day

Approx. 2000 USD per year

Reasonable cost for an average-sized company, considering that their information
is encrypted at the cloud provider

135 / 93

DASHR

Delegated Access System for Hadoop based on Re-Encryption

Data is stored encrypted in the cluster and the owner can delegate access rights
to the computing cluster for processing.

The data lifecycle is composed of three phases:

1. Production phase: data is generated by different data sources, and stored encrypted
under the owner’s public key for later processing.

2. Delegation phase: the data owner produces the necessary master re-encryption key
for initiating the delegation process.

3. Consumption phase: This phase occurs each time a user of the Hadoop cluster
submits a job; is in this phase where encrypted data is read by the worker nodes of
the cluster. At the beginning of this phase, re-encryption keys for each job are
generated.

136 / 93

DASHR: Production phase

Generation of data by different sources

Data is split into blocks by the filesystem (e.g., HDFS)

Each block is an encrypted lockbox, which contains encrypted data and an
encrypted key, using the public key of the data owner pkDO

137 / 93

DASHR: Delegation phase

The dataset owner produces a master re-encryption key mrkDO to allow the
delegation of access to the encrypted data

The master re-encryption key is used to derive re-encryption keys in the next
phase.

The delegation phase is done only once for each computing cluster

138 / 93

DASHR: Delegation phase

This phase involves the interaction of three entities:

1. Dataset Owner (DO), with a pair of public and secret keys (pkDO, skDO), the
former used to encrypted generated data for consumption

2. Delegation Manager (DM), with keys (pkDM , skDM), and which belongs to the
security domain of the data owner, so it is assumed trusted. It can be either local or
external to the computing cluster. If it is external, then the data owner can control
the issuing of re-encryption keys during the consumption phase. The delegation
manager has a pair of public and secret keys, pkDM and skDM .

3. Re-Encryption Key Generation Center (RKGC), which is local to the cluster and is
responsible for generating all the re-encryption keys needed for access delegation
during the consumption phase.

139 / 93

DASHR: Delegation Protocol

Re-Encryption Key
Generation Center

Delegation Manager

Data Owner

mrkDO = skDM · sk−1
DO

1. t

2. t · sk−1
DO

skDO

skDM

3. t · skDM · sk−1
DO

140 / 93

DASHR: Consumption phase

This phase is performed each time a user submits a job to the Hadoop cluster

A pair of public and private keys (pkTT , skTT) for the TaskTrackers is initialized
in this step, which will be used later during encryption and decryption.

The Delegation Manager, the Re-Encryption Key Generation Center, the
JobTracker and the TaskTrackers interact in order to generate the re-encryption
key rkDO→TT

The final re-encryption key rkDO→TT held by the JobTracker, who will be the one
performing re-encryptions. This process could be repeated in case that more
TaskTrackers’ keys are in place.

141 / 93

DASHR: Re-Encryption Key Generation Protocol

JobTracker

TaskTracker

Re-Encryption Key
Generation Center

Delegation Manager

2. u · sk−1
DM

3. u · sk−1
DM 4. u · rkDM→TT

5. u · rkDM→TTskDM

skTT

1. u

6. rkDO→TT

mrkDO

142 / 93

Experimental setting

Focused on the main part of the consumption phase, where the processing of the
data occurs.

From the Hadoop perspective, the other phases are offline processes, since are not
related with Hadoop’s flow.

Environment:

• Virtualized environment on a rack of IBM BladeCenter HS23 servers connected
through 10 gigabit Ethernet, running VMware ESXi 5.1.0.

• Each of the blade servers is equipped with two quad-core Intel(R) Xeon(R) CPU
E5-2680 @ 2.70GHz.

• Cluster of 17 VMs (1 master node and 16 slave nodes)
• Each of the VMs has two logical cores and 4 GB of RAM, running a modified version

of Hadoop 1.2.1.

143 / 93

Experimental setting: Cryptographic details

Proxy Re-Encryption scheme from Weng et al.

Implemented using the NIST P-256 curve, which provides 128 bits of security and
is therefore appropriate for encapsulating 128 bits symmetric keys.

AES-128-CBC for symmetric encryption.

We make use of the built-in support for AES included in some Intel processors
through the AES-NI instruction set.

144 / 93

Time costs

Operation Time (ms)

Block Encryption (AES-128-CBC, ∼64 MB) 212.62

Block Decryption (AES-128-CBC, ∼64 MB) 116.81

Lockbox Encryption (PRE scheme) 17.84

Lockbox Re-Encryption (PRE scheme) 17.59

Lockbox Decryption (PRE scheme) 11.66

145 / 93

Our idea

Setup:
• G and GT are cyclic groups of order q
• e : G×G→ GT is a bilinear pairing.
• g is a generator of G, and Z = e(g, g)

Actors:
• Users
• Escrow Authority EA: pkEA = ga, skEA = a
• Custodians
• Certification Authority (CA)

146 / 93

Key Generation

U CA

u, β ← Z∗q
κ̃i ∈ G, for 2 ≤ i ≤ n
κ̃1 =

(pkEA)β/u
n∏
i=2

κ̃i

gu, {κ̃i}ni=1, g
β

−−−−−−−−−−−−−−→ Check: e(
n∏
i=1

κ̃i, g
u)

?
= e(pkEA, g

β)

s, γ ← Z∗q
pk = ((gu)s, e(gβ, g)sγ)
κi = (κ̃i)

γ

pk, gγ

←−−−−−−−−−−−−−−
sk = (gγ)β/u = gv/u

147 / 93

Escrow Decryption

EA Ci

CT = (CT1, CT2)
= (gsur,m · Zsvr)

For each custodian Ci:
CT1

−−−−−−−−−→
ρi = ShareReEnc(κi, CT1)

= e(κi, g
sur)

ρi
←−−−−−−−−−

Collect {ρi}ni=1

m = Comb(skEA, CT, {ρi}ni=1)

= CT2

(
n∏
i=1

ρi)
1/skEA

148 / 93

Work in progress

Translate this solution to asymmetric pairings

Security can be based on a more common assumption: External Diffie-Hellman
(XDH)

Threshold Re-Encryption: integration with Shamir’s Secret Sharing

149 / 93

	Introduction
	Motivation
	Proxy Re-Encryption
	Goals

	Security Definitions for Proxy Re-Encryption
	Definitions of Security
	Relations among security notions
	Attack to PRE scheme from PKC'2014
	Summary

	New Proxy Re-Encryption Constructions
	NTRUReEncrypt
	Generic CCA-Secure Transformations
	Summary

	Some Applications of Proxy Re-Encryption
	BlindIdM: Privacy-Preserving IdM as a Service
	Delegated Access to Hadoop clusters
	Escrowed Decryption System
	Summary

	Conclusions and Future Work
	Contributions
	Open Issues and Future Work

	Appendix

