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Abstract—In this paper a simulation model of the glucose-insulin 

system for a patient undergoing diabetes Type 1 is developed by using 

a causal modeling approach under System Dynamics. The 

OpenModelica simulation environment has been employed to build the 

so called causal model, while the glucose-insulin model parameters 

were adjusted to fit recorded mean data of a diabetic patient database. 

Model results under different conditions of a three-meal glucose and 

exogenous insulin ingestion patterns have been obtained. This 

simulation model can be useful to evaluate glucose-insulin 

performance in several circumstances, including insulin infusion 

algorithms in open-loop and decision support systems in closed-loop.  
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I. INTRODUCTION 

YSTEM DYNAMICS provides a general purpose approach 

to the modeling of dynamic systems in many areas ranging 

from environmental sciences to engineering sciences [1], also 

in biomedical engineering particular [2]. Indeed, many 

educational programs have included System Dynamics together 

with computer simulation in courses syllabus due to its intuitive 

approach [3]. 

The use of modeling techniques through System Dynamics 

provides a more accurate description of the behavior of 

physiological systems. Often, these systems are so complex that 

it is not possible to obtain information about their performance, 

however, using models based on relationships of influence 

between variables and their subsequent computer simulation 

allows to predict the dynamic behavior [4], making possible the 

realization of experiences on the system under simulation, even 

in pathological conditions difficult to apply in clinical practice 

[5]. 

According to the WHO, diabetes is one of the 10 leading 

causes of death in the world. It is a disease present worldwide 

and both prevention and treatment are complicated. In addition 

to being a very common disorder in the population, it has 

doubled in recent decades, becoming one of the most common 

diseases in the world, and especially in developed countries due 

to the increase in obesity [6]. 

There are an increasing in searching for methods to diagnose 

and treatment of this disease, and the use of mathematical 

models that provide a deeper description of the deranged 

system, that is, of the glucose-insulin system, becomes useful. 
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In the case of diabetes mellitus, there are several studies that 

model this pathology using differential equations and software 

implementations [7] but there is little information regarding the 

use of causal diagrams. With this type of diagrams it is possible 

to present complex systems in a simple way, and with the 

subsequent transformation into flow diagrams, it can be 

obtained valid results and in a simpler way than using equations 

or developing code, difficult to understand by non-specialized 

medical personnel. 

The object-oriented environment Modelica [8] is ideally 

suited as an architectural description language for System 

Dynamics approach, which allows the physical system to be 

simulated starting from causal diagrams,  in particular through 

the open access version OpenModelica.  

This paper deals with the development of a mathematical 

model of the glucose-insulin regulation system in patients with 

diabetes through the analysis of influence or causal diagrams, 

which allows explaining the behavior of the glucose-insulin 

system in different situations of ingestion of glucose and 

administration of exogenous insulin. The OpenModelica 

simulation environment has been used to implement the 

dynamic model and several experiences have been conducted 

to show its prediction ability. 

II. MODEL OF DIABETIC PATIENT 

Diabetic models are useful for estimating the blood glucose 

level when exogenous insulin rates are administered. Several 

models have been developed to characterize the diabetes 

dynamics, most of them by using the multi-compartmental 

approach [9] (Fig. 1). 

 

 

Fig. 1.  Scheme of multi-compartmental model of glucose-insulin  
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A type 1 diabetic patient model has been assumed following 

the nonlinear minimal model as described in [10] defined by a 

glucose subsystem and an insulin subsystem which determines 

the behavior of the blood glucose concentration in response to 

an exogenous insulin infusion while disturbances are also added 

in terms of dose of carbohydrates during meals.  

The dynamic model is described by the following differential 

equations for the glucose subsystem as 

 
𝑑𝐺(𝑡)

𝑑𝑡
= −(𝑘1 + 𝑘2𝑖3(𝑡))𝐺(𝑡) + 𝑘3 + 𝑅𝐺(𝑡)           (1) 

 

while the insulin subsystem is modeled as a three compartment 

system as  

 

                          
𝑑𝑖3(𝑡)

𝑑𝑡
= −𝑎1𝑖3(𝑡) + 𝑎2𝑖1(𝑡)                     (2) 

                          
𝑑𝑖2(𝑡)

𝑑𝑡
= −𝑎5𝑖2(𝑡) + 𝑎6𝑖1(𝑡)                     (3) 

𝑑𝑖1(𝑡)

𝑑𝑡
= −𝑎3𝑖1(𝑡) + 𝑎4𝑖3(𝑡) + 𝑎5𝑖2(𝑡) + 𝑎7𝑅𝐼(𝑡)        (4) 

 

being 𝐺(𝑡) plasma glucose concentration, 𝑖1(𝑡) insulin mass in 

blood, 𝑖2(𝑡) and 𝑖3(𝑡) insulin mass in fast and slow equilibrium 

with insulin in the blood respectively, 𝑅𝐼(𝑡) intravenous insulin 

delivery rate and 𝑅𝐺(𝑡) rate of appearance of exogenous 

glucose following a meal, while 𝑘1, 𝑘2 are fractional transfer 

rates, 𝑘3 is the rate of glucose appearance and 𝑎1 … 𝑎6 are 

fractional transfer rates. 

The glucose blood level is described using a single 

compartment representing the blood plasma where a glucose 

balance including hepatic glucose balance, peripheral tissue 

glucose uptake, and glucose absorption from the gut has been 

made. The insulin blood level is determined by three connected 

compartments defining the time-varying distribution of insulin 

in blood. 

III.  CAUSAL MODELING 

Qualitative model formulation enables obtaining a 

conceptual model where no explicit equations are contained but 

diagrams as the usual representation, either building causal 

diagrams or else Forrester diagrams [11]. 

Forrester diagrams are designed to represent systems in terms 

of basic concepts of system components and material flows 

between components so as to build a qualitative model easier to 

understand than mathematical models. 

The elements involved in a Forrester diagram are represented 

by variables that can be of three types, level variables, flow 

variables, auxiliary variables and exogenous variables (Fig. 3). 

Level variables define components and represent stock, 

accumulation, or state variables changing their value by 

accumulating or integrating rates. Flow variables define 

transfer between components and represent activity, movement 

or change of values of levels, and are dependent both on the 

levels in a system and on exogenous variables. Auxiliary 

variables are useful in formulating complex flow variables and 

are used for ease of communication and clarity. In addition to 

this, there are also sources representing systems of levels and 

flows outside the boundary of the model and sinks where flows 

terminate outside the system. 

 

 

Fig. 2.  Constitutive blocks of Forrester diagram  

 

Relations between levels (L), sources (So) and sinks (Sk) are 

given by flow rates while information flow is needed to define 

flow (F) and auxiliary variables (A). In Fig. 3 levels are 

represented as “tanks” (rectangles), flows as “valves” while 

source and sinks are characterized by “clouds”. Auxiliary 

variables when needed as shaped as “circles”. 

 

Fig. 3.  Scheme of multi-compartmental model of glucose-insulin  

 

According to classical hydrodynamics, level variations 

depend on the input and output flows that are controlled by 

valves, while valve operation depends on information about 

levels through auxiliary variables, so that for each level a 

corresponding equation of balance is derived as 

 
𝑑𝐿𝑖(𝑡)

𝑑𝑡
= ∑ 𝐹𝑖𝑛(𝑡) − ∑ 𝐹𝑜𝑢𝑡(𝑡)                    (5) 

 

Thus, in the particular case of Fig. 2 system equations result 

in  

 
𝑑𝐿1(𝑡)

𝑑𝑡
= 𝐹1(𝑡) − 𝐹2(𝑡)                         (6) 

𝑑𝐿2(𝑡)

𝑑𝑡
= 𝐹2(𝑡) − 𝐹3(𝑡)                         (7) 

Therefore, by following an inverse procedure, starting from 

the dynamic equations relative to the glucose-insulin system it 

can be easily derived the Forrester diagram by identifying 

which are level, flow and auxiliary variables respectively for 



 

 

each equation, connecting them appropriately afterwards. 

Starting from eq. (1) it can be reassigned as 

 
𝑑𝐿1(𝑡)

𝑑𝑡
= −𝑓11(𝑡) − 𝑓12(𝑡) + 𝑓13(𝑡) + 𝑓14(𝑡)           (8) 

 

constituted by one level 𝐿1(𝑡) = 𝐺(𝑡) and four flow variables 

as 𝑓11(𝑡) = 𝑘1𝐺(𝑡), 𝑓12(𝑡) = 𝑘2𝑖3(𝑡)𝐺(𝑡), 𝑓13(𝑡) = 𝑘3 and 

𝑓14(𝑡) = 𝑅𝐺(𝑡). 
In the same way, eq. (2) would be represented as  

 
𝑑𝐿2(𝑡)

𝑑𝑡
= −𝑓21(𝑡) + 𝑓22(𝑡)                         (9) 

 

defined by level 𝐿2(𝑡) = 𝑖3(𝑡) and two flow variables as 

𝑓21(𝑡) = 𝑎1𝑖3(𝑡) and 𝑓22(𝑡) = 𝑎2𝑖1(𝑡) and eq. (3) would 

convert to 

 
𝑑𝐿3(𝑡)

𝑑𝑡
= −𝑓31(𝑡) + 𝑓32(𝑡)                         (10) 

 

with by another level 𝐿3(𝑡) = 𝑖2(𝑡) and two flow variables 

again as 𝑓31(𝑡) = 𝑎5𝑖2(𝑡) and 𝑓32(𝑡) = 𝑎6𝑖1(𝑡). 

Finally, last eq. (4) can be expressed as 

 
𝑑𝐿4(𝑡)

𝑑𝑡
= −𝑓41(𝑡) + 𝑓42(𝑡) + 𝑓43(𝑡) + 𝑓44(𝑡)           (11) 

 

constituted by level 𝐿4(𝑡) = 𝑖1(𝑡) and four flow 𝑓41(𝑡) =
𝑎3𝑖1(𝑡), 𝑓42(𝑡) = 𝑎4𝑖3(𝑡), 𝑓43(𝑡) = 𝑓31(𝑡) and 𝑓44(𝑡) =
𝑎7𝑅𝐼(𝑡). In this case, due to simple formulation of flow 

variables it is not necessary to use auxiliary variables. Both 

𝑅𝐺(𝑡) and 𝑅𝐼(𝑡) are the external variables or inputs to the 

glucose-insulin system while and 𝑖1(𝑡) are considered as the 

corresponding outputs. 

Once the level, flow and auxiliary variables have been 

identified in eq. (9)-(11) it can be easily drawn a causal diagram 

useful to explain the underlying behavior of the glucose-insulin 

system in terms of influence relations (Fig. 4). 

 

Fig. 4.  Causal diagram of the glucose-insulin dynamics. 

 

In the same way, the corresponding Forrester diagrams can 

be built so that it is facilitated the comprehension of the 

glucose-insulin dynamics in terms of the hydrodynamic 

analogy stated formerly in eq. (5). 

OpenModelica includes the basic models implementing the 

System Dynamics methodology in a complete block-library, 

constituted by levels, rates, auxiliary and some other blocks so 

as to construct the Forrester diagram in very little time and with 

reduced effort [12]. 

In Fig. 5 it is shown the Forrester diagram corresponding to 

the glucose dynamics characterized by eq. (8).  

 

 

Fig. 5.  Forrester causal diagram of the glucose dynamics. 

 

As it can be seen one level and four flowrates define the 

glucose dynamics according to eq. (8), with corresponding flow 

variables dependence. 

In Fig. 6 it is also shown the three stages Forrester diagram 

corresponding to the insulin dynamics characterized by eq. (9)-

(11) where it can be distinguished three levels each 

corresponding to each different insulin state from insulin mass 

in fast and slow equilibrium with insulin in the blood and 

insulin mass in blood specifically.  

 

 

Fig. 6.  Forrester causal diagram of the three-compartmental insulin 

dynamics. 

 

The Forrester diagram of the whole glucose-insulin dynamic 

system is obtained by simply integrating the Forrester diagrams 

of glucose and insulin as it is depicted in Fig. 7. 

 



 

 

 

Fig. 7.  Forrester causal diagram of the whole glucose-insulin dynamics. 

IV. SIMULATION RESULTS 

In this section, different experiences will be made on the 

glucose-insulin model of a patient with type 1 diabetes. For this 

purpose, values will be established for the parameters that are 

taken in the model and executed by simulation in 

OpenModelica, obtaining the results in terms of evolution of 

blood glucose and insulin levels. 

In this work the simulation of the glucose-insulin system of 

a patient with type 1 diabetes is performed, following the 

following protocol: 45 g of glucose ingested at 8:00 h with the 

injection of 3 IU of insulin, 70 g of glucose at 12:00 h., with 4.5 

IU of insulin and another dose equal to the latter of glucose and 

insulin at 20:00 h. 

 

 

Fig. 8.  Evolution of glucose concentration in plasma. 

 

In Fig. 8 it is shown the plasma glucose curve where it is 

observed an increasing due to the glucose intake pattern, 

together with a posterior decreasing due to insulin injection, 

causing the glycemic balance to be reached, showing Fig. 9 the 

corresponding mass of insulin in plasma. 

 

Fig. 9.  Evolution of insulin mass in plasma. 

 

In a new experience the patient triples the insulin dose by 

calculation error. It is observed in Fig. 10 that in this case 

hypoglycemia occurs, that is to say, a low blood glucose level 

where the patient may have tremors, seizures, blurred vision, 

fainting and even coma if the situation is extreme. In Fig. 11 it 

is also shown the insulin mass in plasma.  



 

 

 

 

Fig. 10.  Evolution of glucose concentration in plasma with triple 

insulin dose. 

 

Fig.11. Evolution of insulin mass in plasma with triple insulin dose 

V. CONCLUSIONS 

A model of the glucose-insulin regulation system in patients 

with diabetes type-I has been built through the analysis of 

influence or causal diagrams and Forrester diagrams, which 

allows explaining the behavior of the glucose-insulin system in 

different situations of ingestion of glucose and administration 

of exogenous insulin in a simple and didactic way. The 

OpenModelica simulation environment has been used to 

implement the dynamic model and several experiences have 

been conducted to show its prediction ability.  

As future work, it would be worth noting the incorporation 

of glucagon into the model, which is another of the hormones 

that secrete the pancreas through insulin, seeing the effect of the 

relationship and the interaction between this hormone and 

glucose. 
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