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Avocado agro-ecosystems as study model to evaluate the 
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Portada: Fotos realizadas por I. Torres Campos. De izquierda a derecha: 1. Nidos 
construidos por Oligonychus perseae con individuos y huevos en su interior; 2. Hembra de 
Neoseiulus californicus en el interior de un nido de O. perseae; 3. Hembra de Euseius 

stipulatus depredando a una hembra de O. perseae que se encontraba en el exterior de un 
nido; 4. Hembra de E. stipulatus depredando a un juvenil de N. californicus; 5. Dos juveniles 
de N. californicus depredando a una hembra de O. perseae en el interior de un nido; 6. 
Juvenil de N. californicus depredando a huevos de O. perseae en el interior de un nido. 
Diseño de portada realizado por MayPrint. Francisco José Díaz Cobos 
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SUMMARY 

Climate change might severely disrupt the effective maintenance of agricultural 

communities under biocontrol management. Most of pests and natural enemies used 

to control them are arthropods and, as ectothermic organisms, many of their 

physiological functions, and the features of many of the biotic interactions 

individuals will establish with other individuals during their life span, are climate-

dependent. The future success of biological pest control, thus, might depend on the 

capacity of predicting how each agricultural community will respond to a changing 

climate. The main goal of this thesis was to generate knowledge on the effects of 

changes in abiotic conditions on the way how biotic interactions occur among 

species that inhabit agricultural communities under biological pest control, and how 

these effects determine the trophic structure and dynamics of these communities. To 

achieve this goal, in the present thesis I studied a mite community present in 

avocado agro-ecosystems in South-eastern Spain. Because this community is 

composed by a low number of species, it is an optimal study model to understand 

the effects of abiotic conditions on interactions between pests and their natural 

enemies. The avocado mite community is composed of the herbivore pest 

Oligonychus perseae (Tuttle, Baker & Abatiello) (Acari: Tetranychidae) and two 

species of phytoseiid mites: Neoseiulus californicus (McGregor), which is 

specialized in tetranychid mites, and Euseius stipulatus (Athias-Henriot), which is 

preferentially pollen feeder.  

The work presented in this thesis was addressed from two different 

approaches. On the one hand, the effects of abiotic conditions on the strength and 

direction of biotic interactions in the avocado mite community were evaluated at the 

individual level, and at three combinations of temperature and relative humidity: 

mild (M), hot and dry (HD) and very hot and dry (VHD). On the other hand, it was 

studied the impact of abiotic conditions on the community dynamics at M and HD 

conditions, i.e., how the observed effects on species interactions at the individual 
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level were rendered at the population level, determining the trophic structure and 

dynamics of the community.  

The work started evaluating how abiotic conditions affected the strength of 

predator-prey interactions between either E. stipulatus or N. californicus, and their 

herbivore prey O. perseae, in the presence and the absence of alternative food (i.e. 

pollen). Results revealed that changes in abiotic conditions had different effects on 

predator-prey interactions depending on the species of predator. At M conditions 

both species of predatory mite preyed on O. perseae females, whereas at HD and 

VHD conditions only N. californicus fed on the prey. Furthermore, the strength of 

interaction between N. californicus and O. perseae varied among abiotic conditions, 

being the highest one at M conditions. The presence of alternative food (i.e. pollen) 

influenced in predator-prey interaction strength between E. stipulatus and O. 

perseae, but not between N. californicus and O. perseae. Euseius stipulatus preyed 

on O. perseae females in the absence of pollen at M conditions, but clearly preferred 

to forage on pollen when was available. Also, oviposition rates of E. stipulatus were 

increased in the presence of pollen at the three abiotic conditions. Therefore, the 

addition of pollen as alternative food for E. stipulatus might promote the growth of 

its populations and favour pest control through apparent competition between the 

pest and pollen. 

Next, I studied the effects of abiotic conditions and presence of alternative 

food on intraguild interactions between the two predatory mites, E. stipulatus and N. 

californicus, with O. perseae as shared prey. Results showed that the trophic 

structure of the avocado mite community changed with changes in abiotic 

conditions, resulting in community configurations that would be detrimental to pest 

control. At M conditions, results revealed that the community resembled a trophic 

chain, with juveniles of N. californicus preyed on O. perseae, and females of E. 

stipulatus preyed on juveniles of N. californicus. On the other hand, juveniles of E. 

stipulatus fed on O. perseae and induced antipredator behaviour in females of N. 

californicus, which did not interact with the pest at all. Increasing unfavourable 
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abiotic conditions shifted the structure of the community to one dominated by 

exploitative competition between the two species of predators. However, results also 

revealed that adding pollen to the system would likely enhance pest population 

control, because trophic interactions between predators ceased due to E. stipulatus 

preference for pollen, what strengthened the predator-prey interaction between N. 

californicus and O. perseae, at the three abiotic conditions.  

Finally, mite predator/prey population dynamics were evaluated in the 

presence and the absence of alternative food at two different abiotic conditions, M 

and HD. Contrary to expectations, results revealed that the addition of pollen did not 

reduce negative trophic interactions occurring between predator species; instead, E. 

stipulatus excluded N. californicus at both abiotic conditions, independently of the 

presence or absence of pollen. Also, in spite that the addition of pollen to the system 

favoured a numerical response of E. stipulatus populations at M conditions, 

population increase did not translate into a better O. perseae population control. 

Furthermore, at HD conditions, the growth of E. stipulatus populations was 

negatively affected by high temperatures and drought. 

Therefore, results from this thesis evidence that abiotic conditions modify 

the way in which species interact, affecting trophic structure and dynamics of 

communities. This implies that in a changing climate the successful use of 

biocontrol agents will need to take into account the influence that abiotic factors 

exert on interactions occurring among the components of each specific agricultural 

community. 
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1. INTRODUCTION 

1.1. Climate change  

Climate change is defined as “a change in the state of the climate that can be 

identified (e.g., by using statistical tests) by changes in the mean and/or the 

variability of its properties, and that persists for an extended period, typically 

decades or longer” (IPCC 2014). Changes in climate may be attributed to natural 

causes such as modulations of the solar cycles and occurrence of volcanic eruptions 

in the Earth, or external forcings such as human activities that alter the composition 

of the atmosphere, or both (IPCC 2007). According to the Fifth Assessment Report 

(AR5) of the Intergovernmental Panel on Climate Change (IPCC), warming of the 

climate system is unequivocal, and causation due to human activity is undeniable 

(IPCC 2014).  

Over the last century the temperature of the atmosphere and the oceans has 

increased, the amount of water reserve in the form of snow and ice has decreased, 

and the sea level has risen. The Earth surface temperature (averaging land and ocean 

surface’ temperature) has increased 0.85ºC over the period 1880 to 2012 (Figure 

1.1.1a). Anthropogenic greenhouse gas (GHG) emissions have contributed to 

increase the atmospheric concentrations of carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N20) since the pre-industrial era (Figure 1.1.1b), and it is very 

likely (between 99 – 100 %) that they have been the dominant causes of the 

observed warming from 1951 to 2010 (IPCC 2014) (Figure 1.1.1a). Over this period 

the contribution of GHGs to the global mean surface temperature ranges between 

0.5°C and 1.3°C (Figure 1.1.2; see green bar), and together with other anthropogenic 

(i.e. the cooling effect of aerosols) (Figure 1.1.2; see orange bar) and natural 

forcings, and natural internal variability, explains the observed warming of 

approximately 0.6°C to 0.7°C over this period (IPCC 2014) (Figure 1.1.2; see black 

bar). 
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The AR5 also revealed that there have been changes in many extreme 

weather and climate events since 1950, and that some of these changes are 

influenced by past and present human activities. The number of extreme cold days 

and nights has decreased, and the number of extreme warm days and nights has 

increased. The frequency of heat waves has increased in large parts of Europe, Asia 

and Australia, and there are more land regions where the number of heavy 

precipitation events has increased. In addition, extreme sea levels (i.e. as 

experienced in storm surges) have increased since 1970, being mainly a 

consequence of the rising mean sea level. 

 

Figure 1.1.1. (a) Annual global average temperature (land and ocean surface) anomalies 
relative to the average temperature over the period 1986 to 2005. Colours indicate different 
data sets. (b) Atmospheric concentrations of the greenhouse gases carbon dioxide (CO2, 
green), methane (CH4, orange) and nitrous oxide (N2O, red) determined from ice core data 
(dots) and from direct atmospheric measurements (lines). Figure reproduced from IPCC 
(2014).  

 Continued emission of greenhouse gases will further drive warming and 

long-lasting changes in all the components of the climate system (IPCC 2014). 
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Future climate will depend on the warming caused by past anthropogenic emissions, 

as well as on future anthropogenic emissions and natural climate variability. In 

accordance with the AR5, the global mean surface temperature is projected to 

increase over the 21st century under all the assessed emission scenarios, and it is 

likely that an increase in the frequency and intensity of heat waves and extreme 

precipitations events will occur in many regions. Additionally, warming and 

acidification of the ocean will continue, as will the global sea level rise.   

 

Figure 1.1.2. Ranges (whiskers) and mid-points (bars) for contributions to warming trends 
over the 1951–2010 period explained by well-mixed greenhouse gases, other anthropogenic 
forcings (including cooling effects of aerosols and effects of land use change), combined 
anthropogenic forcings, natural forcings, and natural internal climate variability (which is the 
element of climate variability that arises spontaneously within the climate system in the 
absence of forcings). The observed surface temperature change is shown in black, with the 5 
to 95% uncertainty range due to observational uncertainty. The attributed warming ranges 
(colours) are based on observations combined with climate model simulations, in order to 
estimate the contribution of an individual external forcing to the observed warming. Note the 
the contribution of the combined anthropogenic forcings to warming is similar to the 
observed warming. Figure reproduced from IPCC (2014).  
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1.2. Impacts of climate change  

1.2.1. Natural systems 

Because of the speed of climate change in nature many species will not be able to 

endure rapid evolution to adapt to the new environment. At present, impacts in 

terrestrial and aquatic ecosystems attributed to climate change have already been 

documented (Walther et al. 2002; Parmesan 2006; Warren et al. 2011; Bellard et al. 

2012). As examples, degradation of tropical coral reefs is widespread because these 

systems are highly vulnerable to the increase of oceanic temperature and 

acidification (Hoegh-Guldberg et al. 2007; IPCC 2014); warming is also causing 

phenological shifts in different taxonomic groups, what might have profound 

ecological consequences when the timing of change is not synchronous between 

groups that depend on each other. This is the case of flowering plants and their 

pollinators; if warming causes phenological mismatching between both groups, the 

consequences could lead to local/global extinctions (Memmott et al. 2007; Kiers et 

al. 2010). Responses of individuals to changes in abiotic factors (i.e. altering their 

phenology, individual fitness or geographic ranges) may modify the way they 

interact with other individuals from the same or different species, and alter the 

composition and structure of ecological communities (Dunson and Travis 1991; 

Gilman et al. 2010; Woodward et al. 2010). Indeed, Tylianakis et al. (2008) analysed 

data of 688 publications and showed that climate change is affecting the strength 

and/or direction of virtually every type of biotic interactions including competition, 

mutualism, parasitism, predation, herbivory. Recent works have focused on 

predicting how ecological communities will respond to the change in climate (e.g. 

Gilman et al. 2010; Lavergne et al. 2010), a question that is primordial in 

communities proving relevant ecological services, such as biological pest control.  
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1.2.2. Agricultural systems 

Biological pest control 

Biological control involves the use of natural enemy populations by man to reduce 

pest populations to lower densities (Van Driesche et al. 2007). Biological control 

incorporates the “top-down” concept (Hairston et al. 1960; Oksanen et al. 1981), 

which states that population increase in the third trophic level (i.e. natural enemies) 

will indirectly increase the productivity in the first trophic level (i.e. crops) by 

reducing herbivore populations (i.e. pest). This phenomenon is known as “trophic 

cascade”. Therefore, in biological pest control herbivores are regulated rather than 

eradicated, as both pests and natural enemies remain in the agroecosystems at low 

densities (Bale et al. 2008).  

In agricultural systems the vast majority of pests belong to the phylum 

Arthopoda, and the natural enemies that are used against them are predators and 

parasitoids, most of them being arthropods as well, and pathogens (De Bach 1964). 

The definition and classification of the different types of biological pest control 

differ depending on the literature consulted (e.g. Eilenberg et al. 2001; Van Driesche 

et al. 2007; Bale et al. 2008). In the present thesis, I will follow the types and 

definitions described in Bale et al. (2008). According to these authors there are three 

main techniques of biological control: (i) Classical: the origin of pests is exotic and 

natural enemies that are used to regulate them are collected in the region of origin of 

the pest. Therefore, exotic natural enemies are introduced in a new environment and 

are allowed to stablish for long-term pest control; (ii) Augmentative: this strategy of 

control involves the release of biocontrol agents, which must be available 

commercially. Releases of natural enemies can be done by either ‘seasonal 

inoculation’ or ‘inundation’. In seasonal inoculation, natural enemies are 

periodically released in crops where pests can have many generations in each 

growing season, with the expectation that natural enemies will reproduce and control 

the pest for a long period, but not permanently. In inundative releases, the 

introduction of biocontrol agents is massive, and the mode of action would be 
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analogous to that of pesticides. Pest control is expected to be achieved with the 

individuals that have been released, not with their offspring or next generations; (iii) 

Conservation: this method implies the modification of the environment with the aim 

of protecting and increasing the abundance of indigenous natural enemies. 

Conservation practices include the manipulation of the microclimate, the creation of 

refuges against adverse conditions, the supply of alternative food (e.g. pollen) and 

hosts (Landis et al. 2000), etc. The aims of supplying alternative food are to promote 

the establishment of natural enemies when pests are at low densities in the crops, 

and, when pest densities are high, to promote pest control through apparent 

competition (Holt 1977) (mechanism described in section 1.3).  

Consequences of climate change for agricultural communities under biological 

pest control  

Among others, increases in atmospheric CO2, shifts in precipitation, land-use 

changes and, particularly, increases in temperature, all potential causes/ 

consequences of climate change, can have various effects on the interactions among 

plants, pests and their natural enemies (Aguilar‐Fenollosa and Jacas 2014).  

Increases in CO2  

Changes in plant physiology as response to changes in concentration of CO2 

in the air (i.e. increasing the C:N ratio in foliage and decreasing foliar N (Lindroth et 

al. 1995)) can indirectly affect the efficiency of natural enemies. On the one hand 

such effects can be positive; elevated levels of CO2 reduce nutritional quality of 

plants, and, consequently, herbivores grow less, slowlier, and their nutritional 

quality decreases. Smaller prey items that are easier to handle by predators and 

changes in prey quality may lead to an increase in prey consumption rates, 

enhancing biological pest control (Chen et al. 2005; Coll and Hughes 2008). Also, 

herbivores that develop slower are in their most vulnerable stages for a longer time 

(Sequeira and Mackauer 1994). On the other hand, effects can be negative; under 

higher atmospheric CO2 levels, plant growth rates increase (Rogers et al. 1983), and 
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the time spent by predators searching for prey also increases because of extra plant 

foliage (Thomson et al. 2010), which might negatively affect pest control.  

Shifts in precipitation 

The increase of periods of drought predicted in models of climate change 

can have a negative impact on predator’s ability to control pests (Stireman et al. 

2005). For instance, dry conditions were the cause of spider mite population 

outbreaks because water stress caused an unfavourable leaf microclimate (i.e. with 

an increase of leaf temperature and a decrease of relative humidity) that affected the 

efficiency of its main predator, the phytoseiid Phytoseiulus persimilis (English-Loeb 

1990).  

Land-use changes  

The distribution of crops is predicted to change over time because growers 

will select species that optimize productivity under new climate conditions. 

Herbivores are expected to track these changes and the effectiveness of natural 

enemies for pest control will depend on their ability to concurrently expand their 

range (Thomson et al. 2010; Cock et al. 2013).   

Increases in temperature 

Most of pests and their natural enemies are arthropods, and, as ectothermic 

organisms, many key processes related with their fitness - such as development, 

reproduction, activity, interactions with other organisms (e.g. predation rate or 

competitive ability) -are climate-dependent (Beveridge et al. 2010; Gilman et al. 

2010). Consequently, it is expected warming will have an important effect on 

agricultural communities under biological pest control. Because higher trophic 

levels are more vulnerable to temperature increases than lower trophic levels (Voigt 

et al. 2003; Schweiger et al. 2008), the loss of top consumers associated with 

warming will favour herbivory in systems regulated with top-down control, such as 

agricultural communities (e.g. Montserrat et al. 2013b). Added to this, temperature 

increase will likely widen the geographic distribution of cold-limited species in the 
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future, favouring the movement of some pest species (Cannon 1998; Thomson et al. 

2010). 

1.3. Studying the effects of climate change on agricultural systems: 

Community modules 

Biotic interactions, which structure ecological communities, are climate-dependent 

(Gilman et al. 2010). The capacity to evaluate the effect of climate change in 

agricultural communities depends on the identification of those interactions that are 

key to the well-functioning of the community, and are vulnerable to rapid changes in 

abiotic conditions (Bascompte and Stouffer 2009). A good tool to study interactions 

among species is to use the so-called community modules (Holt 1997), which 

simplify food webs into much more manageable subunits (2-6 interacting species) to 

help to understand mechanistic responses in entire complex communities (Gilman et 

al. 2010). There are five community modules commonly found in agricultural 

systems: 

(1) Trophic chain 

Species are rarely connected forming linear trophic chains, where each component 

defines a trophic level; instead, they usually interact with each other forming food 

webs where the limits of trophic levels become diffused (Gallopin 1972; Polis and 

Strong 1996). Nonetheless, the study of trophic chains can provide a starting point 

for the understanding of shifts happening in the community when more species 

and/or interactions are added. (Figure 1.3.1a) 
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Figure 1.3.1. Community modules: a. Trophic chain; b. Resource competition; c. Intraguild 
predation: basic (1) and reciprocal (2); d. Apparent competition; and e. Intraguild predation-
Apparent competition. Solid arrows: trophic interactions; Dashed arrows: predator-predator 
negative interactions (competition); Dotted arrows: indirect prey-alternative prey negative 
interactions (competition). PP: primary producer; PC: primary consumer; SC: secondary 
consumer.  

(2) Resource competition 

Interspecific competition (Figure 1.3.1b) is one of the most important interaction 

influencing the distribution and abundance of species in communities. The 

“competitive exclusion principle” or “Gause´s law” states that two species that are 

competing for the same resource cannot coexist in a limiting resource environment, 

when the other ecological factors remain constant. The competitor that exploits the 

resource more efficiently will exert a pressure to the other competitor, leading to 

either its extinction or to its evolutionary or behavioural adaptation toward a 

different ecological niche (Gause 1934). However, the dominance of one competitor 

over another can vary with abiotic conditions (Park 1954; Dunson and Travis 1991; 

Guzmán et al. 2016a). Guzmán et al. (2016a) showed that the outcome of 

competitive interactions between two sister species of predatory mites, Euseius 
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stipulatus and Euseius sculatis, which are present in the avocado agro-ecosystem in 

south-eastern Spain, is strongly affected by abiotic conditions, leading to 

temperature-dependent species dominance. Thus, in agricultural communities under 

biocontrol management, the effect of changes in abiotic conditions on exploitative 

competition superiority may depend on which species is favoured; for example, the 

outcome could be detrimental to biological control if the most efficient natural 

enemy is excluded by a lesser efficient predator during episodes of extreme climate.  

(3) Intraguild predation 

Intraguild predation (IGP, hereafter) is the simplest form of omnivory and occurs 

when two competing predator species also engage in direct predator-prey 

interactions (Polis et al. 1989). Therefore, IGP is a community module that 

combines competition and predation, the two interactions most determinant of the 

structure of ecological communities (Chase et al. 2002).  

IGP is now considered widespread in natural and managed ecosystems 

(Polis et al. 1989; Holt and Polis 1997; Arim and Marquet 2004; Gagnon et al. 

2011), although initially it was thought to be not ubiquitous in nature due to 

theoretical studies that suggested that omnivory was an important destabilizer of 

food web dynamics (Pimm and Lawton 1978). IGP has received considerable 

attention in the theoretical literature (Polis and Holt 1992; Holt and Polis 1997; 

Mylius et al. 2001; Kuijper et al. 2003). Most of models consider three species: a top 

predator (IG-predator), an intermediate consumer (IG-prey), and a shared resource. 

Both predators (IG-predator and IG-prey) share a prey, and one of them (the IG-

predator) also feeds on the other (the IG-prey) (Figure 1.3.1, c1). IGP can also be 

reciprocal when the IG-predator and the IG-prey are predators of one another 

(Figure 1.3.1, c2). An important component of these models is the effect of 

productivity of the environment on the coexistence of competing predators; at low 

productivity, only the IG-prey should persist since it is able to exploit the shared 

resource more efficiently than the IG-predator. Therefore, a necessary condition is 

that the IG-prey has to be the superior competitor; at high productivity, the IG-

predator should drive the IG-prey to extinction through a combined effect of 
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competition and predation. Hence, IGP theory predicts that the coexistence of the 

IG-predator and the IG-prey is only possible at intermediate productivity levels, and 

depends on the existence of differences in the efficiency of resource exploitation 

between competing predators (Polis and Holt 1992; Holt and Polis 1997; Diehl and 

Feißel 2000; Mylius et al. 2001; Borer et al. 2003; Borer et al. 2007). Therefore, the 

range of productivity that allows coexistence is narrow, a theoretical results that 

disagrees with the observation that IGP is common in natural communities (Arim 

and Marquet 2004). This mismatch between model predictions and observation has 

led to a large number of theoretical and empirical studies studying additional factors 

present in real systems that could explain long-term coexistence of IG-predator and 

IG-prey in nature. In this sense, Mylius et al. (2001) studied the influence of stage 

structure in the persistence of IGP. Models with either a stage of IG-prey being 

invulnerable to IG-predator (i.e. large adults), or a stage of IG-predator being 

incapable to prey on IG-prey (i.e. juveniles) only slightly increased the region of 

coexistence along the productivity gradient. Other works have included the effect of 

spatial heterogeneity (Finke and Denno 2002, 2006; Janssen et al. 2007; Okuyama 

2008; Schmitt et al. 2009; Liu and Zhang 2013) and temporal refuges for the IG-

prey (Amarasekare 2008), which may increase the possibilities for coexistence by 

weakening the strength of the interactions between IG-predator and IG-prey. Also, 

other mechanisms such as adaptive foraging behaviour by IG-predator (Křivan 

2000; Křivan and Diehl 2005), changes in the IG-predator diet during ontogeny 

(Van de Wolfshaar et al. 2006), antipredator behaviour of IG-prey (Heithaus 2001), 

spatial segregation of IG-predator and IG-prey when they are engaged in reciprocal 

IGP (Montserrat et al. 2012), and cannibalism (Rudolf 2007), are thought to increase 

persistence of communities with IGP. However, in spite of extensive literature 

addressing this topic, it is still a challenge to explain the factors that fully resolve the 

discrepancy between theory and observation.  

In agricultural systems IGP has been traditionally considered a possible 

threat to successful biological pest control (Rosenheim et al. 1995; Rosenheim 

1998), although 10 years after the seminal paper of Rosenheim et al. (1995) the 
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relevance of IGP as disruptive factor of biological pest control was alleviated 

(Janssen et al. 2006). The theoretical impact of IGP on agricultural communities 

may decrease through mechanisms weakening trophic interactions between the two 

predator species, such as spatial heterogeneity (Janssen et al. 2007) or antipredator 

behaviour (Magalhães et al. 2005b; Finke and Denno 2006). However, the effect of 

abiotic conditions modulating negative interactions between predators remains 

almost unexplored (Guzmán et al. 2016b) 

(4) Apparent competition 

Apparent competition is a type of indirect interaction defined as a reduction in the 

population density of one prey species when the population density of another prey 

species increases, mediated by a numerical increase of a shared natural enemy (Holt 

1977) (Figure 1.3.1c). Apparent competition is considered a process that structures 

ecological communities in manners similar to those in communities driven by 

exploitation competition (Holt 1977). The time scale over which apparent 

competition operates is, however, different than that of resource competition. In the 

short-term, in which responses of communities occur within a single generation and, 

therefore, predator numbers are fixed, satiation of predators can lead to an increase 

in numbers of the two prey populations. Such positive indirect effect between prey 

species is known as “apparent mutualism” (Abrams 1987; Abrams and Matsuda 

1996; Abrams et al. 1996). In the long-term, in which responses of communities 

operate over more than one generation of predators, the numerical response of 

predators due to the higher availability of prey leads to an increase of the total 

predation rate on both prey species, despite the per capita predation rate being the 

same. This is the effect known as “apparent competition”. Over time, the prey that is 

able to sustain the shared predator at higher densities will exclude the more 

vulnerable prey (Holt and Lawton 1994). 

From the viewpoint of biological control, the presence of an alternative prey 

or food can decrease pest populations through induction of apparent competition 

between the pest and the alternative food source. Some studies have shown that the 

addition of other prey species (Karban et al. 1994; Liu et al. 2006; Messelink et al. 
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2008; Messelink et al. 2010; Bompard et al. 2013), or the supply of non-prey food 

such pollen (van Rijn et al. 2002; González-Fernández et al. 2009; Nomikou et al. 

2010; Aguilar-Fenollosa et al. 2011; Maoz et al. 2011) as additional food sources for 

natural enemies enhances pest control. 

(5) Intraguild predation-Apparent competition 

Community modules with IGP are generally embedded in more complex food webs 

(Polis 1991) within which a large number of potential interactions outside the IGP 

module can affect its dynamic. Such interactions can include foraging of either IG-

prey or IG-predators, or both of them, on alternative food sources outside the IGP 

module. Few authors have explored theoretically how alternative food sources affect 

the persistence and stability of communities with IGP (Heithaus 2001; Daugherty et 

al. 2007; Holt and Huxel 2007), and predictions show that it can increase the chance 

for coexistence of IG-prey and IG-predator.  

In agricultural systems where IGP occurs, the presence of alternative food 

sources for IG-predators could reduce the strength of predator-prey interactions 

between predators, increase predator populations through apparent competition 

between the alternative food and the pest (Figure 1.3.1e), and improve, therefore, 

pest control (González-Fernández et al 2009). 

1.4. The experimental agro-ecosystem 

1.4.1. Primary producer: Avocado  

Avocado (Persea Americana Mill., Lauraceae) (Figure 1.4.1.1) is a fruit tree species 

originating from Central America, which was introduced in Spain during the 

sixteenth century. The first plantations of avocado were stablished in 1955 along the 

Mediterranean area, in the Andalusia region, from Malaga to Granada (Díaz 

Robledo 1997), and since then it has become an economically important crop in 

south-eastern Spain. Indeed, Spain is presently the largest European avocado 

producer, with a production of 77.401 tonnes in 2014 (MAGRAMA 2016), and the 

leading exporting country in Europe, with 65.273 out of the 69.400 tonnes produced 
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in 2013 being exported (FAOSTAT 2016). The Spanish area destined to this crop 

occupied 14.937 hectares in 2015, 13.392 hectares of which were located in the 

coastal areas of Malaga and Granada (MAGRAMA 2016) 

The excellent phytosanitary status of the avocado cultivation in Andalusia 

might be one of the reasons by which it takes an important place in the European 

market. In fact, avocado trees in Spain had been exempted from important pests 

until the arrival of the persea mite in 2004. A possible reason could be that avocado 

leaves, seeds, roots (Armstrong 1964) and fruits (Platt-Aloia et al. 1983) contain 

specialized oil cells, so-called idioblast cells, which accumulate alkaloids and 

terpenes (Platt and Thomson 1992) with insecticidal, antifeedant and growth 

inhibitory activities (Rodriguez-Saona et al. 1997; Rodriguez-Saona et al. 1998; 

Rodriguez‐Saona and Trumble 2000), and that probably have protected the crop 

from most, if not all, of the local pests (González-Fernández et al. 2009).  

 

Figure 1.4.1.1. a) Avocado tree var. Hass located in the experimental station of the IHSM 
“La Mayora”, where the work presented in this thesis was realized; and b) avocado fruits var. 
Hass.  

1.4.2. Primary consumer: Oligonychus perseae, the herbivore pest 

The persea mite, Oligonychus perseae (Tuttle, Baker & Abbatiello) (Acari: 

Tetranychidae), was first detected in avocado orchards of south-eastern Spain 

(provinces of Malaga and Granada) in 2004 (Vela et al. 2007). This pest is native 

from Mexico, and it has been also described as avocado pest in other regions of 
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Spain, Canary Island and Valencia, and  in other countries such as USA (California), 

Costa Rica, Israel and Portugal (Vela et al. 2007). O. perseae builds dense silken 

nests on the underside of avocado leaves, mainly along the midrib and main nerves 

(Aponte and McMurtry 1997a) (Figure 1.4.2.1a). Nests are circular-shaped and are 

constructed with one or more small marginal openings used as entrances or exits for 

the mites (Aponte and McMurtry 1997a) (Figure 1.4.2.1b). Inside the nests adults 

feed and reproduce, and juveniles undergo development (Figure 1.4.2.1 b and c). 

Nests also protect the persea mite against attack from some species of natural 

enemies, and against adverse abiotic conditions (Mori et al. 1999; Montserrat et al. 

2008a). The damage caused by feeding of individuals is initially confined to the 

cells of the lower epidermis and the outer spongy parenchyma tissue, followed later 

by widespread damage to the mesophyll cells and some damage to the palisade 

parenchyma (Aponte and McMurtry 1997a). Such damage causes characteristic 

circular necrotic spots that can occupy up to 90% of the leaf area (Aponte and 

McMurtry 1997a) (Figure 1.4.2.1a), affecting the photosynthesis efficiency of the 

tree. When mite densities are high (ca. 500 mites per leaf (Bender 1993)) partial or 

total defoliation of trees may occur (Bender 1993; Aponte and McMurtry 1997a), 

and, consequently, young fruits and tree trunks may become exposed to the risk of 

sunburn (Bender 1993).  
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Figure 1.4.2.1. a)Avocado leaf infested by O. perseae; b) Nest build by O. perseae with 
females, juveniles and eggs inside; and c) Individuals of O. perseae in different stages of 
development inside the same nest.  

Oligonychus perseae has five developmental stages: egg, larva, protonymph, 

duetonymph and adult (Figure 1.4.2.2). The time required to undergo development 

to adult depends on temperature: 34.89, 16.90, 13.87 and 9.81 days, at 15, 20, 25 

and 30°C, respectively (Aponte and McMurtry 1997b). The number of nests built 

per female varies between 6 and 12 during her life-span, and it is also influenced by 

temperature; females build more nests at 20ºC. Females can lay up to 15 eggs per 

nest, although the number of eggs/nest decreases as temperature increases (Aponte 

and McMurtry 1997a). Other life-history parameters such as female longevity, 

oviposition rate and mortality also vary with temperature (determined at 15, 20, 25 

and 30°C): the highest fecundity (45.80 eggs/female) and highest oviposition rate 

(1.84 eggs/female/day) is reached at 25°C and 30°C, respectively, and the highest 
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mortality during development is 36.92% for the combined stages at 30°C (Aponte 

and McMurtry 1997b). 

 

Figure 1.4.2.2. Developmental stages of O. perseae (egg, larva, protonymph, duetonymph 
and adult), and duration of each stage at 30 ºC. Figure reproduced from Hoddle (1998). 

1.4.3. Secondary consumers: phytoseiid mites  

The main natural enemies of the persea mite are predatory mites of the family 

Phytoseiidae (Hoddle et al. 1999). This is a worldwide family with more than 2000 

identified species belonging to 67 genera (De Moraes et al. 2004). Phytoseiid mites 

have received increasing attention during the last four decades because of their 

potential as biocontrol agents of phytophagous mites. At present, they are the first 

taxonomic group providing mass reared predators, and 3 species are among the 10 (I 

quote) “most important invertebrate biological control agents used in augmentative 

biological control” (Van Lenteren 2012). Phytoseiid mites are popular because they 

are small, easy to rear, easy to release in the crops, and, because many of them are 

generalists, they can potentially control several pest species at the same time (Van 

Lenteren 2012).  



Introduction 

44 

 

In the Andalusian avocado crops three species of phytoseiid mites co-occurr 

with the persea mite: Euseius stipulatus (Athias-Henriot), Euseius scutalis (Athias-

Henriot) and Neoseilus californicus (McGregor) (Figure 1.4.3.1 a, b and c, 

respectively) (González-Fernández et al. 2009; Guzmán et al. 2016a). Despite both 

species of Euseius are categorized as specialized pollen feeders (Ferragut and 

Escudero 1997; McMurtry and Croft 1997), they can prey on soft bodies arthropods 

and are known to contribute to the control of pest species in citrus (McMurtry 1977; 

Garcia-Mari et al. 1985; Ferragut et al. 1988; Abad-Moyano et al. 2009) and 

avocado (González-Fernández et al. 2009; Maoz et al. 2011) orchards. The two 

species cannot penetrate inside the persea mite nests and they attack only the 

individuals wandering outside the nests (González-Fernández et al. 2009). Based on 

the capacity of both Euseius species to use pollen as alternative feeding resource, 

they are currently being managed through conservational biological control methods 

for the regulation of O. perseae populations (González-Fernández et al. 2009; Maoz 

et al. 2011). 

 Neoseilus californicus is a polyphagous predator specialized in tetranychid 

mites (McMurtry and Croft 1997). Unlike the two species of Euseius, females of this 

species are able to enter inside the nests of persea mites using their first pair of legs 

to rip the dense web (Montserrat et al. 2008a). However, whether smaller stages of 

N. californicus can penetrate inside the O. perseae nests, and whether they benefit 

from this ability, still remains to be explored (Sections 3.2 and 3.3 of this thesis). N. 

californicus is commercially available, and it is a successful biocontrol agent in 

augmentative field release experiments on avocado trees in California (Hoddle et al. 

1999; Kerguelen and Hoddle 1999) and in Israel (Maoz et al. 2011). Therefore, this 

species is a good candidate to be considered in biological control programs against 

the persea mite in the Andalusian avocado crops.  
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Figure 1.4.3.1. a) Female of Euseius stipulatus preying on a female of O. perseae outside the 
nest; b) Female of Euseius scutalis; and c) Female of N. californicus inside the nest. 

Although the three species colonize avocado agro-ecosystems in south-

eastern Spain, their distribution depend on the location of avocado orchards 

(Guzmán et al. 2016a). In coastal areas, with relatively mild abiotic conditions, the 

phytoseiid mite species that dominate are E. stipulatus and N. californicus, whereas 

inland, where abiotic conditions are hotter and dryer, E. scutalis is the most 

abundant species as it is better adapted to heat stress (Kasap and Şekeroğlu 2004). 

1.5. The area of study 

The work presented in this thesis was developed in the IHSM “La Mayora”. The 

IHSM “La Mayora” is a unique European research centre as it is the only one in 

Europe that investigates subtropical agronomic species. The experimental station of 

the IHSM, located in Algarrobo-Costa in the province of Malaga, has an area of 50 

ha, 20 of which occupied by experimental plots with avocado, mango and 

cherimoya. Because it is located next to the sea the two dominant species in avocado 

orchards are E. stipulatus and N. californicus. 

1.5.1. Climate change in the area of study 

The area of study is located in the Mediterranean basin in south Europe, where 

models of climate change project an increase of temperature in spring and summer, 

and a decrease of precipitations (IPCC 2007, 2014).  
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An analysis of climate data recorded in the experimental station of the 

IHSM “La Mayora” from 1980 to 2008 showed a trend toward an increase in the 

average temperature in spring and summer (Figure 1.5.1.1), which is in accordance 

with the IPCC predictions (Montserrat et al. 2013b).  

 

Figure 1.5.1.1. Average temperature of each season (winter, spring, summer and autumn) 
from 1980 to 2008. Statistically significant regression lines are shown in the figure. The 
slopes of the lineal regression functions for spring and summer data indicated that annually 
temperature increased, on average, 0.0375 and 0.0445 ºC, respectively. Figure in Montserrat 
et al. (2013b).  

1.5.2. The mite predator/prey community dynamics in the area of study 

The population dynamics of the O. perseae and the two predatory mites was studied 

from March to September (spring and summer) during four consecutive years (2006-

2009) in an experimental avocado orchard located in the experimental station of the 

IHSM “La Mayora” (Montserrat et al. 2013b). The population dynamics of O. 

perseae was characterized by an exponential increase starting in early summer 

(July), with a maximum in August-September, and a dramatic exponential decrease 

at the end of summer (Figure 1.5.2.1a). The population dynamics of phytoseiid mites 

showed two maxima: (i) the first maximum was observed in spring when the persea 

mite population were low (Figure 1.5.2.1a). A previous work carried out by 

González-Fernández et al. (2009) revealed that phytoseiid populations responded to 

the abundance of pollen in the atmosphere in spring (Figure 1.5.2.1b), being that of 
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Olea europea (i.e. olive) the most abundant in avocado orchards of this area (77% of 

the total identified pollen in May). The identification of the phytoseiid species from 

samples taken during this first peak revealed that E. stipulatus was the dominant 

species (81% of the identified individuals), and that N. californicus was poorly 

represented (2% of the identified individuals); (ii) the second maximum was 

detected in summer, corresponding with a numerical response of predators to the 

persea mite abundance (Figure 1.5.2.1a). The most abundant specie in summer was 

N. californicus (50% of the identified individuals) followed by E. stipulatus (34% of 

the identified individuals) (González-Fernández et al. 2009). This second peak was 

observed in 2006 and 2007, but not in 2008 and 2009 (Figure 1.5.2.1a). The 

inspection of daily records of temperature and relative humidity during these 

sampling periods revealed that summers in 2008 and 2009 were hotter and dryer 

than those in 2006 and 2007 (Figure 1.5.2.1c), affecting negatively the phytoseiid 

populations. Harsh abiotic conditions were also a direct cause of biological control 

disruption detected in a field experiment carried out in the area of study during 

summers of  2009 and 2010 (Montserrat et al. 2013a).  
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Figure 1.5.2.1. a) Population dynamics of the phytoseiid mites (black dots) and the persea 
mite (white dots) during four consecutive years (2006-2009); b) Population dynamics of 
phytoseiid mites (black dots) and grains of pollen in the atmosphere (green stars), during the 
same period as in a; and c) Daily average temperature (red dots) and relative humidity (blue 
dots) registered from early spring to late summer, during the same period as in a. Vertical 
lines delimit the time period with presence of Oligonychus perseae in the avocado trees. 
Note the empty spaces inside cluster of points in 2008 and 2009 that indicate days with high 
temperature and low relative humidity. Figure reproduced from Montserrat et al. (2013b). 
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1.6. Objectives 

The well-functioning of arthropod communities providing important ecological 

services, such as biological pest control, might be jeopardised by changes in biotic 

interactions caused by shifts in abiotic conditions in the present scenario of climate 

change. Because the avocado mite community is composed by a low number of 

species, it is an optimal study model to study the effects of abiotic conditions on 

interactions between pests and their natural enemies. The use of community modules 

described in the section 1.3 can help to identify key interactions for an effective 

biological pest control that might be negatively affected by changes in the abiotic 

conditions.  

 The main goal of this thesis was to evaluate the effects of abiotic conditions 

on the strength and direction of biotic interactions occurring among mite species 

inhabiting avocado agro-ecosystems, and how these effects determine the trophic 

structure and dynamics of the community. This main goal was divided into several 

specific objectives from two different approaches:  

1. At the individual level 

1.a. Determine the influence of abiotic conditions in predator-prey interactions 

between the predatory mites E. stipulatus and N. californicus, and the herbivore pest 

O. perseae, in the presence and the absence of alternative food. Two community 

modules were used to achieve this objective: Trophic chain and Apparent 

competition. 

1.b. Evaluate the effects of abiotic conditions and presence of alternative food on 

intraguild interactions between the two predatory mites, E. stipulatus and N. 

californicus, with O. perseae as shared prey. Interactions were analysed using two 

community modules: Intraguild predation and Intraguild predation-Apparent 

competition.    
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2. At the population level 

2.a. Evaluate the impact of abiotic conditions on the community dynamics, i.e., how 

the observed effects on species interactions at the individual level are rendered at the 

population level. For this purpose, mite predator/prey population dynamics were 

examined in the presence and the absence of alternative food at two different abiotic 

conditions.  
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2. MATERIAL AND METHODS 

2.1. Effects of abiotic conditions and presence of alternative food on 

predator-prey interactions between predatory mites (E. stipulatus 

or N. californicus) and their herbivore prey (O. perseae) 

2.1.0. Experimental details  

Mites cultures 

Predatory mites were cultured in a climate chamber at 25±1ºC, 65±5% RH and 

16:8h L:D (Light:Dark). Cultures of E. stipulatus were started in 2007 from ca. 300 

individuals collected from avocado trees located in the experimental station of the 

IHSM “La Mayora”. Rearing units consisted of three bean (Phaseolus vulgaris L.) 

plants (6-10 leaves old) positioned vertically, with the stems in contact with sponges 

(30 x 20 x 5 cm, approx.) covered with cotton wool and a plastic sheet (27 x 17 cm) 

on top, and placed inside of water-containing trays (8 L, 42.5 x 26 x 7.5 cm). The 

roots of the plants were in contact with the water of the trays, and the aerial parts 

were touching each other forming a tent-like three-dimensional structure, where 

individuals could easily walk from one plant to the other (Figure 2.1.0.1a). Some 

cotton threads were placed on leaves serving as oviposition sites for mite females. 

Mites were fed ad libitum twice a week with pollen of Carpobrotus edulis (cat´s 

claw) that was spread on leaves with a fine brush. Euseius stipulatus is able to 

develop and reproduce when fed on pollen of C. edulis (Ferragut et al. 1987). Every 

three weeks, new rearings were made by transferring, from old rearings to a new 

unit, either leaves with mites and the cotton threads filled with eggs, or adult females 

(ca. 300) if old units were contaminated. Pollen of C. edulis was obtained from 

flower stamens that were dried in a stove at 37ºC for 48h, and then sieved (350 µm) 

(see Appendix 1 for further details). Individuals of N. californicus were obtained 

from Koppert Biological Systems S.L. in bottles of 1000 individuals (Spical®). 

Colonies were kept on detached bean leaves infested with Tetranychus urticae that 
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were placed on top of inverted flower-pots (20 cm Ø) inside water-containing trays 

(Figure 2.1.0.1b).  

 Females of O. perseae were obtained from detached infested avocado leaves 

taken from avocado orchards located in the experimental station of the IHSM “La 

Mayora”. 

 

Figure 2.1.0.1. Rearing units for predatory mites. a) Euseius stipulatus; b) Neoseiulus 

californicus. 

Experimental arenas 

Experimental arenas were constructed according to the methodology described in 

Guzmán et al. (2016a). These experimental arenas were designed to create two 

abiotic environments: the upper environment, where interacting individuals 

experience the conditions of treatments, and the lower environment, which is kept 

humid to maintain the avocado leaf-discs turgor. 

Experimental arenas were built as follows (Figure 2.1.0.2): a circular hole 

(6.5 cm Ø) was made in the middle of the base of Petri dishes (9 cm Ø) using a 

welder. The hole was covered with a plasticine ring along the perimeter. The 

plasticine was flattened on the inner margin of the hole. An avocado leaf disc (7.5 

cm Ø) was placed on the base of each Petri dish with the leaf underside facing out 

through the hole of the Petri dish, and the borders glued to the plasticine. A disc of 

foam of 8 cm Ø was wrapped with wet cotton wool and was placed inside the base 

of Petri dishes in contact with the leaf discs. Petri dish lids were then placed upon 

the foam, and both the lid and the base were wrapped with parafilm®. Arenas were 



Community modules: 

Trophic chain and Apparent competition 

55 

 

then turned upside down, so that lids were now the base of the arena and the 

underside of leaf was displayed. Finally, to refrain individuals from escaping, a ring 

of Tanglefoot® was applied along the outer margin of the leaf disc, in contact with 

the plasticine.   

 

Figure 2.1.0.2. Experimental arena used in laboratory experiments where interactions 
between species were evaluated at the individual level. 

Abiotic conditions 

Effects of abiotic conditions on predator–prey interactions were evaluated at three 

combinations of temperature and relative humidity (Table 2.1.0.1): “mild” (M, 

hereafter), “hot and dry” (HD, hereafter) and “very hot and dry” (VHD, hereafter). 

Both abiotic factors, temperature and relative humidity, explain the population 

dynamic of phytoseiids to a high extent (Montserrat et al. 2013b).  

 The range of temperature (T) and relative humidity (RH) combinations 

tested in this study (Table 2.1.0.1) was obtained from daily T and RH averages 

registered during the day and night in July and August over five consecutive years 

(2006-2010) in the study area. To obtain the mild condition (M), 4 ºC were 

subtracted from daily averages T, and 10% of RH was added to daily averages RH 

to mimic springtime (March to May), when environmental conditions are relatively 

mild. To obtain HD and VHD conditions, T and RH were modified to reflect an 

increasingly arid environment, as it is predicted in the models of climate change.  
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Experiments were done at a photoperiod of 16:8h L:D (Light:Dark) in high-

performance climate chambers (Fitoclima S 600, Aralab) that allow the fine-tuning 

of temperature and relative humidity. 

Table 2.1.0.1. Combinations of temperature (T) and relative humidity (RH) set for each 
abiotic condition during day and night time.   

 

Abiotic condition 

  Day Night 

T RH T RH 

Mild (M) 25 ºC 70 % 22 ºC 85 % 

Hot and dry (HD) 30 ºC 50 % 27 ºC 50 % 

Very hot and dry (VHD) 33 ºC 50 % 30 ºC 50 % 

 

2.1.1. Community module: Trophic chain  

The aim of this experiment was to determine how changes in abiotic conditions 

affect predator-prey interaction strength between either E. stipulatus or N. 

californicus, and the herbivore O. perseae.  

All the predator females used in this experiment were 10-14 days old since 

egg hatching. Cohorts of E. stipulatus were made by transferring with a fine brush 

400 eggs from the rearings to 2-3 bean leaves placed on top of sponges (30 x 20 x 5 

cm, approx.) covered with cotton wool, inside water-containing trays (3.5 L), and 

with pollen of C. edulis as food. Because it was difficult to obtain eggs of N. 

californicus from the rearings, cohorts of this species were made by transferring 100 

females to 2-3 bean leaves infested with Tetranychus urticae placed on containers 

similar to those explained above. After allowing N. califonicus females to feed and 

oviposit for 48 h, they were removed with a fine brush. Cohorts were maintained at 

25±1ºC, 65±5% RH and 16:8h L:D (Light:Dark). Before the experiment, gravid 

females were randomly taken from the cohorts, and they were starved for 16 h on 

experimental containers and conditions similar to those above. Starvation was done 
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to standardize hunger among individuals, and to ensure that egg production in tested 

females was not obtained from food ingested prior to the experiment.  

Ten females of O. perseae were let on experimental arenas (see section 

2.1.0) to build nests and lay eggs in a climate chamber at 25±1ºC, 65±5% RH and 

16:8h L:D (Light:Dark) during 4 days. The number of nests and of eggs laid per nest 

on each experimental arena was counted at the onset of the experiment. Then, either 

a) one starved E. stipulatus or b) N. californicus female was introduced into the 

experimental arena (Table 2.1.1.1). After 24 h, the number of O. perseae dead 

females (predation/mortality rate), the number of eggs laid by predators (oviposition 

rate), and the fate of predators (whether alive or dead) were recorded.  

Females of N. californicus are able to penetrate inside the persea mite nests 

(Montserrat et al. 2008a; González-Fernández et al. 2009). Therefore, the number of 

O. perseae eggs eaten was also recorded in the replicates with this predator-prey 

combination.  

Experimental arenas containing c) 10 O. perseae females without predators, 

and either d) one E. stipulatus or e) one N. californicus female, without prey (Table 

2.1.1.1) were done as control treatments for prey natural mortality and predator 

oviposition rate, respectively. All treatments (Table 2.1.1.1) were done at the three 

abiotic conditions. There were between 10 and 18 replicates per treatment.  

Table 2.1.1.1. Combination of species present in each treatment studied in the community 
module trophic chain.  

Treatments 

1. Predator + Prey + avocado  
a) E. stipulatus + O. perseae + avocado  
b) N. californicus + O. perseae + avocado  

2. Prey + avocado 
c) O. perseae + avocado  

3. Predator + avocado  
d) E. stipulatus + avocado  
e) N. californicus+ avocado  
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Data analysis 

Data was analysed using Generalized Lineal Models (GLM), which allow for non-

linearity and heteroscedasticity in data.  

Herbivore prey: Mortality of O. perseae females was analysed assuming a 

Poisson distribution of errors, typically used when the dependent variable consists of 

count data, with Log as the Link function. The model included “predator” (E. 

stipulatus, N. californicus or none), and “abiotic condition” (M, HD or VHD), as 

explanatory variables.  

Due to results showed that N. californicus females preyed on O. perseae 

females at the three abiotic conditions, predation rates were compared among abiotic 

conditions. A new data set was created in which the actual number of O. perseae 

females killed per day was corrected for natural mortality. Data were analysed 

assuming a Normal distribution of errors and Identity as the Link function. 

Egg predation inside nests was analysed only with N. californicus as 

predator. Analyses were done assuming a Negative Binomial distribution of errors, 

which is also typically used with count data sets, using Log as the Link function. 

The model included “abiotic condition” as explanatory variable.  

Predators: Data of oviposition rates of predators needed correction. Despite 

predatory females were subjected to starvation to allow them to lay the eggs that had 

been produced from food obtained prior to the experiment, few females still laid 

eggs in experimental treatments with no food. Scavenging or cannibalism occurring 

during the starvation period probably caused this unexpected result, as tested 

females were starved together. To correct this error, the average oviposition rate of 

either predator in the control treatment with no food was subtracted from the 

oviposition value of each replicate in all the treatments, and this new set of data was 

used in the analyses.  
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Oviposition rates of each predator were analysed assuming a Normal 

distribution of errors and using Identity as the Link function, and models included 

“presence of prey” (yes or no) and “abiotic condition”, as explanatory variables.  

Additionally, specific analyses to compare oviposition rates of N. 

californicus and E. stipulatus in the presence of prey at M conditions, and 

oviposition rates of N. californicus in the presence of prey between M and HD 

conditions were performed. Data were analysed assuming a Normal distribution of 

errors with Identity as the Link function.  

The ratio between daily oviposition and daily predation was estimated for 

each predator species at the abiotic conditions where predation on O. perseae 

females and oviposition was observed, i.e. at M conditions for E. stipulatus, and at 

M and HD conditions for N. californicus. A new data set was created in which the 

actual number of O. perseae females killed per day was corrected for natural 

mortality. Similarly, oviposition rates of predators were also corrected by the rates 

of oviposition observed in the control treatment with no food. 

The survival of predators (alive or dead) was analysed in each species 

separately. Models assumed a binomial distribution of errors with a Logistical 

function as the Link function, and included “presence of prey” and “abiotic 

condition”, as explanatory variables.  

When necessary, analyses to evaluate the effect of explanatory variables on 

dependent variables within each abiotic condition were made separately. Post-hoc 

comparisons were made with the least significant difference (LSD) test. Analyses 

were done using IBM SPSS statistics v.23. 

2.1.2. Community module: Apparent competition  

The goal of this experiment was to determine whether the presence of 

alternative food (i.e. pollen) influences predator-prey interaction strength between 

either predatory species and O. perseae, and whether such influence is in turn 

affected by abiotic conditions.  
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The experimental methodology for this experiment was similar to that of the 

previous section. All the treatments and respective controls are summarized in Table 

2.1.2.1. They consisted of: one female of either a) E. stipulatus or b) N. californicus 

with 10 females of O. perseae and pollen supplied ad libitum; as in above but 

without pollen [treatments c) and d)]; e) 10 females of O. perseae only, as control 

for natural mortality; and either of the two predator species with [treatments f) and 

g)] or without [treatments h) and i)] pollen supplied ad libitum, as controls for 

oviposition. All the treatments (Table 2.1.2.1) were done at the three abiotic 

conditions. The number of replicates per treatment varied between 10 and 18. 

Table 2.1.2.1. Combination of species present in each treatment studied in the community 
module apparent competition. 

Treatments 

1. Predator + Prey + pollen + avocado 
a) E. stipulatus + O. perseae + pollen + avocado 
b) N. californicus + O. perseae + pollen + avocado 

2. Predator + Prey + avocado 
c) E. stipulatus + O. perseae + avocado  
d) N. californicus + O. perseae + avocado  

3. Prey + avocado  
e) O. perseae + avocado leaf  

4. Predator + pollen + avocado 
f) E. stipulatus + pollen + avocado  
g) N. californicus+ pollen+ avocado  

5. Predator + avocado  
h) E. stipulatus + avocado 

i) N. californicus+ avocado 

Data analysis 

Data was also analysed using Generalized Lineal Models (GLM).  

Herbivore prey: Mortality of O. perseae females was analysed assuming a 

Poisson distribution of errors with Log as the Link function. Model included 

“experimental treatment” (with pollen, without pollen or control) and “abiotic 

condition” (M, HD or VHD), as explanatory variables. 
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 Egg predation by N. californicus inside nests was analysed assuming a 

Negative Binomial distribution of errors, and using Log as the Link function. The 

explanatory variables included were “abiotic condition” and “presence of pollen” 

(yes or no). 

Predators: Data correction on oviposition rates was done as well (see section 

2.1.1). Oviposition rates of each predator were analysed assuming a Normal 

distribution of errors using Identity as the Link function, and models included 

“presence of prey” (yes or no), “abiotic condition” and “presence of pollen”, as 

explanatory variables.  

The survival of predators (alive or dead) was analysed in each species 

separately. Models assumed a binomial distribution of errors with a Logistical 

function as the Link function, and included “presence of prey”, “abiotic condition” 

and “presence of pollen”, as explanatory variables.  

All models included only interactions among explanatory variables 

containing the main factor “presence of pollen”, to assess the effect of supply of 

pollen on the different dependent variables.  

When necessary, analyses to evaluate the effect of explanatory variables on 

dependent variables within each abiotic condition were made separately. Post-hoc 

comparisons were made with the least significant difference (LSD) test. Analyses 

were done using IBM SPSS statistics v.23. 
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2.2. Effects of abiotic conditions and presence of alternative food on 

intraguild interactions between two predatory mites (E. stipulatus 

or N. californicus) sharing an herbivore prey (O. perseae) 

2.2.0. Mite cultures, experimental arenas and abiotic conditions 

Mite cultures and experimental arenas were similar to those described in the section 

2.1.0 (p. 53). Similarly, trophic interactions among species were evaluated at the 

three abiotic conditions detailed in the Table 2.1.0.1 (Section 2.1.0). 

2.2.1. Community module: Intraguild predation 

This experiment was designed to determine whether intraguild predation (IGP, 

hereafter) occurs between E. stipulatus and N. californicus, and whether IGP 

strength and direction is in turn affected by abiotic conditions. 

All predator females used as IG-predators in this experiment were 10-14 

days old since egg hatching and were subjected to starvation before the experiment, 

as explained in section 2.1.1. Heterospecific juveniles, of 2-3 days old since egg 

hatching, were used as IG-prey. 

After letting 10 O. perseae females on each experimental arena in a climate 

chamber (25±1ºC, 65±5% RH and 16:8h L:D) during 4 days, the number of nests 

built and of eggs laid per nest by females were counted. Then, either one starved a) 

E. stipulatus or b) N. californicus female acting as IG-predator, and 10 

heterospecific juveniles acting as IG-prey were introduced into the experimental 

arenas (Table 2.2.1.1). The number of O. perseae dead females (predation/mortality 

rate), the number of IG-prey juveniles dead (predation/mortality rate), alive, or 

escaped (found in the tanglefoot), the number of eggs laid by IG-predators 

(oviposition rate), and the fate of IG-predators (alive or dead), were recorded after 

24h.  
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Additionally, several control treatments (Table 2.2.1.1) were done to 

evaluate: (i) the predation/mortality rate of O. perseae in the presence of IG-predator 

but not of IG-prey [treatments c) and d)], in the presence of IG-prey but not of IG-

predator [treatments e) and f)], and in the absence of both IG-predator and IG-prey 

(i.e. natural mortality) [treatment k]; (ii) the predation/mortality rate of IG-prey in 

the presence of IG-predator but not of prey [treatments g) and h)], in the presence of 

prey but not of IG-predator [treatments e) and f)], and in the absence of both IG-

predator and prey (i.e. natural mortality) [treatments i) and j)]; and (iii) the 

oviposition rate of IG-predators in the presence of prey but not of IG-prey 

[treatments c) and d)], in the presence of IG-prey but not of prey [treatments g) and 

h)], and in the absence of both prey and IG-prey [treatments l) and m)].  

Table 2.2.1.1. Combination of species present in each treatment studied in the community 
module intraguild predation.  

Treatments 

1. IG-predator + IG-prey + Prey + avocado  
a) E. stipulatus + N. californicus + O. perseae + avocado  
b) N. californicus + E. stipulatus + O. perseae + avocado  

2. IG-predator + Prey + avocado  
c) E. stipulatus + O. perseae + avocado  
d) N. californicus + O. perseae + avocado 

3. IG-prey + Prey + avocado  
e) E. stipulatus + O. perseae + avocado  
f) N. californicus + O. perseae + avocado 

4. IG-predator + IG-prey + avocado  
g) E. stipulatus + N. californicus + avocado  
h) N. californicus + E. stipulatus + avocado  

5. IG-prey + avocado  
i) E. stipulatus + avocado  
j) N. californicus + avocado 

6. Prey + avocado  
k) O. perseae + avocado  

7. IG-predator + avocado  
l) E. stipulatus + avocado  
m) N. californicus + avocado 
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While it is known that females of N. californicus can penetrate inside the O. 

persea nests and females of E. stipulatus cannot, whether juveniles of both species 

are able to penetrate and forage inside the nests remains to be explored. I, thus, also 

recorded the number of O. perseae eaten eggs. 

The 13 treatments (Table 2.2.1.1) were carried out at the three abiotic 

conditions (Table 2.1.0.1). There were between 10 and 18 replicates per treatment. 

Data analysis 

Data was also analysed using Generalized Lineal Models (GLM). 

Shared prey: The analysis of O. perseae female mortality was done 

assuming a Poisson distribution of errors and Log as the Link function. The model 

included “presence of IG-predator” (yes or no), “presence of IG-prey” (yes or no) 

and “abiotic condition” (M, HD or VHD), as explanatory variables.  

Predation on O. perseae eggs was analysed assuming a Negative Binomial 

distribution of errors and using Log as the Link function. The model to analyse 

predation rates of the IG-predator (N. californicus) on O. perseae eggs included 

“presence of IG-prey” and “abiotic condition”, as explanatory variables; and the 

model to analyse predation rates of the two IG-prey (N. californicus and E. 

stipulatus) on O. perseae eggs included “presence of IG-predator” and “abiotic 

condition”, as explanatory variables.  

IG-prey: IG-prey mortality was analysed assuming a Poisson distribution of 

errors using Log as the Link function. The model included as explanatory variables 

“presence of IG-predator”, “presence of prey” (yes or no), and “abiotic condition”. 

IG-predators: Data correction on oviposition rates was done as well (see 

section 2.1.1). Oviposition rates of each IG-predator were analysed assuming a 

Normal distribution of errors with Identity as the Link function, and the models 

included “presence of prey”, “presence of IG-prey” and “abiotic condition”, as 

explanatory variables.  
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 The survival of IG-predator females (alive or dead) was analysed assuming a 

binomial distribution of errors using a Logistical function as the Link function, and 

included as explanatory variables “presence of prey”, “presence of IG-prey” and 

“abiotic condition”.  

When necessary, analyses to evaluate the effect of explanatory variables on 

the different dependent variables within each abiotic condition were made separately 

in both community modules. Post-hoc comparisons were made with the least 

significant difference (LSD) test. Analyses were done using IBM SPSS statistics 

v.23. 

2.2.2. Community module: Intraguild predation - Apparent competition  

This experiment aimed at testing whether IGP interactions, presumably occurring 

between E. stipulatus and N. californicus, could be reduced by providing an 

alternative food (i.e. pollen), and whether influences are in turn affected by abiotic 

conditions.  

Methodologies were analogous to those in the previous section. Table 

2.2.2.1 summarizes all the treatments included in this section. Because O. perseae 

forages on leaf tissue and does not include pollen in its diet, a control treatment with 

prey and pollen was not needed. All treatments were carried out at the three abiotic 

conditions (Table 2.1.0.1). Each treatment was replicated between 10 to 18 times. 
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Table 2.2.2.1. Combination of species present in each treatment studied in the community 
module intraguild predation-apparent competition. 

Treatments 

1. IG-predator + IG-prey + Prey + pollen + avocado  
a) E. stipulatus + N. californicus + O. perseae + pollen + avocado  
b) N. californicus + E. stipulatus + O. perseae + pollen + avocado 

 2. IG-predator + IG-prey + Prey + avocado  
c) E. stipulatus + N. californicus + O. perseae + avocado  
d) N. californicus + E. stipulatus + O. perseae + avocado 

3. IG-predator + Prey + pollen + avocado  
e) E. stipulatus + O. perseae + pollen + avocado  
f) N. californicus + O. perseae + pollen + avocado 

4. IG-predator + Prey + avocado  
g) E. stipulatus + O. perseae + avocado  
h) N. californicus + O. perseae + avocado 

5. IG-prey + Prey + pollen + avocado  
i) E. stipulatus + O. perseae + pollen + avocado  
j) N. californicus + O. perseae + pollen + avocado 

6. IG-prey + Prey + avocado  
k) E. stipulatus + O. perseae + avocado  
l) N. californicus + O. perseae + avocado 

7. IG-predator + IG-prey + pollen + avocado  
m) E. stipulatus + N. californicus + pollen + avocado  
n) N. californicus + E. stipulatus + pollen + avocado 

8. IG-predator + IG-prey + avocado  
o) E. stipulatus + N. californicus + avocado  
p) N. californicus + E. stipulatus + avocado  

9. IG-prey + pollen + avocado  
q) E. stipulatus + pollen + avocado  
r) N. californicus + pollen + avocado 

10. IG-prey + avocado  
s) E. stipulatus + avocado  
t) N. californicus + avocado 

11. Prey + avocado  
u) O. perseae + avocado  

12. IG-predator + pollen + avocado  
v) E. stipulatus + pollen + avocado  
w) N. californicus + pollen + avocado 

13. IG-predator + avocado  
x) E. stipulatus + avocado  
y) N. californicus + avocado 
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Data analysis 

Data was also analysed using Generalized Lineal Models (GLM). 

Shared prey: The mortality of O. perseae females was analysed assuming a 

Poisson distribution of errors and Log as the Link function. The model included 

“experimental treatment” (IG-predator with pollen, IG-predator without pollen or 

control (i.e. only prey)), “presence of IG-prey” (yes or no), and “abiotic condition” 

(M, HD or VHD), as explanatory variables.  

Predation on O. perseae eggs was analysed assuming a Negative Binomial 

distribution of errors, and using Log as the Link function. Predation rates of O. 

perseae eggs were only analysed for N. californicus (acting as IG-predator and as 

IG-prey), since results from the community module intraguild predation revealed 

that E. stipulatus juveniles did not prey on O. perseae eggs. Explanatory variables 

were “presence of IG-prey”, “abiotic condition” and “presence of pollen” (yes or no) 

-data with N. californicus females, i.e. IG-predators-, and “presence of IG-predator” 

(yes or no), “abiotic condition” and “presence of pollen” - data with N. californicus 

juveniles, i.e. IG-prey-. 

IG-prey: IG-prey mortality was analysed assuming a Poisson distribution of 

errors using Log as the Link function. The model included “presence of IG-

predator”, “presence of prey” (yes or no), “abiotic condition” and “presence of 

pollen”, as explanatory variables 

IG-predators: Data correction on oviposition rates was done as well (see 

section 2.1.1). Oviposition rates of each IG-predator were analysed assuming a 

Normal distribution of errors with Identity as the Link function, and the model 

included “presence of prey”, “presence of IG-prey”, “abiotic condition” and 

“presence of pollen”, as explanatory variables.  

The survival of IG-predator females (dead or alive) was analysed assuming a 

binomial distribution of errors using a Logistical function as the Link function, and 
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included as explanatory variables “presence of prey”, “presence of IG-prey”, 

“abiotic condition” and “presence of pollen”. 

All models included only interactions among explanatory variables 

containing the main factor “presence of pollen”, to assess the effect of supply of 

pollen on the different dependent variables.  

When necessary, analyses to evaluate the effect of explanatory variables on 

the different dependent variables within each abiotic condition were made separately 

in both community modules. Post-hoc comparisons were made with the least 

significant difference (LSD) test. Analyses were done using IBM SPSS statistics 

v.23. 
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2.3. Unravelling behavioural/environmental effects: fine-tuning of 

results 

2.3.1. IG-prey role reversals triggered by IG-predators diet 

Results from other section in this thesis revealed that some juveniles of N. 

californicus (i.e. the IG-prey) preyed on E. stipulatus eggs (i.e. the IG-predator), but 

only when pollen was available. It is known that IG-prey behaviour may be 

determined by the diet of IG-predators (Magalhães et al. 2005b). Given that females 

of E. stipulatus preferably foraged on pollen when it was available (see Results 

3.2.2, p. 109), I decided to test whether N. californicus juveniles were able to 

discriminate between IG-predator eggs produced from mothers having different 

diets (i.e. pollen or eggs of O. perseae).  

Cultures of E. stipulatus and N. californicus were described in the section 

2.1.0. (p. 53). Eggs of O. perseae were obtained from infested avocado leaves taken 

from avocado trees located in the experimental station of the IHSM “La Mayora”. 

Experimental arenas used in this experiment were similar to those described in the 

section 2.1.0, but smaller (inner diameter 4.5 cm instead of 7.5 cm). 

 Females of E. stipulatus (10-14 days old since egg hatching) were starved 

individually during 16 h on bean leaf discs (2 cm Ø) placed on top of sponges (30 x 

20 x 5 cm, approx.) covered with cotton wool, inside water-containing trays (3.5 L), 

and maintained at 25±1ºC, 65±5% RH and 16:8h L:D. Starved females were 

individually allocated to two different treatments: (i) arenas with pollen 

(Carpobrotus edulis) supplied ad libitum, and (ii) arenas with eggs of O. perseae 

supplied ad libitum (30 eggs). Females were allowed to eat and lay eggs during 24 h. 

Next, five juveniles of N. californicus (2-3 days old since egg hatching), and six E. 

stipulatus eggs either produced by females from arenas (i) or arenas (ii) were 

introduced into new experimental arenas. Because some leaf structures may 

facilitate [e.g. leaf nerves functioning as a hold for eggs (Schausberger and Croft 

1999), or leaf domatia, which are typically used as oviposition place by phytoseiid 
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mites (Walter 1996)] or hamper (e.g. oval-shaped phytoseidd eggs may roll in the 

limbo of leaves when phytoseiid try to grasp them) predation on eggs by juveniles, 

E. stipulatus eggs were placed on three different locations within each avocado leaf 

disc: (1) two eggs in the domatia; (2) two eggs next to the midrib; and (3) two eggs 

on the leaf limbo (Figure 2.3.1.1). After 24 h, the number of predated eggs and their 

location (domatia, midrib or limbo) was assessed. Each treatment was replicated 10 

times at M conditions.  

 

Figure 2.3.1.1. Location of E. stipulatus eggs on experimental arenas: two eggs in the 
domatia (orange), two eggs next to the midrib (green), and two eggs at the leaf limbo (blue).  

Data analysis 

Differences in predation on E. stipulatus eggs by N. californicus juveniles 

depending on the diet of mothers were analysed with MANOVA using number of 

eggs eaten in Domatia, Midrib and Limbo as dependent variables, and type of food 

(pollen or eggs of O. perseae) as explanatory variable. Univariate ANOVA’s were 

subsequently done for each of the dependent variables, to detect potential egg 

predation differences within specific locations. Analyses were conducted with IBM 

SPSS statistics v.23. 
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2.3.2. Nests of O. perseae as refuges for N. californicus juveniles against 

adverse abiotic conditions 

Results from section 3.2.1 (p. 96) indicated that N. californicus juveniles were able 

to go inside the nests. Furthermore, that nests were never observed damaged 

suggested that juveniles accessed nests using their entrances, an ability that I later 

observed directly. Based on this, I hypothesized that N. californicus juveniles could 

use the nests of O. perseae as refuges against adverse abiotic conditions. To test 

that, I evaluated the mortality of N. californicus juveniles at three abiotic conditions 

(M, HD and VHD) in the presence and the absence of O. perseae’ nests.  

Cultures of N. californicus were described in the section 2.1.0 (p. 53), and 

females of O. perseae were obtained from infested avocado leaves taken from 

avocado trees located in the experimental station of the IHSM “La Mayora”. 

Experimental arenas used in this experiment were similar to those described above 

(inner diameter 4.5 cm).  

Groups of ten females of O. perseae were let to build nests and lay eggs in 

experimental arenas during 2 days, inside a climate chamber at 25±1ºC, 65±5% RH 

and 16:8h L:D (Light:Dark). Then, pairs of experimental arenas were allocated to 

either of the following two treatments: a) With nests: Females of O. perseae inside 

nests were removed by touching them through the wall nests with a fine brush, being 

very careful to not damage the nests, until they reached one of the entrances and 

exited. Next, 5 nests with eggs were left untouched and the rest were removed from 

the arenas. The total number of eggs inside nests was then counted; b) Without nests: 

Females of O. perseae and the nests were removed, and only the same number of 

eggs as in the corresponding arena with nests was left in the arenas. Then, one 

juvenile of N. californicus (2-4 days old since egg hatching) was introduced in all 

the arenas. The number of eggs per pair of arenas varied between 10 and 20. After 

24 h, the number of O. perseae predated eggs, and the fate of the N. californicus 

juvenile (alive or dead) were recorded. The number of paired replicates per abiotic 

condition (Section 2.1.0; Table 2.1.0.1) varied between 10-14.  
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Data analysis 

The effect of the presence of O. perseae nests on N. californicus juvenile mortality 

depending on abiotic conditions was analysed with Generalized Lineal Models 

(GLM), assuming a Binomial distribution of errors and using a Logistical function 

as a Link function. The model included “Fate” (‘0’ if the juvenile was alive, ‘1’ if it 

was dead) as the dependent variable, and “nests” (with or without) and “abiotic 

condition” (M, HD or VHD), and their interaction, as explanatory variables. The 

total number of eggs inside nests was added to the model as co-variable. If the effect 

of the co-variable was not significant, it was removed from the model and data was 

re-analysed.   

The effect of presence of nests and abiotic conditions on O. perseae egg 

predation by N. californicus juveniles was analysed with GLM, assuming Normal 

distribution of errors, and Identity as the link function. Because replicates were 

paired, the dependent variable included in the model was the difference in the 

number of eaten eggs between replicates with and replicates without nests. Hence, if 

the difference was significantly < ‘0’ would indicate a higher number of eaten eggs 

in the absence of nests; whereas if this values was > ‘0’ would indicate a higher 

number of eaten eggs in the presence of nests. The model included “abiotic 

condition” as explanatory variable. Analyses were conducted with IBM SPSS 

statistics v.23. 
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2.4. Effects of abiotic conditions and presence of alternative food on 

mite predator/prey population dynamics in avocado 

2.4.0. Mite cultures and abiotic conditions 

Mite cultures 

The rearing methods of N. californicus and E. stipulatus were described in the 

section 2.1.0 (p. 53). Females of O. perseae were collected from detached infested 

avocado leaves taken from avocado orchards located in the experimental station of 

the IHSM “La Mayora”. 

Abiotic conditions 

The mite predator/prey population dynamics in avocado were evaluated at two 

abiotic conditions defined as “mild” (M, hereafter) and “hot and dry” (HD, 

hereafter). Experiments were carried out in a walk-in high-performance climate 

chamber (Fitoclima 27000 EHHF, Aralab) that, by fine-tuning of temperature, 

relative humidity and light each 30 minutes, allows reproducing daily cycles. 

The temperature (T) - relative humidity (RH) combinations for each abiotic 

condition simulated daily fluctuating conditions. Daily cycles were obtained from 

averages of 30 minutes records of T and RH registered on July and August during 5 

consecutive years (2006 to 2010) in the study area (Figure 2.4.0.1). Firstly, to obtain 

M conditions, 4ºC were subtracted from the average T and 10% was added to the 

average RH in each of the 30-minute records, to mimic a spring day when 

environmental conditions are relatively mild; and to obtain HD conditions, 4ºC were 

added to the average T and 10% was subtracted from the average RH in each of the 

30 minute records, to mimic extreme abiotic conditions predicted in models of 

climate change (Figure 2.4.0.1). Secondly, to reduce the number of intervals to 

program, successive values of T and RH that were very similar were averaged (see 

Figure 2.4.0.1). This way we obtained 19 segments of different duration that 

simulated conditions of an entire day (i.e. sunrise, morning-noon-afternoon, sunset 
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and night) for each abiotic condition (Table 2.4.0.1). The photoperiod was 16:8h 

L:D (Light:Dark), imitating both the sunrise, with a progressive increase of light, 

and the sunset, with a progressive decrease of light.  

 

Figure 2.4.0.1. Thirty minute records of temperature (T) and relative humidity (RH) (average 
± SE) registered on July and August during 5 consecutive years (2006-2010) in the study 
area (black circular and square symbols, respectively). To obtain “mild” conditions, 4ºC 
were subtracted from the average T and 10% was added to the average RH in each of the 30-
minute records (blue circular and square symbols, respectively); and to obtain “hot and dry” 
conditions, 4ºC were added to the average T and 10% was subtracted from the average RH in 
each of the 30 minute records (red circular and square symbols, respectively).  
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Table 2.4.0.1. Combinations of temperature (T), relative humidity (RH) and Light set for 
each abiotic condition, “mild” (blue) and “hot and dry” (red) pooled in 19 segments of 
different time duration that simulated conditions of an entire day (i.e. sunrise, morning-noon-
afternoon, sunset and night). 

Part of day Time Duration 
T (ºC): 

Mild  
Hot and dry 

RH (%): 
Mild 
Hot and dry 

Ligh (%) 

Sunrise 

06:00-06:30 h 30 min 17.6 25.6 76.9 56.9 20% 

06:30-07:00 h 30 min 19.1 27.1 72.0 52.0 40% 

07:00-07:30 h 30 min 20.8 28.8 67.1 47.1 60% 

07:30-08:00 h 30 min 22.3 30.3 63.2 43.2 70% 

08:00-08:30 h 30 min 23.5 31.5 60.3 40.3 80% 

08:30-09:00 h 30 min 24.5 32.5 58.3 38.3 90% 

Morning-

noon-

afternoon 

09:00-17:30 h 8h 30 min 26.3 34.3 54.2 34.2 100% 

17:30-18:00 h 30 min 24.8 32.8 58.5 38.5 100% 

18:00-18:30 h 30 min 24.0 32.0 61.4 41.4 100% 

18:30-19:00 h 30 min 23.1 31.1 64.9 44.9 100% 

Sunset 

19:00-19:30 h 30 min 22.2 30.2 68.4 48.4 90% 

19:30-20:00 h 30 min 21.5 29.5 71.3 51.3 80% 

20:00-20:30 h 30 min 20.9 28.9 73.5 53.5 70% 

20:30-21:00 h 30 min 20.3 28.3 75.1 55.1 60% 

21:00-21:30 h 30 min 19.8 27.8 76.4 56.4 40% 

21:30-22:00 h 30 min 19.5 27.5 77.3 57.3 20% 

Night 

22:00-00:00 h 2 h 18.8 26.8 78.7 58.7 0% 

00:00-03:00 h 3 h 17.5 25.5 81.0 61.0 0% 

03:00-06:00 h 3 h 16.5 24.5 81.3 61.3 0% 
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2.4.1. Mite predator/prey population dynamics in avocado seedlings 

under two abiotic conditions, and in the presence or absence of pollen 

Population dynamic experiments were designed to determine whether the effects of 

abiotic conditions and presence of pollen observed at the individual level (i.e. 

community modules) are rendered at the population level.  

 Experiments were performed using avocado seedlings (Persea Americana 

var. Hass) of 1 m high (Figure 2.4.1.1a) as experimental units. Plants were 

introduced inside insect-proof mesh cages to isolate them from each other (Figure 

2.4.1.1b). Ten days before the start of the experiment, each plant was infested with 

50 O. perseae females to allow herbivore populations to establish and grow at 

optimal conditions (25 ºC/ 70% RH and 16:8h L:D (Light:Dark)). The first day of 

the experiment, the number of occupied nests (those with mobile stages and/or eggs 

inside) built by the herbivore on the upper margin of the second leaf vein of the 

underside of the leaf (UML2, hereafter) of 10 randomly selected leaves was 

recorded. As González-Fernández et al. (2009) described, the number of occupied 

nests on the UML2 is a good estimate of the total number of individuals (mobiles 

and eggs) on the leaf: the number of occupied nests relates to the total number of 

nests on the leaf (y=11.84x+3.28, R2=0.80, P<<0.001, N=422), and the total number 

of nests on the leaf relates to the total number of individuals (y=2.98x, R2=0.84, 

P<<0.001, N=431). Next, 10 gravid females of both E. stipulatus and N. californicus 

were introduced in each plant. Plants were then allocated to two of the following 

treatments: (i) with pollen, and (ii) without pollen. Each treatment was replicated 4 

times (i.e. 4 plants) at each abiotic condition (i.e. M and HD). Plants that received 

pollen were supplied with 20 mg of pollen (Carpobrotus edulis) in a plastic vial (0.9 

mm diameter and 0.5 mm high) glued on the top of a single leaf using a strip of 

VELCRO® (Figure 2.4.1.1c). Once a week, plants received new vials with fresh 

pollen. Vials that were removed from the plant were checked for predators being 

inside with a binocular microscope, and individuals were transferred back to the 

leaf. Twice a week, the number of occupied nests on the UML2 and the total number 

of mobile stages (i.e. adults and juveniles) of predatory mites were recorded in 10 
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randomly chosen leaves using a field magnifying glass (Ruper x8). The two 

predatory mite species were not identified at the species level because E. stipulatus 

and N. calfornicus are morphologically very similar and they can only be 

differentiated at a microscopic level. Experiments lasted until either the phytoseiid 

mite or the prey populations crashed, or until population stability was detected (~38 

days). At the end of the experiment, each plant was subjected to destructive 

sampling, where the total number of occupied nests, the total number of necrotic 

spots (that estimate the damage produced by this pest in avocado leaves), and the 

total number of mobile stages (i.e. adults and juveniles) and eggs of phytoseiid mites 

were recorded in all the leaves under the binocular. All adult phytoseiids were 

collected and prepared for identification at the species level under the microscope, 

and the juveniles and eggs were isolated to allow them to develop into adults. They 

were left on two bean leaf discs together (2 cm Ø) placed on wet cotton wool inside 

small containers (4.5 cm Ø), and provided with pollen and eggs and larvae of 

Tetranychus urticae (Figure 2.4.1.1d) in a climate chamber at 25±1ºC, 65±5% RH 

and 16:8h L:D. Once immatures reached adulthood, they were identified at the 

species level under the microscope.  

The taxonomic identification of phytoseiid mites was performed according 

to the protocol described in Gutiérrez (1985). First, adults were stored in 70% 

ethanol with 5% glycerine to protect the specimens until the clearing. Then, 

phytoseiid mites were cleared in 65% lactic acid (48h, 50ºC), which attacks soft 

tissues, but not chitinized cuticles, and inflates the body and extends the legs. Last, 

they were slide-mounted in Hoyer's medium. Identification to species level, using a 

phase contrast microscope, was based on the morphology, number, length and 

position of setae on ventral plates (Figure 2.4.1.2), and on the shape of spermathecas 

and spermatodactyls of females and males, respectively (Figure 2.4.1.3) (Çakmak 

and Çobanoğlu 2006; Ferragut et al. 2010). 
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Figure 2.4.1.1. a) Avocado plant used in the population dynamics experiments; b) Avocado 
plants were isolated inside cages placed in a walk-in high-performance climate chamber 
where population dynamic experiments were performed; c) Plastic vials with pollen, attached 
to the upper surface of leaves in plants under the treatment “with pollen”; d) Small containers 
where immatures of predatory mites reached adulthood after destructive sampling. 

 

Figure 2.4.1.2. Ventral plate of a) E. stipulatus female, b) N. californicus female, c) E. 

stipulatus male, and d) N. californicus male.  
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Figure 2.4.1.3. Spermatheca of a) E. stipulatus female and b) N. californicus female. 
Spermatodactyl of c) E. stipulatus male and d) N. californicus male.   

Data analysis  

Destructive sampling data 

The effect of abiotic conditions and presence of pollen was analysed using data from 

the final destructive sampling. The dependent variables were total number of 

predators, occupied O. perseae nests, and necrotic spots, per leaf. The three 

dependent variables were analysed separately with a 3-factor full-nested generalized 

lineal mixed model (GLMM) to account for dependence of data to each plant, 

assuming negative binomial distribution of error, with “abiotic condition” (M or 

HD), “treatment” (with pollen or without pollen) nested to abiotic condition, and 

“plant” (16 plants) nested to treatment and to abiotic condition, as main factors. 

Post-hoc comparisons were made with the least significant difference (LSD) test. 

Analyses were conducted with IBM SPSS statistics v.23. 

 

Taxonomic identification of phytoseiid mites 

With regard to the estimates of abundances of each predator species, because most 

immatures and eggs collected in the destructive sampling did not survive until 

adulthood, the percentage of each predatory mite species in each replicate (i.e. plant) 
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was estimated using only the adults that were collected and identified at the end of 

the experiment. 
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3. RESULTS 

3.1. Effects of abiotic conditions and presence of alternative food on 

predator-prey interactions between predatory mites (E. stipulatus 

or N. californicus) and their herbivore prey (O. perseae) 

3.1.1. Community module: Trophic chain  

(i) Predation rate on females and eggs of O. perseae 

Results showed that O. perseae female mortality rates were mainly affected by the 

presence of predators (Wald statistic for “predator”=54.29, df=2, P<0.001). 

Mortality of O. perseae females was in overall significantly higher in the presence 

of N. californicus than in the presence of E. stipulatus (Figure 3.1.1.1). The effect of 

predators on O. perseae mortality was marginally different among abiotic conditions 

(Wald statistic for “predator*abiotic condition”=9.30, df=4, P=0.054). Whereas N. 

californicus preyed on O. perseae females at the three abiotic conditions, E. 

stipulatus only did it at M conditions (Figure 3.1.1.1).  

Predation rates of N. californicus on O. perseae females were unaffected by 

abiotic conditions (Wald statistic for “abiotic condition”=0.209, df=2, P=0.901). 

However, predation rates of N. californicus on O. perseae eggs inside the nests were 

affected by abiotic conditions (Wald statistic for “abiotic condition”=6.84, df=2, 

P=0.033), being significantly higher at M than at VHD conditions (Figure 3.1.1.2).  
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Figure 3.1.1.1. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence of either E. 

stipulatus or N. californicus, and in the absence of both predators. Letters above bars are 
from LSD post-hoc tests and indicate significant differences (P≤0.05) among treatments 
within abiotic conditions. 
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Figure 3.1.1.2. Predation rate (average ± SE) of N. californicus on O. perseae eggs at the 
three abiotic conditions (see legend). Letters above bars are from LSD post-hoc test and 
indicate significant differences (P≤0.05). 

(ii) Oviposition rate of predators 

Oviposition rates of E. stipulatus were mainly affected by the presence of prey 

(Wald statistic for “presence of prey”=4.25, df=1, P=0.039), although such effect 

differed among abiotic conditions (Wald statistic for “presence of prey*abiotic 

condition”=14.96, df=2, P=0.001): only at M conditions the number of eggs were 

significantly higher in the presence of prey than in its absence (Figure 3.1.1.3, 1a). 

In the case of N. californicus, the presence of prey contributed to increase its 

oviposition rates (Wald statistic for “presence of prey”=23.64, df=1, P<<0.001), 

independently of abiotic conditions (Wald statistic for “presence of prey*abiotic 

condition”=2.11, df=2, P=0.349). However, results from LSD post-hoc tests 

revealed that at VHD conditions the number of eggs laid by females were unaffected 

by the presence of prey (Figure 3.1.1.3, 2c). Further analysis revealed that at M 

conditions and in the presence of prey there were no significant differences in 

oviposition rates between species of predators (Wald statistic for “species”=0.138, 

df=1, P=0.711); and that the number of eggs laid by N. californicus in the presence 

of prey did not vary significantly between M and HD conditions (Wald statistic for 

“abiotic condition”=0.278, df=1, P=0.598). 
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Figure 3.1.1.3. Oviposition rates (average ± SE) of (1) E. stipulatus and (2) N. californicus 
at the three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”), in the presence 
or in the absence of prey. Letters above bars are from LSD post-hoc tests and indicate 
significant differences (P≤0.05) among treatments within abiotic conditions. The figure 
shows original values, without the correction applied for the analyses (see M&M 2.1.1, p. 
58). 

(iii) Food-to-egg conversion efficiency  

At M conditions, the ratio daily oviposition/daily predation showed that E. stipulatus 

was more efficient than N. californicus at converting prey into eggs (Table 3.1.1.1). 

In N. californicus, prey conversion rate into eggs slightly decreased as temperature 

and drought increased (Table 3.1.1.1).  
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Table 3.1.1.1. Predation rates (average ± SE) of E. stipulatus or N. californicus on O. 

perseae females, predator’s oviposition rates (average ± SE), and the ratio daily 
oviposition/daily predation at different abiotic conditions. 

Predator 
species 

Abiotic 
conditions 

Number of  
O. perseae  

predated 
females /day  

Number of  
eggs laid by 
predators /day 

Ratio of 
oviposition/ 
predation 
 

E. stipulatus Mild  1.53±0.30 0.68±0.14 0.44 

N. californicus 

Mild  2.77±0.45 0.77± 0.22 0.28 

Hot and dry  2.99±0.45 0.63± 0.16 0.21 

(iv) Survival of predators 

The survival of E. stipulatus females was not affected by abiotic conditions (Wald 

statistic for “abiotic condition”=2.31, df=2, P=0.316), the presence of prey (Wald 

statistic for “presence of prey”=0.67, df=1, P=0.412), or an interaction between both 

factors (Wald statistic for “abiotic condition*presence of prey”=0.36, df=2, 

P=0.835) (Figure 3.1.1.4, 1). However, the survival of N. californicus females 

depended on abiotic conditions (Wald statistic for “abiotic condition”=12.16, df=2, 

P=0.002), and on the presence of prey (Wald statistic for “presence of prey”=7.62, 

df=1, P=0.006). Female survival was negatively influenced by high temperatures 

and low relative humidity in the absence of food, both at HD and VHD conditions 

(Figure 3.1.1.4, 2).  
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Figure 3.1.1.4. Fraction of predatory (1) E. stipulatus and (2) N. californicus females that 
were alive (dark grey) or dead (light grey) after 24 h at the three abiotic conditions (“mild”, 
“hot and dry” and “very hot and dry”), in the presence or in the absence of the prey. 

3.1.2. Community module: Apparent competition  

(i) Predation rate on females and eggs of O. perseae  

When the predator was E. stipulatus, O. perseae female mortality was influenced by 

the interaction between experimental treatment and abiotic conditions (Wald statistic 

for “experimental treatment*abiotic condition”=12.27, df=4, P=0.015). Indeed, E. 

stipulatus did not prey on O. perseae females in the treatment in which pollen was 

available at any of the three abiotic conditions (Figure 3.1.2.1, 1). 
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Figure 3.1.2.1. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in the 
absence of (1) E. stipulatus or (2) N. californicus, or pollen. Letters above bars are from LSD 
post-hoc tests and indicate significant differences (P≤0.05) among treatments within abiotic 
conditions. 

When the predator was N. californicus, O. perseae female mortality was 

significantly influenced by experimental treatment (Wald statistic for “experimental 

treatment”=29.42, df=2, P<<0.001), and such influence was unaffected by abiotic 

conditions (Wald statistic for “experimental treatment*abiotic condition”=7.08, 

df=4, P=0.132). Mortality of O. perseae females was significantly higher in the 

presence of N. californicus, independent of the availability of pollen (Figure 3.1.2.1, 

2; compare first and second bars with third bar). Therefore, the supply of pollen had 

no effect on the rates of predation in N. californicus.  
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The predation rate of N. californicus on O. perseae eggs inside the nests did 

not differ between treatments with or without pollen at any of the three abiotic 

conditions (Wald statistic for “presence of pollen*abiotic condition”=2.45, df=2, 

P=0.294) (Figure 3.1.2.2).  

 

Figure 3.1.2.2. Predation rate (average ± SE) of N. californicus on O. perseae eggs at the 
three abiotic conditions (see legend), in the presence or in the absence of pollen. Letters 
above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) among 
treatments within abiotic conditions. 

 (ii) Oviposition rate of predators 

The effect of the presence of pollen on oviposition rates of E. stipulatus depended 

on abiotic conditions (Wald statistic for “presence of pollen*abiotic 

conditions”=7.64, df=2, P=0.022). A subsequent analysis at M conditions exposed 

that the supply of pollen contributed to increase the oviposition rates (Wald statistic 

for “presence of pollen”=26.67, df=1, P<0.001), independently of the presence or 

the absence of prey (Wald statistic for “presence of pollen*presence of prey”=2.16, 

df=1, P=0.142) (Figure 3.1.2.3, 1a). At HD conditions, there was a significant 

interaction between the presence of pollen and the presence of prey (Wald statistic 

for “presence of pollen*presence of prey”=4.14, df=1, P=0.042), being the 

oviposition rates significantly higher in the presence of both pollen and prey (Figure 

3.1.2.3, 1b). However, at VHD conditions, E. stipulatus oviposition rates were only 

affected by the presence of pollen (Wald statistic for “presence of pollen”=6.67, 
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df=1, P=0.010). There was a tendency toward a higher number of eggs laid by 

females in those treatments in which pollen was available (Figure 3.1.2.3, 1c).   

On the other hand, the presence of pollen did not affect oviposition rates of 

N. californicus, neither in the presence nor in the absence of prey at any of the three 

abiotic conditions (Wald statistic for “presence of pollen*presence of prey*abiotic 

conditions”=4.25, df=4, P=0.373) (Figure 3.1.2.3, 2). 

 

Figure 3.1.2.3. Oviposition rates (average ± SE) of (1) E. stipulatus and (2) N. californicus 
at the three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence 
or in the absence of the prey, or pollen. Letters above bars are from LSD post-hoc tests and 
indicate significant differences (P≤0.05) among treatments within abiotic conditions. The 
figure shows original values, without the correction applied for the analyses (see M&M 
2.1.1, p. 58). 
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(iii) Survival of predators 

Neither the presence of pollen (Wald statistic for “presence of pollen”=0.25, df=1, 

P=0.614) nor its interaction with the other factors (i.e. “presence of prey” and 

“abiotic condition”) affected significantly the survival of E. stipulatus (Wald 

statistic for “presence of pollen*presence of prey*abiotic condition”=0.70, df=4, 

P=0.952) (Figure 3.1.2.4, 1). Similarly, the presence of pollen did not influence the 

survival of N. californicus females (Wald statistic for “presence of pollen”=1.53, 

df=1, P=0.217), either in the presence or in the absence of prey, at any of the three 

abiotic conditions (Wald statistic for “presence of pollen*presence of prey*abiotic 

condition”=0.54, df=4, P=0.245) (Figure 3.1.2.4, 2). Therefore, the supply of pollen 

did not increase the survival of N. californicus and E. stipulatus.  

Figure 3.1.2.4. Fraction of predatory (1) E. stipulatus and (2) N. californicus females that 
were alive (dark grey) or dead (light grey) after 24 h at the three abiotic conditions (“mild”, 
“hot and dry” and “very hot and dry”) in the presence or in the absence of the prey, or pollen. 
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3.2. Effects of abiotic conditions and presence of alternative food on 

intraguild interactions between two predatory mites (E. stipulatus 

or N. californicus) sharing an herbivore prey (O. perseae) 

3.2.1. Community module: Intraguild predation  

When the IG-predator was E. stipulatus 

(i) Predation on the shared prey (O. perseae females and eggs) 

O. perseae female mortality rates were significantly influenced by the presence of 

both the IG-predator (E. stipulatus) and the IG-prey (N. californicus), and such 

influence varied among abiotic conditions (Wald statistic for “presence of IG-

predator*presence of IG-prey*abiotic condition”=8.55, df=2, P=0.014). When the 

effect of both factors was analysed at each abiotic condition separately, results 

showed that, at M conditions, O. perseae mortality was affected by a significant 

interaction between the presence of IG-predator and the presence of IG-prey (Wald 

statistic for “presence of IG-predator*presence of IG-prey”=7.73, df=1, P=0.005). In 

the presence of IG-predator, prey mortality was higher when the IG-predator and the 

IG-prey were together (Figure 3.2.1.1a; compare first and second bars). 

Additionally, LSD post-hoc tests revealed that there were not significant differences 

in the number of O. perseae dead females between the treatment in which both the 

IG-predator and the IG-prey were present and the treatment in which the IG-prey 

was alone (Figure 3.2.1.1a; compare first and third bars). This result indicated that 

only juveniles of N. californicus could have preyed on O. perseae females in the 

treatment in which both predator species were together. At HD conditions, prey 

female mortality rates only were significantly influenced by the presence of IG-prey 

(Wald statistic for “presence of IG-prey=42.94, df=1, P<0.001). However, the 

number of O. perseae dead females in the treatment in which both the IG-predator 

and the IG-prey were present was significantly higher than in the treatment in which 

the IG-prey was alone (Figure 3.2.1.1b; compare first and third bars), indicating that 



Results 

96 

 

both predator species might have preyed on O. perseae females. At VHD conditions, 

the result was similar that of HD conditions (Figure 3.2.1.1; compare b and c). 

 

 

Figure 3.2.1.1. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in the 
absence of the IG-predator (IG-pred.; E. stipulatus), or the IG-prey (N. californicus). Letters 
above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) among 
treatments within abiotic conditions. 

With regard to predation on O. perseae eggs, results revealed that juveniles 

of N. californicus preyed on O. perseae eggs at the three abiotic conditions, showing 

that juveniles are able to go inside the nests (Figure 3.2.1.2). Because nests were 

undamaged, N. californicus juveniles probably penetrated through the entrances 
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built by O. perseae individuals. Predation rates on O. perseae eggs were affected by 

abiotic conditions (Wald statistic for “abiotic condition”=6.51, df=2, P=0.039), 

independently of the presence or the absence of the IG-predator (Wald statistic for 

“presence of predator*abiotic condition”=0.96, df=2, P=0.953). Rates of predation 

on eggs were higher at M conditions (Figure 3.2.1.2).  

 

Figure 3.2.1.2. Predation rate (average ± SE) of O. perseae eggs by N. californicus juveniles 
(IG-prey) at the three abiotic conditions (see legend), in the presence and in the absence of 
the IG-predator (E. stipulatus females). Letters above bars are from LSD post-hoc tests and 
indicate significant differences (P≤0.05) among treatments within abiotic conditions. 

(ii) Predation on the IG-prey (N. californicus juveniles) 

IG-prey (N. californicus) mortality rates were significantly affected by the presence 

of the IG-predator (E. stipulatus) and by the presence of prey (O. perseae), although 

such effects varied among abiotic conditions (Wald statistic for “presence of IG-

predator*abiotic condition”=15.93, df=2, P<0.001; “presence of prey*abiotic 

condition”=8.21, df=2, P=0.016). The analysis at M conditions revealed that the 

presence of prey reduced juvenile mortality in the absence of IG-predator, but not in 

its presence (Wald statistic for “presence of IG-predator*presence of prey”=7.92, 

df=1, P=0.005) (Figure 3.2.1.3a; compare first and third bars (green tone)). In fact, 

juvenile mortality was significantly higher in those treatments in the presence of IG-

predator when compared to the treatment in the absence of IG-predator and prey (i.e. 

natural mortality) (Figure 3.2.1.3a (green tone)), indicating that females of E. 

stipulatus probably preyed on juveniles of N. californicus. However, at HD 
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conditions the analysis showed that only the presence of prey influenced on IG-prey 

mortality rates (Wald statistic for “presence of prey”=5.28, df=1, P=0.022) (Figure 

3.2.1.3b (green tone)). Lastly, results from the analysis at VHD conditions exposed 

that none of the factors (i.e. presence of IG-predator and presence of prey) or their 

interaction was statistically significant (Figure 3.2.1.3c (green tone)). 

 

Figure 3.2.1.3. Number (average ± SE) of IG-prey juveniles (N. californicus) dead (green 
tones), alive (white) and escapees from experimental arena to the tanglefoot (dotted) at the 
three abiotic conditions (“mild”, “hot and dry”and “very hot and dry”) in the presence or in 
the absence of the IG-predator (IG-pred.; E. stipulatus), or the prey (O. perseae females). 
Letters above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) 
in the number of IG-prey dead juveniles (predation/mortality rate) among treatments within 
abiotic conditions. 
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(iii) Oviposition rates  

The analysis of the effect of presence of prey (O. perseae), presence of IG-prey (N. 

californicus) and abiotic conditions on oviposition rates of E. stipulatus females 

showed a significant interaction among the three factors (Wald statistic for 

“presence of prey*presence of IG-prey*abiotic condition”=12.76, df=2, P=0.002). A 

subsequent analysis at M conditions indicated that the presence of prey significantly 

increased the oviposition rate of the IG-predator, but only in the absence of IG-prey 

(Wald statistic for “presence of prey*presence of IG-prey”=9.08, df=1, P=0.003) 

(Figure 3.2.1.4a; compare first and second bars). However, the analyses both at HD, 

and at VHD conditions exposed that none of factors affected oviposition rates of the 

IG-predator (Figure 3.2.1.4, b and c).   
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Figure 3.2.1.4. Oviposition rates (average ± SE) of E. stipulatus females at the three abiotic 
conditions (“mild”, “hot and dry” and “very hot and dry”), in the presence or in the absence 
of the prey (O. perseae females) or the IG-prey (N. californicus). Letters above bars are from 
LSD post-hoc tests and indicate significant differences (P≤0.05) among treatments within 
abiotic conditions. The figure shows original values, without the correction applied for the 
analyses (see M&M 2.2.1, p. 58). 
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When the IG-predator was N. californicus 

(i) Predation on the shared prey (O. perseae females and eggs) 

The effect of the presence of both IG-predator (N. californicus) and IG-prey (E. 

stipulatus) on O. perseae mortality rates was different depending on abiotic 

conditions (Wald statistic for “presence of IG-predator*presence of IG-prey*abiotic 

condition”=9.57, df=2, P=0.008). A subsequent analysis at M conditions showed 

that the number of O. perseae dead females was significantly influenced by the 

presence of the IG-predator (Wald statistic for “presence of IG-predator”=10.55, 

df=1, P=0.001), although this number was reduced to half when the IG-prey was 

also present (Wald statistic for “presence of IG-predator*presence of IG-prey”=9.14, 

df=1, P=0.003) (Figure 3.2.1.5a; compare first and second bars). In addition, there 

were not significant differences between the number of O. perseae dead females in 

the treatment in which the IG-predator and the IG-prey were together and the 

treatment in which only the IG-prey was present (Figure 3.2.1.5a). This result 

indicated that only juveniles of E. stipulatus could have preyed on O. perseae 

females in the presence of both predatory mite species. At HD conditions, the 

analysis exposed that O. perseae mortality rates only were influenced by the 

presence of IG-predator (Wald statistic for “presence of IG-predator”=36.8, df=1, 

P<0.001): IG-predator predation rates on O. perseae were not affected by the 

presence or the absence of IG-prey (Wald statistic for “presence of IG-

predator*presence of IG-prey”=0.74, df=1, P=0.391) (Figure 3.2.1.5b; compare first 

and second bars). Finally, results from the analysis at VHD conditions showed that 

O. perseae mortality rates were significantly influenced by the presence of both IG-

predator and IG-prey (Wald statistic for “presence of IG-predator”=24.20, df=1, 

P<0.001; “presence of IG-prey”=4.14, df=1, P=0.042), but similar to HD conditions, 

the presence of IG-prey had no effect on IG-predator predation rates on O. perseae 

females (Wald statistic for “presence of IG-predator*presence of IG-prey”=1.89, 

df=1, P=0.169) (Figure 3.2.1.5c; compare first and second bars). Therefore, results 

suggested that only females of N. californicus might have preyed on O. perseae 
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females when IG-predator and IG-prey were together, both at HD and VHD 

conditions.  

 

Figure 3.2.1.5. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in the 
absence of the IG-predator (IG-pred.; N. californicus), or the IG-prey (E. stipulatus). Letters 
above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) among 
treatments within abiotic conditions. 

Predation rates of N. californicus females on O. perseae eggs inside the 

nests depended on both the presence of IG-prey and abiotic conditions (Wald 

statistic for “presence of IG-prey*abiotic condition”=13.6, df=2, P=0.001). At M 
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conditions, the number of eggs eaten by females was significantly higher in the 

absence of IG-prey (Figure 3.2.1.6a). However, at HD and VHD conditions, the 

presence of IG-prey had no effect on egg predation rates. On the other hand, results 

exposed that juveniles of E. stipulatus were not able to penetrate inside the nests, 

since there was no O. perseae eaten eggs in the treatment in which the IG-prey was 

alone (Figure 3.2.1.6b).  

 

Figure 3.2.1.6. Predation rate (average ± SE) of O. perseae eggs by (a) N. californicus 
females (IG-predator) and (b) E. stipulatus juveniles (IG-prey), at the three abiotic conditions 
(see legend), in the presence or in the absence of the IG-prey (E. stipulatus juveniles), or the 
IG-predator (N. californicus females), respectively. Letters above bars are from LSD post-
hoc tests and indicate significant differences (P≤0.05) among treatments within abiotic 
conditions.  
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(ii) Predation on the IG-prey (E. stipulatus juveniles) 

IG-prey mortality rates were significantly affected by the presence of IG-predators 

(N. californicus) and by the presence of prey (O. perseae), but such effects were 

different among abiotic conditions (Wald statistic for “presence of IG-

predator*abiotic condition”=11.33, df=2, P=0.003; “presence of prey*abiotic 

condition”=14.6, df=2, P=0.001). The analysis at M conditions showed that neither 

the presence of predator nor the presence of prey nor their interaction influenced 

significantly in IG-prey mortality rates (Wald statistic for “presence of IG-

predator”=2.42, df=1, P=0.120; “presence of prey”=0.57, df=1, P=0.452; “presence 

of IG-predator*presence of prey”=0.06, df=1, P=0.808) (Figure 3.2.1.7a (green 

tone)). At HD conditions, results indicated that the presence of prey significantly 

reduced juvenile mortality (Wald statistic for “presence of prey”=18.53, df=1, 

P<0.001) (Figure 3.2.1.7b; compare first and third bars with second and fourth bars 

(green tone)). However, the presence of prey did not temper the effect of extreme 

abiotic conditions on juvenile mortality at VHD conditions (Wald statistic for 

“presence of prey”=0.42, df=1, P=0.838) (Figure 3.2.1.7c (green tone)). 
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Figure 3.2.1.7. Number (average ± SE) of IG-prey juveniles (E. stipulatus) dead (green 
tones), alive (white) and escapees from experimental arena to the tanglefoot (dotted) at the 
three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in 
the absence of the IG-predator (IG-pred.; N. californicus), or the prey (O. perseae females). 
Letters above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) 
in the number of IG-prey dead juveniles (predation/mortality rate) among treatments within 
abiotic conditions.  
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(iii) Oviposition rates 

Oviposition rates of N. californicus females were not affected by any significant 

interaction among the presence of prey, the presence of IG-prey and abiotic 

conditions (Wald statistic for “presence of prey*abiotic condition”= 4.68, df=2, 

P=0.097; “presence of IG-prey*abiotic condition”= 3.31, df=2, P=0.191; “presence 

of prey*presence of IG-prey*abiotic condition”=2.80, df=2, P=0.246). At the three 

abiotic conditions, the number of eggs laid by the IG-predator in the presence of 

prey was lower when the IG-prey was present than when the IG-prey was absent 

(Wald statistic for “presence of prey*presence of IG-prey”= 8.12, df=1, P=0.004) 

(Figure 3.2.1.8; compare a, b and c). However, LSD post-hoc tests revealed that, at 

HD conditions, the oviposition rate of IG-predator in the treatment in which the prey 

and the IG-prey were together was not significantly different from the treatment in 

which only the prey was present (Figure 3.2.1.8b; compare first and second bars). 

This result suggested the presence of IG-prey did not affect oviposition rates of N. 

californicus females at these conditions. 
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Figure 3.2.1.8. Oviposition rates (average ± SE) of N. californicus females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”), in the presence or in the 
absence of the prey (O. perseae females) or the IG-prey (E. stipulatus). Letters above bars 
are from LSD post-hoc tests and indicate significant differences (P≤0.05) among treatments 
within abiotic conditions. The figure shows original values, without the correction applied 
for the analyses (see M&M 2.2.1, p. 58). 

Survival of IG-predators 

The survival of E. stipulatus females was affected by abiotic conditions (Wald 

statistic for “abiotic condition”=6.29, df=2, P=0.043), independently of the presence 

of prey and the presence of IG-prey (Wald statistic for “presence of prey*presence 

of IG-prey*abiotic condition”=1.62, df=2, P=0.444). Mortality of E. stipulatus 
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females increased at VHD conditions (Figure 3.2.1.9, 1). In N. californicus, survival 

of females depended on abiotic conditions (Wald statistic for “abiotic 

condition”=21.1, df=2, P<0.001), and on the presence of prey (Wald statistic for 

“presence of prey”=16.03, df=1, P<0.001), but not on the presence of IG-prey (Wald 

statistic for “presence of IG-prey”=0.135, df=2, P=0.713). Mortality of females was 

higher at HD, and at VHD conditions, although the presence of prey contributed to 

reduce it. (Figure 3.2.1.9, 2; compare treatments with the prey and treatments 

without the prey).  

Figure 3.2.1.9. Fraction of (1) E. stipulatus and (2) N. californicus females that were alive 
(dark grey) or dead (light grey) after 24 h at the three abiotic conditions (“mild”, “hot and 
dry” and “very hot and dry”) in the presence or in the absence of the prey (O. perseae 
females) or the IG-prey (N. californicus and E. stipulatus juveniles, respectively). 
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3.2.2. Community module: Intraguild predation - Apparent competition 

When the IG-predator was E. stipulatus 

(i) Predation on the shared prey (O. perseae females and eggs) 

O. perseae mortality rates were differently influenced by the presence of IG-

predator (E. stipulatus) -with and without pollen- (i.e. experimental treatment: IG-

predator with pollen, IG-predator without pollen or control (i.e. only prey)), and by 

the presence of IG-prey (N. californicus) depending on abiotic conditions (Wald 

statistic for “experimental treatment*presence of IG-prey*abiotic condition”=16.01, 

df=6, P=0.013). The influence of both factors (i.e. experimental treatment and 

presence of IG-prey) was separately analysed at each abiotic condition. At M 

conditions, prey mortality depended on the experimental treatment and on the 

presence of IG-prey (Wald statistic for “experimental treatment*presence of IG-

prey”=12.92, df=2, P=0.002). The supply of pollen contributed to reduce the number 

of O. perseae dead females in the presence of IG-predator, but not in the presence of 

both IG-predator and IG-prey (Figure 3.2.2.1a; compare first and second bars, and 

third and fourth bars). In addition, O. perseae mortality rates were not significantly 

different among treatments in which the IG-prey was present, both in the presence 

and in the absence of the pollen (Figure 3.2.2.1a). This result suggested that the 

presence of pollen did not influence on the number of O. perseae females eaten by 

juveniles of N. californicus. At HD conditions, the analysis revealed that O. perseae 

mortality rates only were affected by the presence of IG-prey (Wald statistic for 

“presence of IG-prey”=59.8, df=1, P<0.001). In the community module intraguild 

predation, results from HD conditions revealed that both the IG-predator and the IG-

prey might have preyed on O. perseae females in the treatment in which both 

predatory mites were together (see section 3.2.1). However, the availability of pollen 

seemed to have reduced the number of O. perseae females predated by the IG-

predator, since there were no significant differences between the treatment in which 

the IG-predator and the IG-prey were together in the presence of pollen, and the 

treatment in which the IG-prey was alone (Figure 3.2.2.1b). At VHD conditions, 
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results from the analysis were similar that of the HD conditions (Wald statistic for 

“presence of IG-prey”=54.3, df=1, P<0.001) (Figure 3.2.2.1, compare b and c).  

 

Figure 3.2.2.1. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in the 
absence of the IG-predator (IG-pred.; E. stipulatus), the IG-prey (N. californicus), or pollen. 

Letters above bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) 
among treatments within abiotic conditions.  
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Predation rates of N. californicus juveniles on O. perseae eggs inside the 

nests were differently affected by the presence of pollen depending on abiotic 

conditions (Wald statistic for “presence of pollen*abiotic condition”=7.36, df=2, 

P=0.025). The analysis at M conditions showed that, in overall, the presence of 

pollen contributed to reduce the number of O. perseae eggs eaten by juveniles (Wald 

statistic for “presence of pollen”=5.54, df=1, P=0.019), although LSD post-hoc tests 

revealed that there were not significant differences in the number of eggs eaten 

between treatments in which the pollen was present and treatment in which the 

pollen was absent (Figure 3.2.2.2). At HD, and at VHD conditions, the supply of 

pollen did not influence in predation rates of N. californicus juveniles on O. perseae 

eggs (Wald statistic for “presence of pollen”=2.07, df=1, P=0.151; “presence of 

pollen”=0.001, df=1, P=0.978, respectively)  

 

Figure 3.2.2.2. Predation rate (average ± SE) of O. perseae eggs by N. californicus juveniles 
(IG-prey) at the three abiotic conditions (see legend), in the presence or in the absence of the 
IG-predator (E. stipulatus females), or pollen. Letters above bars are from LSD post-hoc 
tests and indicate significant differences (P≤0.05) among treatments within abiotic 
conditions. 

(ii) Predation on the IG-prey (N. californicus juveniles) 

IG-prey (N. californicus) mortality rates were influenced by a significant interaction 

among the presence of IG-predator (E. stipulatus), the presence of pollen and abiotic 

conditions (Wald statistic for “presence of IG-predator*presence of pollen*abiotic 



Results 

112 

 

condition”=22.04, df=4, P<0.001). The presence of prey (O. perseae) and the 

presence of pollen also influenced on IG-prey mortality rates (Wald statistic for 

“presence of prey*presence of pollen”=4.2, df=1, P=0.04), and such influence was 

marginally different among abiotic conditions (Wald statistic for “presence of 

prey*presence of pollen*abiotic condition”=9.17, df=4, P=0.057). The analyses to 

evaluate the effect of the three factors (i.e. presence of IG-predator, presence of prey 

and presence of pollen) at each abiotic condition revealed that, at M conditions, IG-

prey mortality rates were significantly lower in the presence of IG-predator when 

pollen was available (Figure 3.2.2.3a; compare first and second bars, and third and 

fourth bars (green tone)), but not in the presence of prey and in the absence the IG-

predator (Figure 3.2.2.3a; compare fifth and sixth bars, and seventh and eighth bars 

(green tone)) (Wald statistic for “presence of IG-predator*presence of prey*presence 

of pollen”=8.68, df=2, P=0.013). Therefore, E. stipulatus females did not feed on 

juveniles when the pollen was present, unlike what was observed in the community 

module intraguild predation in the absence of pollen (see section 3.2.1). At HD 

conditions, the analysis showed that the presence of pollen reduced in overall IG-

prey mortality (Wald statistic for “presence of pollen”=5.09, df=1, P=0.024), 

independently of the presence of IG-predator and prey (Wald statistic for “presence 

of IG-predator*presence of prey*presence of pollen”=1.46, df=2, P=0.481) (Figure 

3.2.2.3b; see treatments with pollen (green tone)). Finally, at VHD conditions, the 

presence of pollen did not significantly influence on IG-prey mortality rates (Wald 

statistic for “presence of pollen”=0.08, df=1, P=0.777). 
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Figure 3.2.2.3. Number (average ± SE) of IG-prey juveniles (N. californicus) dead (green 
tones), alive (white) and escapees from experimental arena to the tanglefoot (dotted) at the 
three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in 
the absence of the IG-predator (IG-pred.; E. stipulatus), the prey (O. perseae females), or 
pollen. Letters above bars are from LSD post-hoc tests and indicate significant differences 
(P≤0.05) in the number of IG-prey dead juveniles (predation/mortality rate) among 
treatments within abiotic conditions.  
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(iii) Oviposition rates 

The availability of pollen contributed to increase oviposition rates of E. stipulatus 

females (Wald statistic for “presence of pollen”=101.72, df=1, P<0.001), 

independently of the presence or the absence of prey (O. perseae) and IG-prey (N. 

californicus) at the three abiotic conditions (Wald statistic for “presence of 

prey*presence of IG-prey*presence of pollen*abiotic condition”=7.01, df=4, 

P=0.135); although such increase was higher at M and HD than at VHD conditions 

(Wald statistic for “presence of pollen*abiotic condition”=16.86, df=2, P<0.001) 

(Figure 3.2.2.4; compare treatments with pollen and treatments without pollen at the 

three abiotic conditions). 
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Figure 3.2.2.4. Oviposition rates (average ± SE) of E. stipulatus females at the three abiotic 
conditions (“mild”, “hot and dry” and “very hot and dry”), in the presence or in the absence 
of the prey (O. perseae females), the IG-prey (N. californicus), or pollen. Letters above bars 
are from LSD post-hoc tests and indicate significant differences (P≤ 0.05) among treatments 
within abiotic conditions. The figure shows original values, without the correction applied 
for the analyses (see M&M 2.2.1, p. 58). 
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When the IG-predator was N. californicus 

(i) Predation on the shared prey (O. perseae females and eggs) 

The analysis of the effect of the experimental treatment (i.e. IG-predator with pollen, 

IG-predator without pollen or control (i.e. only prey)), the presence of IG-prey (E. 

stipulatus) and abiotic conditions on O. perseae mortality rates showed a significant 

interaction among these three factors (Wald statistic for “experimental 

treatment*presence of IG-prey*abiotic condition”=14.48, df=6, P=0.025). The 

analysis at M conditions exposed that prey mortality was significantly affected by 

the presence of IG-predator-with and without pollen- (i.e. experimental treatment) 

and by the presence of IG-prey (Wald statistic for “experimental treatment*presence 

of IG-prey”=13.02, df=2, P=0.001). The availability of pollen did not affect the 

number of O. perseae dead females when the IG-predator was alone (Figure 

3.2.2.5a; compare third and fourth bars), whereas in the treatment in which the IG-

predator and the IG-prey were together, the presence of pollen contributed to 

increase O. perseae mortality rates (Figure 3.2.2.5a; compare first and second bars). 

In the community module intraguild predation, results indicated that only juveniles 

of E. stipulatus could have preyed on O. perseae females in the presence of both 

predatory mite species (see section 3.2.1). However, in this community module, 

results suggested that only N. californicus females preyed on O. perseae females in 

the presence of pollen, since there were no significant differences among the 

treatment in which the IG-predator and the IG-prey were together with pollen, and 

treatments in which the IG-predator was alone (Figure 3.2.2.5a; compare first bar 

with third and fourth bars). Results from the analysis at HD conditions exposed that 

O. perseae mortality rates only were influenced by the experimental treatment 

(Wald statistic for “experimental treatment”=36.86, df=2, P<0.001): there were 

significant differences between treatments in which the IG-predator was present and 

treatments in which the IG-predator was absent (Figure 3.2.2.5b). In addition, prey 

mortality rates were similar among treatments in which the IG-predator was present, 

independent of the presence or the absence of IG-prey and pollen (Figure 3.2.2.5b; 

compare the first four bars). Finally, results from the analysis at VHD conditions 
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were similar that of the analysis at HD conditions (Wald statistic for “experimental 

treatment”=25.45, df=2, P<0.001) (Figure 3.2.2.5, compare b and c). 

 

Figure 3.2.2.5. Predation/mortality rate (average ± SE) of O. perseae females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in the 
absence of the IG-predator (IG-pred.; N. californicus), the IG-prey (E. stipulatus), or pollen. 

Letters above bars are from LSD post-hoc tests and indicate significant differences (P≤ 0.05) 
among treatments within abiotic conditions. 
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 The effect of the presence of IG-prey and the presence of pollen on 

predation rates of N. californicus females on O. perseae eggs inside the nests varied 

among abiotic conditions (Wald statistic for “presence of IG-prey*presence of 

pollen*abiotic condition”=18.5, df=4, P=0.001). At M conditions, the availability of 

pollen contributed to increase egg predation rates in the presence of IG-prey (Wald 

statistic for “presence of IG-prey*presence of pollen”=3.83, df=1, P=0.05) (Figure 

3.2.2.6; compare first and second bars at mild conditions). However, at HD 

conditions the presence of pollen had no effect on egg predation rates, neither in the 

presence nor the absence of the IG-prey (Wald statistic for “presence of IG-

prey*presence of pollen”=0.631, df=1, P=0.427) (Figure 3.2.2.6; see HD 

conditions). On the other hand, the analysis at VHD conditions showed that, in 

overall, the presence of pollen significantly increased the number of O. perseae eggs 

eaten by N. californicus females (Wald statistic for “presence of pollen”=6.36, df=1, 

P=0.012), although LSD post-hoc tests exposed that there were no significant 

differences in the number of eggs eaten between treatments in which the pollen was 

present and treatments in which the pollen was absent, independently of the 

presence or the absence of IG-prey (Wald statistic for “presence of IG-

prey*presence of pollen”=0.094, df=1, P=0.759) (Figure 3.2.2.6; see VHD 

conditions). 
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Figure 3.2.2.6. Predation rate (average ± SE) of O. perseae eggs by N. californicus females 
(IG-predator) at the three abiotic conditions (see legend), in the presence or in the absence of 
the IG-prey (E. stipulatus juveniles), or pollen. Letters above bars are from LSD tests and 
indicate significant differences (P≤ 0.05) among treatments within abiotic conditions. 

(ii) Predation on the IG-prey (E. stipulatus juveniles) 

The effect of presence of the IG-predator (N. californicus) and pollen on IG-prey (E. 

stipulatus) mortality rates was different depending on abiotic conditions (Wald 

statistic for “presence of IG-predator*presence of pollen*abiotic condition”=12.24, 

df=4, P=0.016). Additionally, the effect of presence of prey and pollen also 

depended on abiotic conditions (Wald statistic for “presence of prey*presence of 

pollen*abiotic condition”=15.67, df=4, P=0.003). The analysis at M conditions 

exposed that IG-prey mortality rates were lower in the presence of pollen (Wald 

statistic for “presence of pollen”=9.61, df=1, P=0.02), independently on whether the 

IG-predator and the prey were present or absent (Wald statistic for “presence of IG-

predator*presence of prey* presence of pollen”=1.09 df=2, P=0.581) (Figure 

3.2.2.7a; compare treatments with pollen and treatments without pollen (green 

tone)). At HD conditions, the supply of pollen contributed to reduce IG-prey 

mortality in the presence of IG-predator, but not whether the prey was also present 

(Wald statistic for “presence of IG-predator*presence of prey*presence of 

pollen”=0.21 df=2, P=0.045) (Figure 3.2.2.7b (green tone)). Finally, at VHD 
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conditions, IG-prey mortality rates were lower in the presence of pollen (Wald 

statistic for “presence of pollen”=67.74, df=1, P<0.001), both in the presence of IG-

predator and in the presence of prey (Wald statistic for “presence of IG-

predator*presence of prey* presence of pollen”=0.41 df=2, P=0.813) (Figure 

3.2.2.7c; compare treatments with pollen and treatments without pollen (green 

tone)). 
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Figure 3.2.2.7. Number (average ± SE) of IG-prey juveniles (E. stipulatus) dead (green 
tones), alive (white) and escapees from experimental arena to the tanglefoot (dotted) at the 
three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the presence or in 
the absence of the IG-predator (IG-pred.; N. californicus), the prey (O. perseae females), or 
pollen. Letters above bars are from LSD post-hoc tests and indicate significant differences 
(P≤0.05) in the number of IG-prey dead juveniles (predation/mortality rate) among 
treatments within abiotic conditions. 
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(iii) Oviposition rates 

Oviposition rates of N. californicus females were affected by the presence of pollen 

and the presence of prey (Wald statistic for “presence of pollen*presence of 

prey”=19.34, df=1, P<0.001), independently of abiotic conditions (Wald statistic for 

“presence of pollen*presence of prey*abiotic condition”=3.52, df=4, P=0.474):  

oviposition rates were higher in the presence of pollen when the prey was also 

present. On the other hand, the overall number of eggs laid by N. californicus 

females in the presence of IG-prey was significantly higher when the pollen was 

supply (Wald statistic for “presence of pollen*presence of IG-prey”=4.1, df=1, 

P=0.043), at the three abiotic conditions (Wald statistic for “presence of 

pollen*presence of IG-prey*abiotic condition”=6.26, df=4, P=0.181) (Figure 

3.2.2.8).  
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Figure 3.2.2.8. Oviposition rates (average ± SE) of N. californicus females at the three 
abiotic conditions (“mild”, “hot and dry” and “very hot and dry”), in the presence or in the 
absence of the prey (O. perseae females), the IG-prey (E. stipulatus), or pollen. Letters above 
bars are from LSD post-hoc tests and indicate significant differences (P≤0.05) among 
treatments within abiotic conditions. The figure shows original values, without the correction 
applied for the analyses (see M&M 2.2.1, p. 58). 

Survival of IG-predators 

The availability of pollen did not affect the survival of E. stipulatus females (Wald 

statistic for “presence of pollen”=1.08, df=1, P=0.298), neither in the presence nor in 
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the absence of prey and IG-prey at any of abiotic conditions (Wald statistic for 

“presence of prey* presence of IG-prey*presence of pollen*abiotic 

conditions”=1.74, df=4, P=0.784) (Figure 3.2.2.9, 1). Similarly, the presence of 

pollen did not increase N. californicus female survival (Wald statistic for “presence 

of pollen”=1.08, df=1, P=0.300), neither in the presence nor in the absence of prey, 

or IG-prey, at any of the abiotic conditions (Wald statistic for “presence of prey* 

presence of IG-prey*presence of pollen*abiotic conditions”=1.74, df=4, P=0.784) 

(Figure 3.2.2.9, 2).  

 

Figure 3.2.2.9. Fraction of predatory (1) E. stipulatus and (2) N. californicus females that 
were alive (dark grey) or dead (light grey) after 24 h at the three abiotic conditions (“mild”, 
“hot and dry” and “very hot and dry”) in the presence or in the absence of the prey (O. 

perseae females), the IG-prey (N. californicus and E. stipulatus juveniles, respectively), or 
pollen. 
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3.3. Unravelling behavioural/environmental effects: fine-tuning of 

results 

3.3.1. IG-prey role reversals triggered by IG-predators diet  

The overall MANOVA did not bring significant differences between rates of 

predation of N. californicus juveniles on E. stipulatus eggs produced from mothers 

fed with either pollen or eggs of O. perseae (Table 3.3.1.1).  

Table 3.3.1.1. Results of MANOVA with domatia, midrib and limbo, as dependent 
variables, and type of food (pollen or O. perseae eggs), as explanatory variable. 

Effect  Wilks λ F d.f. P 

Intercept 0.352 9.819 3;16 0.001 

Type of food  0.766 1.625 3;16 0.223 

However, subsequent univariate ANOVA’s revealed that predation of N. 

californicus juveniles on eggs of E. stipulatus located in domatia tended to be higher 

when eggs were produced from mothers feeding on pollen (Table 3.3.1.2., Figure 

3.3.1.1.). 

Table 3.3.1.2. Results of three univariante ANOVA with domatia, midrib and limbo, as 
dependent variables, and type of food (pollen or O. perseae eggs), as explanatory variable. 

Dependent 
variables 

 
Explanatory 
variables 

 
d.f. 

 
Mean 
square 

 

F 

 

P 

Domatia Intercept 1 18.050 30.943 <0.0001 
 Type of food 1 2.450 4.200 0.055 
 Error 18 0.583   
Midrib Intercept 1 14.450 18.447 <0.001 
 Type of food 1 0.450 0.575 0.458 
 Error 18 0.783   
Limbo Intercept 1 5.000 8.333 0.010 
 Type of food 1 0.200 0.333 0.571 
 Error 18 0.600   



Results 

126 

 

 

Figure 3.3.1.1. Predation rate (average ± SE) of E. stipulatus eggs by N. californicus 
juveniles depending on the type of food (i.e. pollen or O. perseae eggs) ingested by E. 

stipulatus females before oviposition in the three different locations within avocado leaf 
discs (i.e. domatia, midrib and limbo). The symbol (■) indicates marginal significant 
differences (P=0.055). 
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3.3.2. Nests of O. perseae as refuges for N. californicus juveniles against 

adverse abiotic conditions 

N. californicus juvenile mortality 

The mortality of N. californicus juveniles was affected by abiotic conditions (Wald 

statistic for “abiotic condition”=6.08, df=2, P=0.048): juvenile mortality at VHD 

conditions was significantly higher than at M and HD conditions (Figure 3.3.2.1). 

Results from the analysis showed that the number of dead N. californicus did not 

vary between the treatment with nests and the treatment without nests within each 

abiotic condition (Wald statistic for “abiotic condition*nests”=9.98, df=2, P=0.613). 

However, results from LSD post-hoc test exposed that juvenile mortality at VHD 

conditions was significantly higher in the treatment with nests (Figure 3.3.2.1). 

 

Figure 3.3.2.1. Percentage of juveniles of N. californicus that were alive or dead (see legend) 
after 24 h at the three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) in the 
treatment with nests and in the treatment without nests. 
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Predation on eggs of O. perseae 

Differences in the number of O. perseae predated eggs by N. californicus juveniles 

between paired replicates (i.e. replicates with nests and replicates without nests) 

were influenced by abiotic conditions (Wald statistic for “abiotic condition”=19.32, 

df=2, P<0.001). Such differences significantly varied between M and HD 

conditions, and VHD conditions, but not between M and HD conditions (Figure 

3.3.2.2). At the three abiotic conditions, N. californicus juveniles significantly 

predated a higher number of O. perseae eggs in the absence of nests (Table 3.3.2.1), 

since the three mean differences were less than ‘0’ (Figure 3.3.2.2), and none of 

95% Wald confident intervals included 0 (M: (-6.95, -2.62); HD: (-7.27, -2.13); 

VHD: (-14.17, -9.03)). 

 
 

Figure 3.3.2.2. Differences (average ± SE) in the number of O. perseae predated eggs by N. 

californicus juveniles between paired replicates at the three abiotic conditions (“mild”, “hot 
and dry” and “very hot and dry”). Differences in the number of eaten eggs between paired 
replicates were estimated by subtracting the number of eaten eggs in replicates without nests 
from the number of eaten eggs in replicates with nests. Differences that were < ‘0’ indicated 
a higher number of eaten eggs in the absence of nests; whereas differences that were > ‘0’ 
indicated a higher number of eaten eggs in the presence of nests. Letters below bars are from 
LSD post-hoc test and indicate significant differences (P≤0.05). 
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Table 3.3.2.1. Predation rates (average ± SE) of N. californicus juveniles on O. perseae eggs 
at the three abiotic conditions (“mild”, “hot and dry” and “very hot and dry”) depending on 
nest treatment. 

Abiotic condition 
Nest treatment 

With nests Without nests 

Mild 4.93±0.77 9.71± 1.08 
Hot and dry 3.70±0.60 8.40± 0.70 
Very hot and dry 0.80±0.59 12.40±1.03 
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3.4. Effects of abiotic conditions and presence of alternative food on 

mite predator/prey population dynamics in avocado 

3.4.1. Mite predator/prey population dynamics in avocado seedlings 

under two abiotic conditions, and in the presence or absence of pollen 

Destructive sampling  

The population abundance of the two predatory mites, E. stipulatus and N. 

californicus (predators, hereafter), per leaf at the end of the experiment was 

significantly affected by abiotic conditions (Table 3.4.1.1): there were higher 

numbers of predators at M conditions than at HD conditions (Figure 3.4.1.1a). In 

addition, at M conditions the final number of predators per leaf was marginally 

different between treatments (Wald statistic for “treatment (M conditions)”=3.362, 

df=1, P=0.057), but not at HD conditions (Wald statistic for “treatment (HD 

conditions)”=0.314, df=1, P=0.576) (Figure 3.4.1.1a).  

Table 3.4.1.1 Results of the 3-factor full-nested GLMMs analysis, with total number of 
predatory mites (eggs, juveniles and adults), occupied O. perseae nests, and necrotic spots 
per leaf, as dependent variables, and “abiotic condition” (mild or hot and dry), “treatment” 
(with pollen or without pollen) nested to abiotic condition, and “plant” nested to treatment 
and to abiotic condition, as main factors. 

Dependent variables Sources of variation F d.f. P 

#Predators per leaf Abiotic cond. 53.691 1 <0.0001 

 Treatment (Abiotic cond.) 1.981 2 0.139 

 Plant (Treatment (Abiotic cond.)) 7.453 12 <0.0001 

     

#Nests per leaf Abiotic cond. 498.045 1 <0.0001 

 Treatment (Abiotic cond.) 39.199 2 <0.0001 

 Plant (Treatment (Abiotic cond.)) 47.761 12 <0.0001 

     

# Necrotic spots per leaf Abiotic cond. 0.009 1 0.926 

 Treatment (Abiotic cond.) 8.025 2 <0.0001 

 Plant (Treatment (Abiotic cond.)) 27.799 12 0.001 
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Figure 3.4.1.1. Averages (± SE) of total number of predatory mites (eggs, juveniles and 
adults), occupied O. perseae nests, and necrotic spots per leaf that were counted in the 
destructive sampling at the two abiotic conditions (“mild” and “hot and dry”), and in the 
presence or in the absence of pollen. Significant differences (p ≤ 0.05) between treatments 
are showed as (*). The symbol (■) indicates marginal significant differences (P=0.057). 
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 Significantly more occupied O. perseae nests per leaf were present at the 

end of the experiment at M than at HD conditions (Table 3.4.1.1; Figure 3.4.1.1b). 

At M conditions the presence or the absence of pollen did not affect the number of 

nests on leaves (Wald statistic for “treatment (M condition)”=0.004, df=1, P=0.948) 

(Figure 3.4.1.1b). In contrast, at HD conditions the final population size of prey per 

leaf was significantly lower in the treatment with pollen (Wald statistic for 

“treatment (HD conditions)”=66.517, df=1, P<0.0001) (Figure 3.4.1.1b).  

 

Abiotic conditions had no effect on the final number of necrotic spots per 

leaf (Table 3.4.1.1; Figure 3.4.1.1c). However, the number of necrotic spots per leaf 

was higher in the treatment with pollen, at M conditions (Wald statistic for 

“treatment (M condition)”=5.010, df=1, P=0.026), and lower at HD conditions 

(Wald statistic for “treatment (HD conditions)”=10.499, df=1, P=0.0001) (Figure 

3.4.1.1c). Therefore, the presence of pollen at HD conditions resulted in lower plant 

damage.  

Taxonomic identification of phytoseiid mites 

The identification of phytoseiid adults collected in each plant at the end of the 

experiment revealed that 100% of the adults were E. stipulatus in all plants, at the 

two abiotic conditions and in the two treatments, except in one of them, in the 

treatment with pollen at HD conditions (plant 12) (Figure 3.4.1.2), where 50% of the 

adults were N. californicus. However, it needs to be taken into account that these 

percentages represent only part of the collected individuals in each plant at the end 

of the experiment, as a great number of juveniles and eggs could not be identified 

(Figure 3.4.1.2).   
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Figure 3.4.1.2. Percentage of adults, juveniles and eggs of predatory mites of each plant that 
were collected in the destructive sampling depending on the two abiotic conditions (“mild” 
and “hot and dry”), and treatment (with pollen and without pollen). 

Population dynamics  

Population dynamics of O. perseae and the two predatory mites, E. stipulatus and N. 

californicus, for each replicate at the two abiotic conditions and in the presence or 

absence of pollen are shown in the appendices (Figure A2 - Appendix 2). 
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4. DISCUSSION 

Community module: Trophic chain  

Changes in abiotic conditions (temperature and relative humidity) had different 

effects on predator-prey interactions depending on the species of predator. Results 

revealed that at M conditions both species of predatory mite preyed on O. perseae 

females (Figure 4.1; 1a and 2a), whereas at HD and VHD conditions only N. 

californicus fed on the prey (Figure 4.1; 1b and c, and 2b and c). 

Predation rate of N. californicus on O. perseae females (after correcting for 

O. perseae natural mortality) was higher than that of E. stipulatus (2.77± 0.45 and 

1.53±0.30, respectively) at M conditions. Although N. californicus killed more O. 

perseae females per day, oviposition rates did not vary between predators. This 

indicates that E. stipulatus was likely the most efficient predator converting prey 

into eggs. Indeed, the ratio between daily oviposition and daily predation -which is 

informative on the food utilisation efficiency of phytoseiids (Sabelis 1985) because 

they allocate a remarkably large fraction (about 70% in Phytoseiulus persimilis) of 

food ingested to egg production (Sabelis and Janssen 1994)- was twice higher in E. 

stipulatus than in N. californicus (0.44 vs. 0.28, respectively). Such difference could 

likely be even higher considering that N. californicus also preyed on O. perseae 

eggs (on average 9.27±2.15 eggs/day) and E. stipulatus did not. Differences in 

conversion rate efficiencies between predators could be explained if food intake per 

prey item differed between predators. Oviposition/predation ratios in phytoseiids 

vary with prey availability: some species of phytoseiids are more efficient at 

converting prey eaten into eggs when prey availability is low (Friese and Gilstrap 

1982; Cuellar et al. 2001; Saber 2013). This might be because at high prey densities 

phytoseiids may kill a higher number of prey items due to increasing encounter rates 

having a stimulatory effect in predators that result in higher predation rates, an effect 

known as ‘stimulation-interference’(Sandness and McMurtry 1970). Consequently, 

the time spent feeding on each prey item, and thus the amount of food ingested per 

prey item, may decrease. In my experiment the level of prey availability could in 
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fact have been higher for N. californicus than for E. stipulatus because E. stipulatus 

had no access to O. perseae eggs or females located inside the nests (Montserrat et 

al. 2008a; González-Fernández et al. 2009). Therefore, if ‘stimulation-interference’ 

had occurred it would have more likely in N. californicus. Indeed, Saber (2013) 

found that N. californicus females converted prey into eggs more efficiently at lower 

prey densities (5 individuals/day of Tetranychus urticae nymphs, Trips tabaci larvae 

and Bemisia tabaci nymphs) than at higher prey levels (10, 15 and 30 individuals, 

respectively). This behaviour is considered beneficial to control pest populations, 

because results in higher killing of prey at high prey densities (Ferragut et al. 1992).  

Results showed that E. stipulatus did not prey on O. perseae at HD and 

VHD conditions. However, it is known that when climate is hot and dry the 

production of webbing in spider mites increases to rise the humidity inside nests and 

better protect the immature stages, in particular the eggs, against desiccation (Hazan 

et al. 1974, 1975). Hence, O. perseae females might have been spending more time 

outside the nests weaving new layers of webbing. That being true would not explain 

why predation rates of E. stipulatus on O. perseae did not increase as temperature 

increases, simply because encounter rates between predators and prey would be 

higher than at M conditions with lower number of O. perseae females outside the 

nests. It could be that unfavourable abiotic conditions affected E. stipulatus 

performance as predator, reducing its activity and movement. Other species of 

phytoseiids have been found to reduce mobility and predation rates at hot 

temperatures, such as P. persimilis preying on Tetranychus urticae (Skirvin and 

Fenlon 2003), and Amblyseius cucumeris preying on Frankliniella occidentalis 

(Shipp et al. 1996). In any case, further studies examining searching activities of E. 

stipulatus at extreme abiotic conditions would confirm whether the performance of 

this species is affected by adverse abiotic conditions. 

Predation rates of N. californicus on O. perseae females were not affected 

by abiotic conditions (M: 2.77± 0.45; HD: 2.99± 0.45; VHD: 2.75± 0.38). However, 

predation rates of N. californicus on O. perseae eggs decreased as abiotic conditions 

were becoming more extreme (M: 9.27±2.15; HD: 6.83±1.64; VHD: 3.16±1.53), 



Discussion 

139 

 

suggesting that N. californicus spent less time inside the nests likely due to O. 

perseae females spending more time outside the nests, when abiotic conditions were 

harsh. Contrary to E. stipulatus, it has been reported that high temperatures (from 25 

to 35 ºC) and deprivation of food can elicit dispersal behaviour and increase walking 

speed in N. californicus (Auger et al. 1999). Therefore, higher temperatures may 

translate into greater energy demands due to such increase in movement, reducing, 

consequently, the amount of resources allocated to reproduction. This could explain 

the difference in oviposition/predation ratios between abiotic conditions (M: 0.28 vs. 

HD: 0.21). Furthermore, at VHD conditions (33 ºC) N. californicus females did not 

oviposit, perhaps because resource allocation shifted from reproduction to somatic 

maintenance. Indeed, whereas no female of N. californicus survived at VHD 

conditions in the absence of food, almost 80 % did when food was available. In the 

case of E. stipulatus, survival of females deprived of food was high at each abiotic 

condition (more than 70%), suggesting that reduction of the activity perhaps 

contributes to increase survival. Therefore, it seems that differences in the strategy 

adopted when facing high temperatures could explain differences in survival 

between the two predators. 

 

  



Discussion 

140 

 

 

Figure 4.1. Diagrams showing predator-prey interactions in the community module trophic 

chain at the three abiotic conditions (‘mild’, ‘hot and dry’ and ‘very hot and dry’) when 
predators were females of either (1) E. stipulatus or (2) N. californicus. Solid arrows indicate 
trophic interactions and red crosses indicate absence of trophic interactions. In (2): shifts in 
thickness of arrows indicate changes in the strength of predator-prey interaction between N. 

californicus and O. perseae depending on abiotic conditions. To assign the thickness of 
arrows, relative values of shifts in the strength of interactions among abiotic conditions 
taking into account predation rates of N. californicus both on females and eggs of O. perseae 
were estimated.  
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Community module: Apparent competition  

The presence of alternative food (i.e. pollen) influenced the strength by which E. 

stipulatus and O. perseae interacted, and such influence was in turn affected by 

abiotic conditions. Euseius stipulatus preyed on O. perseae females in the absence 

of pollen at M conditions but clearly preferred to forage on the alternative food 

when pollen was available (Figure 4.2; 1a, b and c). Pollen is considered an optimal 

food source in Euseius sp. as all the species typically reach their highest 

reproductive potential feeding on this type of food (Ferragut et al. 1987; McMurtry 

and Croft 1997; Bouras and Papadoulis 2005; González-Fernández et al. 2009). 

Indeed, rates of oviposition were always higher when E. stipulatus females were 

provided with pollen. Furthermore, egg-laying in females enduring harsh abiotic 

conditions only occurred when pollen was available, suggesting that availability of 

an easily accessible and nutritive food source, such as pollen, might temper the 

negative effects that extreme abiotic conditions cause in this species. Yet, although 

E. stipulatus would be able to oviposit under unfavourable abiotic conditions if 

pollen were available, it is known that the rate of egg-hatching in this species is very 

low when the abiotic environment is dry (Ferragut et al. 1987; Guzmán 2014). 

Therefore, it is probable that extended periods of high temperatures and low relative 

humidities would result in a decline of E. stipulatus populations, even in the 

presence of pollen as alternative food. 

The availability of pollen had no effect on the predator-prey interactions 

between N. californicus and O. perseae at any of the abiotic conditions. My results 

suggest that N. californicus females that were provided with pollen and O. perseae 

fed only on the herbivore, at the three abiotic conditions (Figure 4.2; 2a, b and c). 

Indeed, neither predation nor oviposition rates differed between treatments with or 

without pollen. Despite some studies claim that N. californicus is able to feed and 

reproduce on pollen (Castagnoli and Simoni 1999; Castagnoli et al. 1999; Sazo et al. 

2006), my results and my experience do not support this statement. On the one hand, 

in my experiments females never oviposited when pollen was the only available 

food, neither did pollen contribute to increase their survival. On the other hand, 



Discussion 

142 

 

during my PhD my colleagues and I attempted to rear this species using pollen as 

food source, and we never succeeded. Wild strains of N. californicus need several 

generations to optimize development and reproduction when diet is shifted from an 

optimal to a suboptimal food, such as pollen (Castagnoli and Liguori 1994; 

Castagnoli et al. 1999). However, mass-reared N. californicus strains fed on pollen 

only needed a short acclimatization period (5 days) to recover their ability to prey 

and convert prey into eggs after a dietary change from pollen to an elective prey 

(Castagnoli and Simoni 1999). Therefore, pollen could be used as alternative food 

only with strains of N. californicus previously adapted to feed on this resource. 

Otherwise such supply would be useless. 

In short, my results suggest that the addition of pollen as alternative food 

could promote a numerical response in E. stipulatus and favour pest control through 

the induction of apparent competition (Holt 1977) between the pest and pollen, but 

only when field abiotic conditions are mild. However, populations exposed to harsh 

abiotic conditions will likely decrease, or crash, because vulnerability of eggs and 

juveniles to heat and dryness (Ferragut et al. 1987; Guzmán 2014) will reduce 

population turnover to a great extent. Last, my results also suggest that the supply of 

alternative food would have no effect on the populations of N. californicus. 
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Figure 4.2. Diagrams showing predator-prey interactions in the community module apparent 

competition at the three abiotic conditions (‘mild’, ‘hot and dry’ and ‘very hot and dry’) 
when predators were females of either (1) E. stipulatus or (2) N. californicus. Solid arrows 
indicate trophic interactions, dashed arrows indicate indirect prey-alternative prey (i.e. 
pollen) negative interactions (apparent competition), and red crosses indicate absence of 
trophic interactions. In (2): shifts in thickness of arrows indicate changes in the strength of 
predator-prey interaction between N. californicus and O. perseae depending on abiotic 
conditions. To assign the thickness of arrows, relative values of shifts in the strength of 
interactions among abiotic conditions taking into account predation rates of N. californicus 
both on females and eggs of O. perseae were estimated. 
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Community module: Intraguild predation 

The study of trophic interactions in the avocado mite community when mimicking a 

community module with IGP evidenced the significant role of abiotic conditions in 

shaping the trophic structure of such communities. 

At mild conditions 

When the IG-predator was E. stipulatus 

When E. stipulatus acted as the IG-predator the number of O. perseae dead females 

was not significantly different between treatments where the IG-prey, N. 

californicus, was present, either alone or with the IG-predator, and oviposition rates 

of E. stipulatus did not differ in treatments with presence of IG-prey, but they were 

lower than those of the treatment in which only the prey was present. Furthermore, 

mortality of N. californicus juveniles was significantly higher in treatments with 

presence of the IG-predator, compared to the control without them. This suggested 

that mortality in the herbivore was mainly inflicted by juveniles of N. californicus, 

and that E. stipulatus females preyed preferentially on juveniles of N. californicus, 

when they were present. Altogether suggests that the structure of this community 

resembled more a trophic chain, with E. stipulatus females preying on juveniles of 

N. californicus, and juveniles of N. californicus preying on females of O. perseae 

(Figure 4.3; 1a), than a community with IGP.  

 Predation of IG-predators on IG-prey often occurs when densities of the 

shared prey, usually from another guild, are low (Polis et al. 1989; Lucas et al. 

1998), suggesting that when both types of food are available IG-predators prefer 

foraging on extraguild prey, probably because the quality of IG-prey is typically low 

relative to the quality of extraguild prey (Polis et al. 1989). In my experiments the 

IG-predator foraged only on the IG-prey when the three species were together, 

suggesting that the availability of herbivore prey might not have been high. The 

presence of eaten O. perseae eggs and females inside the nests indicated that 

juveniles of N. californicus could forage inside the nests. Therefore, the number of 
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females of O. perseae that were susceptible to be preyed upon by E. stipulatus 

probably was lower in the presence of IG-prey, what would increase the relative rate 

of encounters between E. stipulatus and N. californicus.  

E. stipulatus females did not convert eaten N. californicus juveniles 

(1.12±0.62 on average) into eggs, but they did when only O. perseae females were 

available, supporting the idea that nutrition provided was higher when IG-predators 

fed on the second. Differences in nutritional benefits between the two types of prey 

could be explained by (i) the costs associated with attacking another predator, i.e. 

running the risk of being injured by the victim, may be higher than the costs of 

attacking the shared prey, usually defenceless (Polis 1981); and (ii) given that prey 

sizes are generally correlated with nutrient gain (Schoener 1969; Roger et al. 2000), 

the larger prey (i.e. O. perseae females) probably provides higher energetic gain 

than smaller N. californicus juveniles. 

When the IG-predator was N. californicus 

When N. californicus acted as the IG-predator the mortality rate of O. perseae 

females was twice lower when the three species were together than when the IG-

predator was alone with the shared prey, probably due to IG-predator females 

reducing its activity in the presence of IG-prey (see below). Additionally, mortality 

of O. perseae females was similar in treatments where the IG-prey was present, 

independently of presence or absence of IG-predators. These results suggested that 

only juveniles of E. stipulatus preyed on O. perseae females. Furthermore, mortality 

of IG-prey did not differ between treatments with and without the IG-predator, 

indicating that N. californicus females did not forage on E. stipulatus juveniles. 

These results suggests that the structure of the community resembled a trophic chain 

as well, with juveniles of E. stipulatus preying on the herbivore (Figure 4.3; 2a) and 

females of N. californicus not interacting at all.  

Behavioural changes in females of N. californicus induced by E. stipulatus 

could have been the cause of the inactivity in N. californicus females, if, for 

example, females perceived juvenile IG-prey as predators and, consequently, 
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displayed anti-predator behaviour. Abad-Moyano et al. (2010b) reported that the 

presence of E. stipulatus immatures exerted non-lethal IG-effects on N. californicus 

females, causing daily oviposition to decrease over time despite the availability of 

the shared prey was kept constant. In line with this, in my experiments the 

oviposition rate of N. californicus was nil in the presence of the IG-prey. 

 With regard to pest control, my results point to conclude that at M 

conditions the trophic configurations of avocado community would always favour 

an increase in herbivore populations through density-mediated and trait-mediated 

indirect effects (Abrams 1995; Werner and Peacor 2003; Preisser et al. 2005) of E. 

stipulatus on O. perseae. Predators can lessen prey populations through direct 

consumption (i.e. density-mediated interaction), or by inducing changes in 

behavioural, morphological or life history traits of prey (i.e. trait-mediated 

interaction). In the two types of interactions predators may exert indirect effects on 

the resources of its prey, affecting community dynamics (Schmitz et al. 1997; 

Werner and Peacor 2003; Schmitz et al. 2004; Preisser et al. 2005; Abad-Moyano et 

al. 2010a). In the avocado community, predation of E. stipulatus females on N. 

californicus juveniles would lead to an increase of O. perseae abundances through 

density-mediated indirect effects of E. stipulatus on O. perseae. On another hand, 

the effect of E. stipulatus juveniles on the behaviour of N. californicus females, 

reducing their foraging activity on the persea mite and, therefore, leading to a 

growth of its populations, is a trait-mediated indirect effect of E. stipulatus on O. 

perseae. 

At hot and dry and very hot and dry conditions 

When the IG-predator was E. stipulatus 

When E. stipulatus was the IG-predator the mortality of O. perseae females was 

higher when both IG-predator and IG-prey were present, suggesting that both 

species preyed on the pest. In addition, the mortality of N. californicus juveniles did 

not differ depending on the presence or absence of IG-predators. These results 

suggest that increasing unfavourable abiotic conditions shifted the structure of the 
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community from a trophic chain to one dominated by exploitative competition 

between both species of predators.  

At M conditions females of E. stipulatus foraged only on juveniles of N. 

californicus while at harsh abiotic conditions they foraged only on O. perseae 

females (Figure 4.3; 1a, b and c). This raises the question of why IG-predators 

would consume different prey types depending on abiotic conditions. A potential 

explanation is that the availability of both prey species might have changed 

depending on abiotic conditions. Availability of N. californicus juveniles could have 

been lesser at the two unfavourable abiotic conditions due to two possible causes, 

which are not mutually exclusive: (i) to the tendency of N. californicus juveniles to 

escape from adverse abiotic conditions, reflected in finding more juveniles in the 

glue surrounding the experimental arenas at harsh than at M abiotic conditions (see 

figure 3.2.1.3; compare 1a with 1b and c; p. 98); and (ii) to the ability of juveniles of 

N. californicus to penetrate inside the nests built by O. perseae without damaging 

them, using the entrances of the nests (personal observation). Juveniles penetrating 

the nests could, therefore, have been protected against adverse abiotic conditions, as 

it is known nests protect the persea mites (Aponte and McMurtry 1997a). This 

hypothesis has been partially supported in an additional experiment, which will be 

discussed further in this section.  

The presence of N. californicus juveniles in the nests could have refrained 

O. perseae females from entering them, prolonging the risk of falling victims of E. 

stipulatus females. That is, both predator species could have interacted 

synergistically in a phenomenon termed ‘predator facilitation’ (Charnov et al. 1976), 

i.e. when the presence of a predator species alters the behaviour of a prey making it 

more susceptible to attack by another predator species. In synergistic or facilitative 

interactions, the complex of species of predator kill more prey in combination than 

the sum of impacts from each individual species (Soluk 1993), as it is observed in 

the results showed in figure 3.2.1.1; 1b and c; p. 96. Nevertheless, long-term effects 

of positive predator-predator interactions will only be expected if both predator 

species inhabit different habitats, and one of the predators drives the prey from one 



Discussion 

148 

 

to other habitats where the other predator will forage on the displaced prey (Losey 

and Denno 1998). In my experimental system, although juveniles of N. californicus 

may ‘facilitate’ O. perseae female predation by E. stipulatus females at harsh abiotic 

conditions, female oviposition rates were nil at these conditions, suggesting that the 

consumed resources by E. stipulatus were probably allocated to somatic 

maintenance to help to increase survival. Therefore, facilitative interactions between 

N. californicus and E. stipulatus would affect only E. stipulatus survival. In 

addition, given that both predator species share the same habitat, they also engage in 

competitive interactions that might lead to the exclusion of less efficient predator 

species in the long term.  

When the IG-predator was N. californicus 

When N. californicus was the IG-predator there were no differences in the mortality 

of O. perseae females between treatments with or without the IG-prey. Added to 

this, the predation rates of N. californicus on O. perseae eggs, as well as oviposition 

rates, were not affected by the presence of IG-prey. These results indicated that N. 

californicus, but not E. stipulatus juveniles, foraged on the herbivore. On the other 

hand, mortality of E. stipulatus juveniles was not affected by the presence of the IG-

predator, indicating that N. californicus did not attack juveniles. Therefore, at harsh 

abiotic conditions the community configuration resembled again a trophic chain, but 

this time with females of N. californicus preying on the herbivore and juveniles of E. 

stipulatus not interacting at all (Figure 4.3; 2b and c). The shift in the structure of the 

community respect to that at M conditions led me to hypothesize that extreme 

abiotic conditions might have impacted the performance of juveniles of E. stipulatus 

to a great extent. That being true, weakened juveniles would have induced less 

interference in N. californicus, encouraging females to resume their foraging 

activity.  

 In short, the strength and direction of predatory interactions among the 

components of the community were strongly affected by abiotic conditions. 

Individual responses of predatory species to shifts in abiotic conditions modified the 
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way individuals interacted with each other. It is relevant to notice that all the results 

suggest that the two predator species might not engage in IGP because none of them 

preyed on both IG-prey and shared prey when the two prey types were available. 

Instead, they engaged in competition or predator–prey interactions. Although it is 

widely assumed that IGP occurs between predatory mites belonging to the family 

Phytoseiidae (Schausberger and Croft 2000), a recent literature search carried out by 

Guzmán et al. (2016b) showed that only few works have used experimental set-ups 

with the adequate array of treatments allowing to assess the existence or not of IGP 

in phytoseiid mite communities. Accordingly, my experiments included the set of 

species combinations and control treatments allowing measuring the occurrence of 

IGP.   
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Figure 4.3. Diagrams showing predator-prey interactions in the community module 
intraguild predation at the three abiotic conditions (‘mild’, ‘hot and dry’ and ‘very hot and 
dry’) when females of either (1) E. stipulatus or (2) N. californicus acted as IG-predator, and 
juveniles of either (1) N. californicus or (2) E. stipulatus acted as IG-prey. Solid arrows 
indicate trophic interactions, dashed arrows indicate predator-predator negative interactions 
(competition), and red crosses indicate absence of trophic interactions.   
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Community module: Intraguild predation-Apparent competition 

The presence of alternative food (i.e. pollen) contributed to reduce trophic 

interactions between predator species resulting in community configurations that 

could enhance pest control at the three abiotic conditions. 

At mild conditions 

When the IG-predator was E. stipulatus 

When E. stipulatus acted as the IG-predator there were no significant differences in 

the mortality of O. perseae females among treatments where the IG-prey was 

present, independently of the presence or absence of IG-predator, or of pollen. This 

suggested that only juveniles of N. californicus preyed on O. perseae females, and 

that the supply of pollen did not influence the rates of predation of juveniles on the 

prey. The presence of pollen, however, contributed to reduce significantly IG-prey 

mortality rates when the IG-predator was present. Therefore, when pollen was 

available females of E. stipulatus preferred to forage on pollen over juveniles of N. 

californicus. In accordance with this, E. stipulatus females laid significantly more 

eggs when pollen was present.  

These results showed that predator-prey interactions between predators 

ceased in the presence of pollen, what divided the structure of the community into 

two trophic chains, one with females of E. stipulatus feeding exclusively on pollen, 

and the other with juveniles of N. californicus feeding only on the pest (Figure 4.4; 

1a). Hence, supplying alternative and preferred food to the IG-predator would be 

detrimental to populations of O. perseae, as it would eliminate density-mediated 

indirect effects of E. stipulatus on O. perseae that were predicted in the absence of 

pollen (see p.146). 

When the IG-predator was N. californicus 

When N. californicus was the IG-predator the availability of pollen contributed to 

increase mortality in O. perseae females when the IG-prey was present. 
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Furthermore, mortality of prey was not significantly different from treatments in 

which the IG-predator was alone, either with or without pollen. Added to this, the 

oviposition rates of the IG-predator were similar among these treatments. Results 

suggested, therefore, that only the females of N. californicus foraged on the prey 

when the three species were together, independently of the presence of alternative 

food. On the other hand, IG-prey mortality rates were lower when pollen was 

available, independently of the presence or absence of IG-predators, indicating that 

E. stipulatus juveniles probably foraged on pollen, and that females of N. 

californicus did not attack them.  

Altogether, results exposed that the structure of the community shifted again 

into one with two trophic chains, the first with females of N. californicus feeding on 

O. perseae and the second with juveniles of E. stipulatus feeding on pollen (Figure 

4.4; 2a). In other words, that the effects of E. stipulatus juveniles on the behaviour 

of N. californicus females were diluted when pollen was added. It is likely that the 

presence of a preferred food source minimized the attempts of attacks, or the 

interference, of juveniles on females of N. californicus, what allowed the latest to 

resume its foraging activities. Indeed, even the predation on O. perseae eggs by 

females of N. californicus was significantly higher in the presence of IG-prey when 

pollen was also present, indicating that females were more active.   

At hot and dry and very hot and dry conditions 

When the IG-predator was E. stipulatus 

When E. stipulatus was the IG-predator mortality rates of O. perseae were only 

affected by the presence of IG-prey. In the absence of pollen, results showed that 

IG-predator and IG-prey only engaged in competition for the shared prey. However, 

the addition of pollen ceased predation of E. stipulatus females on the prey (there 

were no significant differences in the mortality of O. perseae females between the 

treatment where IG-predator and IG-prey were together with pollen and the 

treatment where IG-prey were alone). In addition, oviposition rates of IG-predators 

increased in the presence of pollen.  
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In short, the addition of pollen ceased competitive interactions between 

predatory mites and the structure of the community shifted again into one with two 

trophic chains, the first with females of E. stipulatus feeding exclusively on pollen, 

and the second with juveniles of N. californicus feeding on the herbivore (Figure 

4.4; 1b and c).  

When the IG-predator was N. californicus 

When N. californicus was the IG-predator the mortality of O. perseae females was 

similar among treatments, independently of the presence or absence of IG-prey and 

pollen. This result suggested that only females of N. californicus fed on the prey 

when the three species were together. Also, the mortality of IG-prey was 

significantly lower in all the treatments with pollen, compared to the treatment 

measuring natural mortality. This suggested that IG-predators did not attack juvenile 

IG-prey in the presence of pollen, and that juveniles foraged on pollen when it was 

available, indicating, once again, that the community structure consisted in two 

trophic chains, one with females of N. californicus feeding on O. perseae, and 

another with juveniles of E. stipulatus feeding on pollen (Figure 4.4; 2b and c). 

Furthermore, the availability of pollen also buffered the negative effects that 

extreme abiotic conditions had on juveniles of E. stipulatus.                                                                                                                            

 Concluding, the supply of pollen reduced trophic interactions between 

predators and divided the avocado mite community into two trophic chains with E. 

stipulatus feeding on pollen and N. californicus on the pest, independently of abiotic 

conditions. As mentioned before, E. stipulatus are described as being preferentially 

pollen-feeders (McMurtry and Croft 1997). Thus, in the presence of this food source 

one would expect E. stipulatus to reduce attacks on all the other food sources and 

forage preferentially on pollen. This resulting community configuration would be 

beneficial for pest control because (i) it would increase the strength of predator-prey 

interactions between N. californicus and O. perseae, and (ii) it could induce 

apparent competition between alternative food and pest, favouring the increase of 
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the populations of E. stipulatus in the long-term, mostly when abiotic conditions are 

favourable, that could add an extra impact on the populations of the pest. 

In summary, results from the community module intraguild predation 

showed that abiotic conditions modified the trophic structure of the avocado mite 

community in a way that would often be detrimental to biological pest control. On 

the other hand, results from the community module intraguild predation-apparent 

competition evidenced that adding pollen to the system would likely improve pest 

suppression, because it weakens trophic interactions between predators.  
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Figure 4.4. Diagrams showing predator-prey interactions in the community module 
intraguild predation-apparent competition at the three abiotic conditions (‘mild’, ‘hot and 
dry’ and ‘very hot and dry’) when females of either (1) E. stipulatus or (2) N. californicus 
acted as IG-predator, and juveniles of either (1) N. californicus or (2) E. stipulatus acted as 
IG-prey. Solid arrows indicate trophic interactions, dashed arrows indicate indirect prey-
alternative prey (i.e. pollen) negative interactions (apparent competition), and red crosses 
indicate absence of trophic interactions. 
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Unravelling behavioural/environmental effects: fine-tuning of 

results 

(i) IG-prey role reversals triggered by IG-predators diet  

Counterattack on vulnerable predator stages could be considered anti-predator 

behaviour if it results in predators being scared away from patches occupied by IG-

prey (Janssen et al. 2002). Yet, it could also result in counter-counter-attack of 

predators if the attacked vulnerable predator individuals are the offspring of mothers 

patrolling those patches (Magalhães et al. 2005a).Whatever is the case in my 

experimental system, the display of anti-predator behaviour in the IG-prey (i.e. 

juveniles of N. californicus) might have been determined by the diet of IG-predators 

(Magalhães et al. 2005a). Results showed that predation events were similar 

between eggs placed next to the midrib and on the limbo, independently of diet of 

the females. However, predation on eggs inside domatia was higher when eggs were 

produced from mothers that had eaten pollen.  

Leaf domatia are refuges for predatory mites that often occupy them to 

oviposit and moult (Walter 1996). Indeed, these are structures that protect 

vulnerable stages, such as eggs (Faraji et al. 2002b, a) and immatures (Ferreira et al. 

2011), from predation. Furthermore, leaf domatia can have hair-tufts which can act 

as pollen traps that provide food to mites (Kreiter et al. 2003; Romero and Benson 

2005). Because E. stipulatus is preferentially pollen-feeder (McMurtry and Croft 

1997), it could be that females use avocado leaf domatia as oviposition sites more 

often when those provide as well pollen for their offspring. Thus, N. californicus 

juveniles might associate the presence of pollen in the system with the presence of 

E. stipulatus eggs inside leaf domatia. Although pollen was not present during the 

experiment, E. stipulatus eggs produced from mothers feeding on pollen came from 

experimental arenas containing pollen. Therefore, eggs could have had few grains of 

pollen attached to their surfaces that could have been detected by N. californicus 

juveniles. Neoseiulus californicus juveniles might have adaptively learnt to 

recognize predator eggs through cues provided by pollen, and attack them if they are 
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inside domatia as a counter-attack to scare bigger predators away from them; a 

strategy, true, that would only be beneficial if mothers do not display parental care 

(Magalhães et al. 2005a). 

(ii) Nests of O. perseae as refuges for N. californicus juveniles against 

adverse abiotic conditions 

N. californicus juveniles have the ability to penetrate inside the persea mite nests 

using their entrances (personal observation, this thesis). Therefore, I hypothesized 

that juveniles could benefit from one of the functions attributed to the O. perseae 

nests: protection against adverse abiotic conditions (Aponte and McMurtry 1997a). 

My results, however, only partially supported this idea.   

At M and HD conditions the presence of nests had no effect on N. 

californicus juvenile mortality. At VHD conditions the mortality of juveniles was 

unexpectedly higher in the treatment with nests, a result that clearly contradicts the 

initial hypothesis. However, if we look at egg predation we can see that despite at 

the three abiotic conditions predation on eggs was significantly higher in the absence 

of nests, this difference was significantly more pronounced at VHD conditions (see 

Figure 3.3.2.2; p. 128). This indicates that juveniles may have had problems to get 

inside the nests when conditions were the harshest. Very extreme abiotic conditions 

may have desiccated the web and deformed the entrances of the nests. Aponte and 

McMurtry (1997a) reported that during summer O. perseae spins several layers of 

strands over the original layer. By doing this the humidity inside nests increases, 

protecting immature stages, in particular the eggs, against desiccation (Hazan et al. 

1974, 1975), and the structure of nests is reinforced. In my experiments O. perseae 

females built the nests under M conditions. Hence, nests could have been deformed 

later when arenas were exposed to very high temperatures and low relative 

humidity, hampering juveniles from going inside and forage on the eggs. 

Based on my results, it seems that mortality of juveniles of N. californicus at 

the three abiotic conditions was determined by accessibility to food rather than to 



Discussion 

158 

 

the presence or absence of nests. At HD conditions juveniles could still get access to 

the nests as egg predation in the presence of nests, despite being lower, still 

occurred. However, when abiotic conditions were extremely harsh, there was almost 

no predation on eggs in the presence of nests indicating that juveniles were 

hampered to get inside. It is interesting to notice that accessibility to eggs influenced 

the survival of juveniles, buffering adverse effects of high temperatures and extreme 

dryness, likely because feeding on the eggs afforded water and protected juveniles 

from desiccation.   

Another function attributed to nests is protection against attack from some 

species of natural enemies (Mori et al. 1999). Given that N. californicus juveniles 

can easily go in and out of nests, they could also use them as refuges against their 

own predators. In a similar manner, N. californicus uses the web of another species 

of spider mite, Tetranychus urticae, to get protection against E. stipulatus (Ferragut 

et al. 1987; Abad-Moyano et al. 2010b). This, however, is a function that in the 

avocado mite community still remains to be studied.  
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Effects of abiotic conditions and presence of alternative food on 

mite predator/prey population dynamics in avocado 

At the individual level the addition of pollen changed the avocado mite community 

into two trophic chains, one with E. stipulatus foraging only on pollen and another 

with N. californicus preying only on O. perseae, independently of abiotic conditions 

(Figure 4.4), i.e. the presence of alternative food ceased predator-prey interactions 

between the two phytoseiid species. Hence, based on these results, I hypothesized 

that, at the population level, supply of an alternative food (i.e. pollen) for E. 

stipulatus would enhance pest population control by (i) weakening negative 

predator-prey interactions occurring between E. stipulatus and N. californicus, both 

at optimal and extreme abiotic conditions, and by (ii) promoting a numerical 

response in E. stipulatus, probably only at optimal conditions, that could induce 

apparent competition between the herbivore and pollen.  

Contrary to expectations, at M conditions the final population size of O. 

perseae per leaf did not differ between treatments with and without pollen, although 

the presence of alternative food promoted a higher growth rate in the predator 

population. At HD conditions, however, the addition of pollen resulted in a higher 

reduction of the final abundance of prey per leaf, although the number of predators 

per leaf that were present at the end of the experiment did not vary between 

treatments. Results from taxonomic identification of predatory mite adults collected 

from plants in the final destructive sampling revealed that, at M conditions, N. 

californicus was excluded by E. stipulatus, independently of the presence or absence 

of pollen. However, at HD conditions, despite results also revealed that N. 

californicus was excluded by E. stipulatus in both treatments, the presence of pollen 

might have extended the coexistence of the two species through the experiment. 

Therefore, the effect exerted by alternative food on the avocado mite community 

dynamics depended on abiotic conditions. 
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In the absence of pollen, exclusion of N. californicus by E. stipulatus at both 

abiotic conditions could be explained by the initial IG-prey/IG-predator ratio and the 

initial stage structure of populations, which determine patterns of coexistence and 

exclusion in intraguild predator-prey systems (Montserrat et al. 2008b). At the 

beginning of my experiments predator populations had no stage structure and prey 

availability was different for the two predators. Neoseiulus californicus have the 

ability of penetrating nests (Montserrat et al. 2008a) and likely females foraged on 

O. perseae individuals inside. This could have conferred N. californicus an initial 

advantage over E. stipulatus, which are unable to go inside nests (Montserrat et al. 

2008a; González-Fernández et al. 2009). Initial higher food intake by N. californicus 

might have result in production of offspring, increasing the density of N. 

californicus stages that are vulnerable to predation by E. stipulatus females. 

Building on this hypothetical initial scenario, the combination of a reduced 

availability of herbivore females wandering outside nests caused by predation of N. 

californicus inside nests, and a higher availability of vulnerable IG-prey, during the 

initial phase of the interaction, could have resulted in high predation pressure of E. 

stipulatus on N. californicus, preventing N. californicus populations from growing, 

and increasing the likelihood of exclusion of N. californicus by E. stipulatus through 

the experiment because of lack of turnover in N. californicus populations. 

The presence of pollen for E. stipulatus should have reduced the levels of 

predation on N. californicus. However, results suggested that this did not occur. At 

M conditions, all the adults collected from plants with or without pollen in the final 

destructive sampling were E. stipulatus, suggesting that this species excluded N. 

californicus from the community, independently of the presence or the absence of 

pollen. At HD conditions, phytoseiid adults that were collected from plants in which 

pollen was added revealed that both predator species coexisted in one of the plants. 

In the rest of plants, with or without pollen, all the adults were E. stipulatus. 

Nevertheless, in both abiotic conditions total exclusion of N. californicus cannot be 

totally ascertained because juveniles and eggs that were collected at the end of the 

experiment could not be identified. Even so, from the results I can conclude that the 
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addition of pollen did not alleviate predator-prey interactions between the two 

species at both abiotic conditions, as expected. Competitive effects can be discarded, 

as N. californicus is better at exploiting spider mite prey than E. stipulatus. 

The low effect of pollen on the phytoseiid populations may have been 

caused by the set up. Pollen was provided in a plastic vial glued on the top of a 

single leaf of the whole plant. This likely made it more difficult for E. stipulatus to 

find the patch with pollen. This could have led to local spatial segregation of E. 

stipulatus, with some individuals foraging preferentially on pollen near the pollen 

patch, and other individuals preying preferentially on immatures of N. californicus 

on leaves far from the pollen patch. Therefore, N. californicus immatures might 

again have suffered high rates of predation by E. stipulatus. However, at HD 

conditions, high temperatures and low relative humidities probably reduced the 

effectiveness of E. stipulatus as predator and, consequently, a segregated population 

of this species could have exerted less predation pressure on N. californicus 

immatures during the initial phase of the interaction. Therefore, this could explain 

delayed exclusion of N. californicus by E. stipulatus or, alternatively, the 

coexistence of both predator species through the experiment, being the probable 

cause of a better control of pest population at these abiotic conditions. 

On the other hand, results showed that, at M conditions, the final number of 

predators per leaf was higher in the treatment with pollen. This indicated that once 

N. californicus was excluded from the system, the availability of pollen for E. 

stipulatus probably promoted a numerical response of this predator species. On the 

contrary, at HD conditions, results revealed that the final predator abundance per 

leaf was similar in both treatments, showing that pollen did not favour the growth of 

E. stipulatus populations. Although at the individual level the presence of pollen at 

extreme abiotic conditions contributed to increase the rate of egg laying of this 

species, extended exposure to adverse abiotic conditions was detrimental for E. 

stipulatus populations, as it has been described that eggs of this species are highly 

vulnerable to desiccation (Ferragut et al. 1987; Guzmán 2014). 
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Summarising, the beneficial effects of the supply of pollen to the system on 

O. perseae population control were only partially detected. One of the aims of such 

supply was to alleviate predator-prey interactions occurring between the two 

predator species through supplemental feeding for E. stipulatus. Conversely, at both 

abiotic conditions, results revealed that E. stipulatus probably excluded N. 

californicus. There are two explanations for the failed results: (1) pollen was 

provided in a concentrated form. Instead, pollen should have been uniformly added 

on all leaves, favouring the expected separation of the avocado mite community in 

two trophic chains (i.e. E. stipulatus feeding on pollen and N. californicus preying 

on the pest) throughout the plant; and (2) predator populations had no stage structure 

at the beginning of the experiment. Likely, eradication of N. californicus by E. 

stipulatus might have been avoided if the experiment had started with predator 

populations well-stage structured. The other aim was to promote apparent 

competition between the alternative food and the pest mediated by an increase in the 

population size of E. stipulatus. Although at M conditions the final abundance of E. 

stipulatus was higher in the treatment with pollen, this increase did not translate into 

a better pest control at the end of the experiment. On the other hand, at HD 

conditions, the combination of high temperatures with low air humidity probably 

affected negatively the growth of E. stipulatus populations. Therefore, this result 

evidenced that abiotic conditions were central to predator population dynamics. 

Periods of high temperatures combined with severe drought that are predicted by 

models of climate change in Mediterranean and temperate regions will lead to loss 

of predatory mite populations, which will provide herbivores, less sensitive to 

warming than higher trophic levels (Voigt et al. 2003; Schweiger et al. 2008), the 

opportunity of escaping predator control.  

These results allow predicting that climate change represents a threat to the 

effective maintenance of agricultural communities under biocontrol management. 

Under climate warming, the success of biocontrol agents will depend on their 

capacity to respond adaptively to heat stress (Hoffmann and Sgrò 2011). However, it 

is needed to take into account that stressful temperatures will exert a selection 
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pressure simultaneously on all the interacting populations within the whole 

agricultural community, spurring evolutionary responses that will affect population 

dynamics and, ultimately, community dynamics (Fussmann et al. 2007). Therefore, 

evolutionary adaptation of each species will be determined by the interplay between 

ecological and abiotic factors. Accordingly, the approach of natural enemy´s 

adaptation responses to oncoming warming should be considered at the community 

level (Pelletier et al. 2009). Hence, the development of strategies that allow facing 

effects derived from climate change for each specific agricultural system needs to 

integrate knowledge on community ecology and evolutionary biology (Moya-Laraño 

et al. 2012; Moya-Laraño et al. 2014). 
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5. CONCLUSIONS 

When each predator species is alone with its prey 

1) The effect of increasing warming and dryness on key life-history parameters 

(e.g. predation rates on the prey, oviposition rates, food-to-egg conversion 

efficiency and survival) differs between predatory mite species. Negative 

effects are stronger for E. stipulatus than for N. californicus. 

2) Euseius stipulatus shows a clear preference for foraging on pollen over the 

prey when the two food types are available. Rates of oviposition increase 

when this species forages on pollen and egg-laying at harsh abiotic 

conditions only occurs in the presence of this alternative food. On the 

contrary, the addition of pollen does not influence predation rates on O. 

perseae, or oviposition rates, in N. californicus. 

When both predator species are together and share a prey 

3) Trophic interactions in the avocado mite community when a community 

module with intraguild predation is simulated are strongly affected by 

changes in the abiotic conditions, resulting in community configurations that 

would often be negative for biological pest control (BPC). 

4) The addition of pollen to the system contributes considerably to reduce the 

trophic interaction strength between predator species, and re-shapes the 

community into two trophic chains at the three abiotic conditions, one with 

E. stipulatus feeding exclusively on pollen, and another with N. californicus 

preying exclusively on O. perseae. This community configuration could 

improve pest control at the three abiotic conditions because weakening 

negative predator-prey interactions between E. stipulatus and N. 

californicus, would likely strengthen predator-prey interactions between N. 

californicus and the pest. Also, pollen might promote a numerical response 
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in E. stipulatus under favourable abiotic conditions that could induce 

apparent competition between O. perseae and pollen. 

5) Events of predation of E. stipulatus eggs by juveniles of N. californicus 

were observed in the presence of pollen, but not in its absence. There is a 

tendency towards higher predation of N. californicus juveniles on E. 

stipulatus eggs located in leaf domatia when eggs are laid by females that 

have been previously fed on pollen. This could be an adaptive behaviour 

meant to scare predators away from patches occupied by IG-prey. 

6) Neoseiulus californicus juveniles can penetrate inside O. perseae nests 

through the entrances built by the persea mite. The accessibility to the eggs 

of O. perseae inside the nests enhances the survival of juveniles when 

abiotic conditions are adverse, likely because feeding on the eggs provides 

water and shields juveniles from desiccation. 

7) At the population level, the beneficial effects for BPC of adding pollen to 

the system are only partially detected. On the one hand, the expected 

reduction of negative trophic interactions occurring between predator 

species is not observed, probably due to methodological errors. Instead, the 

most common pattern is that E. stipulatus excludes N. californicus from 

avocado plants, at the two tested abiotic conditions, and independently of 

the presence or absence of pollen. On the other hand, at M conditions the 

presence of pollen favours an increase of E. stipulatus populations, but such 

increase does not translate into a better pest control. Therefore, adding 

alternative food does not induce apparent competition between pollen and 

prey, probably because of the strong preference of E. stipulatus for pollen 

over the prey. The general negative effect on the growth of E. stipulatus 

populations observed at HD conditions evidences that abiotic conditions can 

be key drivers of population dynamics.  
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8) Results from this thesis allow anticipating that in the near future climate will 

be a threat for the success of BPC, because warming will likely cause 

changes in the trophic structure and dynamics of agricultural communities 

that often contribute to pest control disruption.   
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6. RESUMEN EXTENDIDO EN ESPAÑOL  

Según el Quinto Informe de Evaluación (IE5) del Grupo Intergubernamental de 

Expertos sobre el Cambio Climático (IPCC) (IPCC 2014), el calentamiento del 

sistema climático es inequívoco y la influencia de la actividad humana es innegable. 

En el último siglo la temperatura global de la superficie de la Tierra ha aumentado 

en 0.85ºC, han mermado las reservas de agua en forma de nieve y de hielo, y ha 

subido el nivel del mar. La emisión antropogénica de los gases de efecto invernadero 

(GEI) ha contribuido a incrementar las concentraciones de dióxido de carbono, 

metano, and óxido nitroso desde la era pre-industrial, y es muy probable (entre 99 – 

100 %) que sean la principal causa del calentamiento observado desde la mitad del 

siglo pasado hasta la actualidad. El IE5 también ha revelado que se han producido 

numerosos cambios en muchos de los fenómenos meteorológicos y climáticos 

extremos desde 1950, y que algunos de estos cambios están asociados a actividades 

humanas pasadas y presentes. Como consecuencia, se ha producido un aumento en 

la intensidad, duración y número de períodos de temperaturas extremas en gran parte 

de Europa, Asia y Australia, y cada vez hay más regiones donde han aumentado el 

número de episodios de precipitación y sequía extrema. La emisión continua de GEI 

conducirá a un mayor calentamiento y a cambios más duraderos en todos los 

componentes del sistema climático. De acuerdo con el IE5, la temperatura global de 

la superficie de la Tierra seguirá aumentando a lo largo del siglo XXI en todos los 

escenarios de emisiones evaluados, y es muy probable que las olas de calor ocurran 

con mayor frecuencia y duren más, y que los episodios de precipitación y sequía 

extremas sean más intensos y frecuentes en muchas regiones. 

 Los sistemas naturales están siendo fuertemente perturbados por el cambio 

climático, y ya han sido documentados cambios en la fenología, distribución, 

composición y diversidad de especies en los ecosistemas acuáticos y terrestres 

(Walther et al. 2002; Parmesan 2006; Warren et al. 2011; Bellard et al. 2012). Las 

respuestas de los individuos a cambios en los factores abióticos puede afectar a la 

forma en la cual interaccionan con otros individuos, tanto de la misma como de otras 

especies, viéndose modificada la composición y la estructura de comunidades 
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ecológicas (Dunson and Travis 1991; Gilman et al. 2010; Woodward et al. 2010). 

De hecho, existen evidencias de que el calentamiento global está alterando la fuerza 

y/o dirección de prácticamente todos los tipos de interacciones bióticas, entre las que 

se incluyen competencia, mutualismo, depredación, parasitismo, etc. (Tylianakis et 

al. 2008). Por tanto, uno de los principales desafíos a los que se enfrentan los 

ecólogos es tratar de predecir la forma en las comunidades responderán a un clima 

que está cambiando, lo cual resulta de especial interés en comunidades que 

proporcionan relevantes servicios ecológicos, tales como el control biológico de 

plagas. 

En la agricultura basada en prácticas respetuosas con el medio ambiente 

como el control biológico, cambios en las condiciones abióticas podrían afectar al 

buen funcionamiento de la comunidad agrícola, ya que la mayoría de las plagas y los 

enemigos naturales que las controlan son artrópodos y, como organismos 

ectotermos, muchos parámetros relacionados con su eficiencia biológica (p.ej. 

supervivencia, reproducción, longevidad) así como la forma en la que interaccionan 

entre sí (p.ej. tasa de depredación, habilidad competitiva), están fuertemente 

determinados por la temperatura ambiental (Beveridge et al. 2010; Gilman et al. 

2010). Es por ello que la investigación en las ciencias agrarias debe ir orientada 

hacia la identificación y cuantificación del efecto del calentamiento global en las 

interacciones entre las especies, determinando el modo en el que se ve afectada la 

estructura trófica y la dinámica de cada comunidad agrícola (Bascompte and 

Stouffer 2009).  

En base a los antecedentes expuestos, el objetivo principal de esta tesis fue 

generar conocimiento sobre los efectos de cambios en las condiciones abióticas en 

las interacciones entre las especies que forman comunidades agrícolas bajo control 

biológico, y como estos efectos determinan la dinámica y la estructura de estas 

comunidades. Para cumplir este objetivo se estudió una comunidad de ácaros 

presente en el agro-ecosistema del aguacate (Persea Americana Mill., Lauraceae) en 

el sureste de España. El bajo número de especies que integran esta comunidad la 
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convierten en un modelo de estudio idóneo para evaluar los efectos del cambio 

climático en las interacciones entre las plagas y sus enemigos naturales. En áreas 

costeras, donde las condiciones climáticas son suaves, esta comunidad de ácaros está 

compuesta por una especie plaga Oligonychus perseae (Tuttle, Baker & Abbatiello) 

(Acari: Tetranychidae), denominada comúnmente como ‘ácaro cristalino’, y dos 

especies de ácaros fitoseidos que son enemigos naturales de la plaga: el depredador 

especialista de tetraníchidos Neoseiulus californicus (McGregor) y el omnívoro 

Euseius stipulatus (Athias-Henriot) que puede reproducirse cuando se alimenta de 

polen. La especie plaga construye nidos densos de seda en el envés de las hojas, 

principalmente a lo largo del nervio central y en los nervios laterales (Aponte and 

McMurtry 1997a). Dentro de los nidos los adultos se alimentan y se reproducen, y 

los juveniles se desarrollan. La alimentación de este herbívoro causa daño a la hoja, 

el cual es detectado por la aparición de manchas necróticas que pueden llegar a 

ocupar hasta el 90% de la superficie foliar, afectando a la eficiencia fotosintética de 

la planta (Aponte and McMurtry 1997a). Los nidos tienen una forma semicircular y 

presentan una o más aberturas que funcionan como entradas o salidas para el ácaro 

cristalino. Los nidos actúan protegiendo a esta plaga frente a las condiciones 

abióticas adversas y frente al ataque de algunas especies de enemigos naturales 

(Mori et al. 1999; Montserrat et al. 2008a). En el caso de las dos especies de ácaros 

fitoseidos que se encuentran en asociación con O. perseae en los cultivos de 

aguacate del sureste de España, se ha demostrado que las hembras de N. californicus 

son capaces de entrar en los nidos rasgando la tela con sus primer par de patas y 

atacar a los individuos que se encuentran en su interior (Montserrat et al. 2008a). En 

cambio, las hembras de E. stipulatus no puede penetrar en el interior de los nidos, y 

sólo atacan a los individuos que se encuentran deambulado en el exterior. En cuanto 

a los juveniles de ambas especies, aún no se ha explorado si éstos son capaces o no 

de entrar en los nidos.  

La capacidad para predecir la influencia que tendrá el cambio climático 

sobre comunidades agrícolas depende de la identificación de aquellas interacciones 

entre especies que son más susceptibles a variaciones en las condiciones abióticas, y 
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que son clave para el funcionamiento y mantenimiento de la comunidad. Para 

estudiar estas interacciones resulta muy útil el uso de módulos comunitarios (Holt 

1997), en los que comunidades enteras se simplifican en módulos de dos a seis 

especies que interaccionan a través de depredación, competencia o competencia 

aparente, lo que facilita un mejor entendimiento del funcionamiento de comunidades 

complejas. Por ello, para evaluar el efecto de cambios en las condiciones abióticas 

en la fuerza y la dirección de las interacciones que ocurren en la comunidad de 

ácaros que habita en el agro-ecosistema del aguacate se eligieron cuatro módulos 

comunitarios que son de interés para el control biológico de plagas:  

(i) Cadena Trófica - Aunque en las comunidades agrícolas las especies están 

conectadas formando redes tróficas complejas (Gallopin 1972; Polis and Strong 

1996), el estudio de cadenas tróficas simples proporciona un punto de partida para 

entender los cambios que se producen al añadir más especies y/o interacciones a la 

comunidad.  

(ii) Competencia aparente - Este módulo comunitario está compuesto por dos presas 

que no compiten entre ellas pero que comparten un mismo depredador. Esta 

interacción resulta de especial interés para el control biológico ya que la presencia 

de una presa alternativa que es inocua para el cultivo puede conducir a una 

reducción de la especie plaga a través de un aumento en la densidad del depredador 

que comparten (Holt 1977). De esta manera, aunque la depredación per capita de la 

especie plaga sea menor, un aumento numérico de la población de depredadores 

conduce a que depredación total de la plaga sea mayor que en ausencia de la presa 

alternativa.  

(iv) Depredación intragremial (IGP) - En el módulo de IGP se combinan 

competencia y depredación, donde dos especies interaccionan compitiendo por un 

recurso (presa compartida), y a su vez una de ellas (IG-depredador) consume 

también a la otra (IG-presa) (Polis et al. 1989).  
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(v) Depredación intragremial-Competencia aparente - En sistemas agrícolas donde 

se dan interacciones IGP entre los enemigos naturales de la plaga, la presencia de un 

alimento alternativo (p.ej. polen) para el IG-depredador puede mejorar el control 

biológico a través de una reducción de la presión de depredación del IG-depredador 

sobre la IG-presa, y por la aparición de competencia aparente entre el alimento 

alternativo y la plaga.  

Con el fin de lograr el objetivo principal de esta tesis, el trabajo se centró, 

por un lado, en la evaluación a nivel de individuo del efecto de cambios en los 

factores abióticos (i.e. temperatura y humedad relativa) en la fuerza y la dirección de 

las interacciones entre las especies que componen esta comunidad de ácaros 

haciendo uso de los módulos comunitarios anteriormente expuestos. Dichas 

interacciones fueron evaluadas en disco de hojas de aguacate a tres combinaciones 

diferentes de temperatura y humedad  relativa que fueron denominadas como 

“óptimas” (O, en adelante), “cálidas-secas” (CS, en adelante) y “muy cálidas-secas” 

(MCS, en adelante), comprendidas entre unas condiciones óptimas de temperatura y 

humedad relativa, y unas condiciones más extremas, predichas por modelos de 

cambio climático. Por otro lado, se examinó como los efectos de los factores 

abióticos en las interacciones entre las especies observados a nivel de individuo 

fueron traducidos a nivel poblacional mediante el estudio de las dinámicas 

poblacionales de la plaga y los depredadores en plantones de aguacate a condiciones 

O y CS, determinando a su vez la estructura y la dinámica de la comunidad.  

(i) A nivel de individuo 

Módulos comunitarios: Cadena trófica y Competencia aparente 

El estudio comenzó evaluando cómo las condiciones abióticas influyeron en las 

interacciones depredador–presa entre las dos especies de ácaros depredadores, E. 

stipulatus y N. californicus, y su presa herbívora O. perseae en la presencia y en la 

ausencia de un alimento alternativo (i.e. polen), a través de los módulos 

comunitarios de cadena trófica y competencia aparente.  



Resumen en español 

 

178 

 

 En el módulo comunitario de cadena trófica, los resultados expusieron que 

el efecto de cambios en las condiciones abióticas sobre las interacciones entre los 

depredadores y la presa fue diferente dependiendo de la especie de ácaro 

depredador. Mientras que la fuerza de la interacción entre las hembras de N. 

californicus y las hembras de O. perseae fue similar a las tres condiciones abióticas, 

las hembras de E. stipulatus sólo depredaron a las hembras de ácaro cristalino a 

condiciones O. Dado que ambas especies se alimentaron de O. perseae a 

condiciones O, la comparación de sus tasas de depredación mostró que N. 

californicus fue capaz de depredar más hembras por día que E. stipulatus. Sin 

embargo, no hubo diferencias entre las tasas de ovoposición de ambas especies. Por 

tanto, el ratio entre la ovoposición diaria y la depredación diaria fue mayor para E. 

stipulatus que para N. californicus. La estimación de este ratio puede informar sobre 

la eficiencia de los depredadores convirtiendo su presa en huevos, ya que los ácaros 

fitoseidos destinan una importante fracción del alimento ingerido a la reproducción 

(Sabelis and Janssen 1994). Así, este ratio reveló que las hembras de E. stipulatus 

exhibieron una mayor eficiencia que aquellas de N. californicus convirtiendo las 

hembras de O. perseae que depredaron en huevos. Tales diferencias entre especies 

podrían ser explicadas si cada especie depredadora ingirió diferentes cantidades de 

alimento de la presa. Algunos autores han encontrado diferencias en el ratio de 

ovoposición/depredación en función del nivel de disponibilidad de presa: algunas 

especies de ácaros fitoseidos convierten la presa ingerida en huevos más 

eficientemente a bajos niveles de disponibilidad de presa que a altos (Friese and 

Gilstrap 1982; Cuellar et al. 2001; Saber 2013). Esto es causado por un efecto de 

estimulación-interferencia (Sandness and McMurtry 1970), es decir, a densidades de 

presa altas, un mayor contacto con la presa puede tener un efecto estimulatorio en 

los depredadores dando lugar a un incremento en la tasa de depredación. 

Consecuentemente, el tiempo empleado alimentándose de cada individuo disminuye 

y, así, también disminuye la cantidad de alimento ingerido. De esta manera, los 

depredadores pueden matar a un mayor número de individuos antes de alcanzar la 

saciedad. La metodología del experimento realizado llevó a la conclusión que la 
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disponibilidad de presa fue mayor para N. californicus que para E. stipulatus, ya que 

esta última no es capaz de penetrar los nidos y depredar a los huevos y las hembras 

de O. perseae que se encuentran en su interior. Así, un efecto de estimulación-

interferencia podría haber sucedido en N. californicus. De hecho, ha sido 

documentado que a bajas densidades de presa N. californicus es más eficiente 

convirtiendo la presa en huevos que a altas densidades de presa (Saber 2013).  Este 

comportamiento puede ser considerando beneficioso para el control biológico, ya 

que aumenta la tasa de depredación cuando los niveles de presa son altos (Ferragut 

et al. 1992).  

Los resultados mostraron que E. stipulatus no depredó a hembras de O. 

perseae a condiciones CS y MCS. Sin embargo, se sabe que cuando las condiciones 

son de alta temperatura y baja humedad relativa el ácaro cristalino puede aumentar 

la producción de tela para incrementar la humedad en el interior de los nidos y 

proteger los estadios más vulnerables, como los huevos, frente a la desecación 

(Hazan et al. 1974, 1975). Por tanto, las hembras de O. perseae podrían haber estado 

tejiendo nuevas capas de tela. Si esto es verdad, no explicaría porque E. stipulatus 

no incrementó  sus tasas de depredación sobre las hembras de O. perseae a medida 

que aumentó la temperatura, simplemente porque la tasa de encuentro entre los 

depredadores y la presa sería mayor que a condiciones O, con un menor  número de 

hembras de O. perseae fuera de los nidos. Una posible explicación es que unas 

condiciones abióticas desfavorables podrían haber afectado al estado de esta especie 

disminuyendo su actividad y movimiento. Esto ya ha sido demostrado para otras 

especies de ácaros fitoseidos (Shipp et al. 1996; Skirvin and Fenlon 2013). No 

obstante, se deberían realizar otros estudios en los que se examinase cómo unas 

condiciones abióticas desfavorables afectan al comportamiento de esta especie.  

 A condiciones CS y MCS, las tasas de depredación de N. californicus sobre 

hembras de O. perseae no fueron significativamente diferentes a la obtenida a 

condiciones O. En cambio, esta especie consumió un menor número de huevos de O. 

perseae en el interior de los nidos a medida que las condiciones abióticas fueron más 

adversas. Estos resultados sugirieron que las hembras de N. californicus pasaron 
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menos tiempo en el interior de los nidos probablemente debido a que las hembras de 

O. perseae permanecieron más tiempo fuera de los nidos a condiciones extremas. Al 

contrario que E. stipulatus, un aumento de la temperatura podría haber promovido 

un incremento del movimiento en N. californicus, tal y como muestran algunos 

trabajos (Auger et al. 1999). De hecho, el ratio entre la ovoposición diaria y la 

depredación diaria para este depredador disminuyó a condiciones CS y, además, la 

tasa de ovoposición fue nula a condiciones MCS poniendo de manifiesto que un 

aumento del movimiento pudo haber dado lugar a la disminución de la cantidad de 

recursos que fueron destinados a la formación de huevos en pro del mantenimiento 

somático. Posiblemente debido a esto las hembras de N. californicus no 

sobrevivieron en la ausencia de alimento bajo condiciones abióticas extremas, a 

diferencia de las hembras de E. stipulatus, cuya supervivencia fue mayor al 70% 

incluso sin consumir ningún alimento. Por tanto, las diferentes estrategias adoptadas 

por cada especie de ácaro depredador frente a las altas temperaturas, en un caso 

reduciendo su movimiento y en otro caso aumentándolo, podrían explicar las 

diferencias en la supervivencia que fueron observadas entre especies.   

En el módulo comunitario de competencia aparente los resultados revelaron 

que la presencia de un alimento alternativo (polen) para los depredadores influyó en 

la fuerza de la interacción entre E. stipulatus y O. perseae, y tal influencia fue a su 

vez afectada por las condiciones abióticas. En cambio, la disponibilidad de polen no 

tuvo efectos en la interacción entre N. californicus y el ácaro cristalino a ninguna de 

las condiciones abióticas.  

Como fue observado en el módulo comunitario de cadena trófica, E. 

stipulatus depredó a hembras de O. perseae en la ausencia de polen a condiciones O. 

Sin embargo, este ácaro depredador claramente prefirió alimentarse de polen cuando 

este recurso estuvo disponible a estas condiciones. Este resultado era esperable ya 

que el polen es considerado un alimento óptimo para las especies del género 

Euseius, las cuales alcanzan su mayor potencial reproductivo cuando consumen este 

tipo de recurso (Ferragut et al. 1987; McMurtry and Croft 1997; Bouras and 
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Papadoulis 2005; González-Fernández et al. 2009). En efecto, las tasas de 

ovoposición de E. stipulatus fueron siempre más altas cuando esta especie dispuso 

de polen. Además, este ácaro depredador sólo ovopositó bajo condiciones extremas 

cuando el polen estuvo presente. Sin embargo, dado que la tasa de eclosión de 

huevos de E. stipulatus es muy baja cuando las condiciones son secas (Ferragut et al. 

1987; Guzmán 2014), es muy probable que tras largos períodos a condiciones de 

altas temperaturas y humedad relativa baja se produjera un descenso de las 

poblaciones de esta especie, incluso en presencia de polen como alimento 

alternativo.  

En cuanto a N. californicus, los resultados sugirieron que cuando las 

hembras dispusieron de polen y O. perseae, sólo depredaron al herbívoro a las tres 

condiciones abióticas. Además, ni las tasas de depredación ni las tasas de 

ovoposición difirieron entre los tratamientos con polen y sin polen.  

Por tanto, la adición de polen como un alimento alternativo no tendría 

efectos en las poblaciones de N. californicus. Sin embargo, la presencia de polen 

podría promover una respuesta numérica en E. stipulatus y favorecer el control de la 

plaga a través de la inducción de competencia aparente entre el herbívoro y el polen. 

Pero esto sólo sería probable a condiciones suaves, ya que las condiciones adversas 

perjudicarían el crecimiento de las poblaciones de este depredador.  

Módulos comunitarios: Depredación intragremial y Depredación intragremial-

Competencia aparente 

Tras evaluar el efecto de las condiciones abióticas y la presencia de un alimento 

alternativo en las interacciones entre E. stipulatus y N. californicus, y la especie 

plaga O. perseae, a continuación se determinó el efecto de estos dos factores sobre 

las interacciones intragremiales entre los dos ácaros depredadores con O. perseae 

como especie presa compartida. Estas interacciones fueron analizadas usando los 

módulos comunitarios de depredación intragremial y depredación intragremial-

competencia aparente. 
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Las interacciones intragremiales entre los dos ácaros depredadores fueron 

evaluadas con hembras de E. stipulatus y N. californicus actuando como IG-

depredador, y juveniles de N. californicus y E. stipulatus actuando como IG-presa, 

respectivamente.  

   En el módulo comunitario de depredación intragremial, los resultados 

pusieron de manifiesto el importante papel que jugaron las condiciones abióticas 

determinando la estructura trófica de esta comunidad de ácaros. 

A condiciones O, cuando hembras de E. stipulatus actuaron como IG-

depredador y los juveniles de N. californicus como IG-presa, los resultados 

revelaron que las hembras de E. stipulatus sólo depredaron a los juveniles de N. 

californicus, mientras que estos últimos consumieron a la presa compartida, O. 

perseae. De este modo, la estructura de la comunidad se asemejó más a una cadena 

trófica que a una comunidad con depredación intragremial, con las hembras de E. 

stipulatus depredando a juveniles de N. californicus y con juveniles de N. 

californicus depredando a O. perseae. Cabe destacar que la presencia de huevos de 

O. perseae depredados dentro de los nidos reveló que los juveniles de N. 

californicus fueron capaces de penetrar en estos y alimentarse dentro. Dado que los 

nidos estaban intactos, los juveniles utilizaron las entradas construidas por O. 

perseae para pasar al interior de los nidos (observación personal).  

Cuando las interacciones fueron evaluadas con hembras de N. californicus 

actuando como el IG-depredador y con juveniles de E. stipulatus actuando como la 

IG-presa, los resultados mostraron que N. californicus no depredó ni a O. perseae ni 

a la IG-presa, siendo los juveniles de E. stipulatus los únicos que depredaron a la 

presa compartida. Por tanto, la estructura de la comunidad también se pareció a una 

cadena trófica, sólo con juveniles de E. stipulatus consumiendo a las hembras de 

ácaro cristalino y con las hembras de N. californicus no interaccionando en absoluto. 

Es muy probable que los juveniles de E. stipulatus indujeran cambios en el 

comportamiento de las hembras de N. californicus, causando su inactividad. Cabe la 

posibilidad que las hembras de N. californicus percibieran a los juveniles como 
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depredadores potenciales, lo que habría desencadenado un comportamiento anti-

depredador. De hecho, en otro trabajo se observó que los juveniles de E. stipulatus 

pueden ejercer este tipo de efectos no letales sobre las hembras de N. californicus 

(Abad-Moyano et al. 2010b). 

Con respecto al control de la plaga, estos resultados llevaron a concluir que 

las configuraciones tróficas obtenidas a condiciones O siempre favorecerían la 

herbivoría a través de efectos indirectos de E. stipulatus sobre O. perseae. Por un 

lado, la depredación de los juveniles de N. californicus por parte de las hembras de 

E. stipulatus, mermarían las poblaciones de N. californicus conduciendo a un 

incremento en la abundancia de la plaga. Por otro lado, el efecto que los juveniles de 

E. stipulatus pueden ejercer sobre el comportamiento de las hembras de N. 

californicus reducirían la actividad depredadora de esta especie sobre el ácaro 

cristalino, conduciendo de nuevo a un aumento de las poblaciones de la plaga.  

A condiciones CS y MCS, cuando las hembras de E. stipulatus actuaron 

como IG-depredador y los juveniles de N. californicus como IG-presa, los resultados 

sugirieron que bajo condiciones abióticas desfavorables la estructura de la 

comunidad dejó de asemejarse a una cadena trófica y cambió a una comunidad 

dominada por competencia por explotación entre las dos especies de depredadores. 

Es muy probable que este cambio en la configuración de la comunidad respecto a 

condiciones O, donde las hembras de E. stipulatus pasaron de depredar sólo a la IG-

presa a depredar sólo la presa compartida, fuera la consecuencia de un cambio en la 

disponibilidad de ambas presas en función de las condiciones abióticas. La 

disponibilidad de los juveniles de N. californicus podría haber disminuido a 

condiciones CS y MCS debido a dos causas: (i) a una tendencia de los juveniles de 

N. californicus a escapar de las arenas experimentales bajo estas condiciones; (ii) a 

la habilidad de los juveniles de N. californicus a penetrar en los nidos de O. perseae, 

los cuales podrían haber entrado para resguardarse de las condiciones abióticas 

adversas. La presencia de juveniles de N. californicus en el interior de los nidos 

podría haber provocado que las hembras de O. perseae que se encontraban en el 
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exterior se abstuvieran de penetrar en ellos, prolongando de esta forma el riesgo de 

ser depredadas por las hembras de E. stipulatus.  

Cuando las hembras de N. californicus fueron el IG-depredador y los 

juveniles de E. stipulatus la IG-presa, los resultados indicaron que sólo las hembras 

de N. californicus se alimentaron de la presa. Además, no se observó depredación 

del IG-depredador a los juveniles de E. stipulatus. Así, la configuración de la 

comunidad fue de nuevo una cadena trófica, pero esta vez sólo con las hembras de 

N. californicus depredando a O. perseae, y con los juveniles de E. stipulatus no 

interaccionando con ninguna de las otras dos especies. Este cambio en la estructura 

de la comunidad con respecto a condiciones O condujo a hipotetizar que unas 

condiciones abióticas adversas afectaron fuertemente a los juveniles de E. stipulatus. 

Por tanto, éstos habrían dejado de inducir un comportamiento anti-depredador en las 

hembras de N. californicus, las cuales reanudaron su actividad depredadora.  

Cabe destacar que cuando esta comunidad de ácaros simuló un módulo 

comunitario con IGP, todos los resultados obtenidos sugirieron que las dos especies 

de depredadores podrían no estar involucradas en IGP, ya que ninguna de ellas 

depredó a la vez tanto a la IG-presa como a la presa compartida cuando los dos tipos 

de presa estuvieron disponibles.  

En el módulo comunitario de depredación intragremial-competencia 

aparente, la presencia de un alimento alternativo (i.e. polen) redujo las interacciones 

entre las dos especies de ácaros depredadores, dando lugar a configuraciones tróficas 

que favorecerían el control biológico de la plaga. 

A las tres condiciones abióticas estudiadas, en ambas combinaciones de IG-

depredador y IG-presa (i.e. E. stipulatus y N. californicus actuando como IG-

depredador o como IG-presa), la presencia de polen dividió esta comunidad de 

ácaros en dos cadenas tróficas: una con E. stipulatus (hembras o juveniles) 

alimentándose de polen y la otra con N. californicus (hembras o juveniles) 

depredando a O. perseae. Como fue mencionado anteriormente, E. stipulatus es una 
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especie que consume preferencialmente polen cuando éste está presente (McMurtry 

and Croft 1997). Así, cuando este recurso estuvo disponible, las hembras de E. 

stipulatus redujeron sus ataques sobre los juveniles de N. californicus, y los 

juveniles de E. stipulatus minimizaron sus intentos de ataque o interferencia sobre 

las hembras N. californicus, dejando de influir en la actividad depredadora de esta 

especie, lo que fortalecería la interacción entre N. californicus y O. perseae.  

Además, la presencia de polen contribuyó a aumentar las tasas de ovoposición de las 

hembras de E. stipulatus a las tres condiciones abióticas, y contrarrestó los efectos 

negativos que las condiciones abióticas adversas ejercieron sobre los juveniles de E. 

stipulatus.  

(ii) A nivel poblacional  

A nivel de individuo la presencia de polen en el sistema dividió la comunidad de 

ácaros en dos cadenas tróficas independientemente de las condiciones abióticas, una 

con E. stipulatus  alimentándose de polen y la otra con N. californicus depredando a 

O. perseae. Por tanto, en base a estos resultados, a nivel poblacional la adición de 

polen como alimento alternativo para E. stipulatus mejoraría el control de las 

poblaciones de O. perseae debido a que (i) debilitaría las interacciones negativas 

entre E. stipulatus y N. californicus a condiciones óptimas y extremas, y (ii) 

promovería una respuesta numérica de las poblaciones de E. stipulatus que podría 

inducir la aparición de competencia aparente entre el polen y O. perseae, 

principalmente a condiciones óptimas,  lo que ejercería un impacto extra sobre las 

poblaciones del ácaro cristalino. 

Por un lado, contrario a lo que se esperaba, la adición de polen  al sistema no 

redujo las interacciones entre ambas especies depredadoras, ya que los resultados 

revelaron que probablemente E. stipulatus excluyó a N. californicus a ambas 

condiciones abióticas, independientemente de la presencia o ausencia de polen. En 

ausencia de polen este resultado podría ser explicado por el ratio inicial de IG-

presa/IG-depredador y la estructura de edades de las poblaciones de depredadores, lo 

cual determina los patrones de coexistencia y exclusión en los sistemas con 
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depredación intragremial (Montserrat et al. 2008b). Al comienzo del experimento las 

poblaciones de ambos depredadores no tenían una estructura de edades ya que sólo 

estaban formadas por hembras de ambas especies, y además la disponibilidad de la 

presa compartida fue diferente para ambas especies de depredadores. La habilidad 

las hembras de N. californicus de penetrar en los nidos del ácaro cristalino y 

alimentarse en su interior podría haberle conferido a esta especie una ventaja inicial 

sobre las hembras de E. stipulatus, las cuales son incapaces de entrar en los nidos. 

Por tanto, una mayor ingesta de alimentos por parte de N. californicus podría haber 

sido traducida en una mayor descendencia, incrementando la densidad de los 

estadios que fueron vulnerables de ser depredados por las hembras de E. stipulatus. 

Este escenario inicial, en el que la combinación de una baja disponibilidad de O. 

perseae fuera de los nidos debido a la depredación de N. californicus en el interior 

de los nidos, y una alta disponibilidad de estadios inmaduros de N. californicus 

podría haber dado lugar a una fuerte presión de depredación de E. stipulatus sobre 

N. californicus. Esto habría impedido el crecimiento de las poblaciones de N. 

californicus, incrementando la probabilidad de que E. stipulatus excluyera a esta 

especie a través del experimento debido a la falta de renovación de las poblaciones 

de N. californicus. Considerando este escenario inicial, la presencia de polen debería 

haber reducido los niveles de depredación de E. stipulatus sobre N. californicus. Sin 

embargo, los resultados sugirieron que esto no sucedió. Probablemente la adición 

del polen como un único foco a la planta pudo ser la causa de los resultados 

obtenidos. Esto podría haber conducido a una segregación de las poblaciones de E. 

stipulatus, con individuos alimentándose preferencialmente de polen cerca del foco 

de polen y con individuos depredando preferencialmente a inmaduros de N. 

californicus lejos del foco de polen. De esta forma, incluso cuando se añadió polen 

al sistema, N. californicus podría haber estado sometido a altas tasas de depredación. 

No obstante, a condiciones CS, las altas temperaturas y la baja humedad relativa 

posiblemente redujeron la efectividad de E. stipulatus como depredador, y en 

consecuencia, una población segregada de E. stipulatus podría haber ejercido menos 

presión de depredación sobre N. californicus durante las fase inicial del 
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experimento. Por tanto, esto pudo haber retrasado la exclusión de N. californicus por 

E. stipulatus, siendo la causa de un mejor control de las poblaciones de O. perseae 

que fue observado sólo a estas condiciones en la presencia de polen.  

Por otro lado, la adición de polen promovió un aumento de las poblaciones 

E. stipulatus a condiciones O. Este resultado indicó que una vez esta especie 

excluyó a N. californicus del sistema, E. stipulatus pudo alimentarse 

preferencialmente de polen lo que promovió una respuesta numérica de esta especie 

pero que no fue traducida en una mayor reducción de las poblaciones de O. perseae  

en comparación al tratamiento sin polen. En cambio, a condiciones CS, los 

resultados revelaron que la abundancia final de depredadores fue similar en los 

tratamientos con polen y sin polen, indicando que el polen no favoreció el aumento 

de las poblaciones de E. stipulatus. Aunque a nivel de individuo la presencia de 

polen contribuyó a aumentar las tasas de ovoposición de esta especie, una 

exposición prolongada a unas condiciones abióticas adversas fueron perjudiciales 

para las poblaciones de E. stipulatus, ya que sus huevos son altamente vulnerables a 

la desecación. Estos resultados pusieron de manifiesto que las condiciones abióticas 

fueron fundamentales en la dinámica de las poblaciones de depredadores. Así,  

cambios en los factores abióticos que son predichos por los modelos de cambio 

climático podrían conducir una pérdida de las poblaciones de ácaros depredadores, 

lo cual proporcionaría a los herbívoros, que son menos sensibles al calentamiento 

que los niveles tróficos superiores (Voigt et al. 2003; Schweiger et al. 2008), la 

oportunidad de escapar del control biológico.  

Por tanto, los resultados obtenidos en esta tesis muestran que las respuestas 

de cada especie a cambios en las condiciones abióticas modifican la forma en la que 

interaccionan entre sí, afectando a la estructura trófica y la dinámica de la 

comunidad. Bajo el escenario de cambio climático actual, esto implica que para 

lograr un manejo eficiente de enemigos naturales en comunidades agrícolas es 

fundamental tener en cuenta la influencia que los factores abióticos ejercen sobre las 

interacciones que ocurren entre las especies que componen cada comunidad. 
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Appendix 1 

Protocol for extraction of pollen from flowers of Carpobrotus edulis  

1. Pink flowers of Carprobrotus edulis are collected three times a week during 

spring months (March and April). 

2. Sepals and petals are removed from flowers, and stamens are taken with a clamp 

(Figure A1.1).  

 
Figure A1.1. a. Flower of C. edulis without sepals and a part of petals removed; b. Flowers 
only with stamens; c. Stamens removed.    
 
3. Stamens are dried in a stove at 37 ºC for 48h.  

 
Figure A1.2. First sieving (and b); Second sieving (c); Pollen extraction (d); Pollen storage 
(e)  
 
4. Stamens are sieved through two different pore diameters using a brush: the first 

sieving (0.25 mm) is to remove stamen remains (Figure A1.2; a and b) and the 

second sieving (0.075 mm) is to extract the pollen (Figure A1.2; c and d). 

5. Pollen is stored in plastic containers at 4ºC (Figure A1.2e).
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Appendix 2 

 
Mite predator/prey population dynamics  
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Figure A2. Population dynamics of O. perseae and predatory mites (E. stipulatus and N. 

californicus) for each plant (16 plants) depending on the two abiotic conditions (“mild” and 
“hot and dry”), and treatment (with pollen and without pollen). Each point corresponds to the 
average (± SE) of number of occupied nests in the UML2, and the total number of mobile 
stages (i.e. adults and juveniles) of phytoseiid mites per leaf for each recount date. Note that 
the number of predatory mites on day 0 was set to 0.59 in all replicates, i.e., initial number of 
predators (20 females) divided by average number of leaves per plant (34 leaves).   
 



 

 

 

 

  



 

 

 

 






