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Abstract— Road traffic is responsible for a significant share
of pollution. Intelligent Transportation Systems are expected
to contribute to reduce these emissions. Solutions thus far
include design of greener vehicles, urban traffic management
and control and behavior changes. Behavior changes may
include vehicle sharing programs and driving habits changes.
In order to change their habits, drivers need personalized
feedback about the emissions of their own vehicles in the
different routes they complete. Measuring emissions require
special equipment, so emissions are often estimated depending
on a number of parameters. In this work, we have developed a
Android application for a smartphone that extracts all required
parameters and return a geopositioned emission estimation on
the fly. Our estimator is based on the ARTEMIS project results.
In order to validate estimations, the smartphone taps into the
vehicle OBD to obtain a number of parameters related to high
emissions. The system has been successfully tested in different
routes in Malaga (Spain), including different environments
(highway, rural and urban areas).

I. INTRODUCTION

Recent studies have stated that transport related emissions
are responsible for a significant share of environmental
pollution and greenhouse gas (GHG) [12]. Furthermore, half
of all road transport emissions are the result of traffic in
urban areas. More specifically, motorized private transport
accounts for 40% of the GHG emissions of the total road
transport sector and up to 70% of other pollutants stemming
from transport. The ill effects of pollution on health are also
well reported1: up to 1,3 millions deaths each year, specially
involving children and elderly people.

While a large number of studies contemplate the impact
of Intelligent Transportation Systems (ITS) on areas like
road safety, traffic management or intelligent vehicles, only a
small number address the potential of ITS for reducing GHG
emissions in qualitative or quantitative terms, so there is still
lack of consolidated empirical evidence on the subject [5].

Since developed countries and regions should reduce their
emissions by 60-80% over the period 1990-2050, reducing
transport and logistics-related GHG emissions is of key
importance to promote environmental sustainability. ITS are
meant to help to this respect. Indeed, the Climate Group in
its SMART 2020 study estimates that ITS based logistics
optimization could result in a 16% reduction in transport
emissions and a 27% reduction in storage emissions [7].
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Improved logistics (eFreight) -including in-cab communica-
tion systems, vehicle tracking systems, sat-nav, warehouse
and fleet management ...- could result in a 16% reduction
in transport emissions and a 27% reduction in storage emis-
sions. It has been reported that ITS-driven applications across
logistics could achieve a reduction in total global emissions
of 1.52 GtCO2e2. However, private transport is harder to
address.

Most existing studies on the subject either focus on techni-
cal changes -e.g. cleaner cars or smart traffic management-
or behavioral changes -e.g. increased use of public trans-
portation or car sharing programs- to cope with the problem,
although it has been suggested that the best choice would be
a combination of both approaches [7]: although major reduc-
tions in GHG emissions will obviously depend on cleaner
cars and fuels, it has been noted that without behavioral
change, the increase in CO2 emissions from expected travel
growth would outweigh the possible savings from changes
in technology3.

Urban traffic management and control (UTMC) ap-
proaches rely on cameras and sensors to control access to
jammed areas and track flows of vehicles. UTMC is typically
enforced by law, but there are personalized approaches to
the problem. These approaches typically rely on advising
the driver on which routes to use in order to avoid traffic
jams[16][20], e.g. ASSIST-V (BMV). Much research on this
area focuses on communication protocols, like DAB (Digital
Audio Broadcasting) or TPEG (Transport Protocol Experts
Group), and also on city-wide mesh sensor networks (e.g.
Crossbow). However, pollution is not limited to traffic jams.
It would be interesting to detect and correct driving habits
that result in higher gas emissions under far more frequent,
non-excepcional situations.

Car and bike sharing programs and Demand Manage-
ment Systems (DMS) conform a well known approach to
behavioral change [13][17]. However, these approaches only
provide information on traffic as a whole, not personalized
feedback for users to quantitatively estimate potential benefit
for society and for themselves, e,g. fuel saving, pollution
reduction, etc. Information on the impact of these approaches
is only available after a significant time period and typically
gathered by means of (potentially subjective) questionnaires
[18].

2The Climate Group and the Global eSustainability Initiative (GeSI):
SMART 2020: Enabling the Low Carbon Economy in the Information Age,
2008

3VIBAT (http://www.vibat.org), Visioning and Backcasting for UK Trans-
port Policy, Bartlett School of Planning, University College London



In order to obtain immediate feedback on how a given user
is driving, cars need to include on board sensors, processing
unit(s) and some kind of human computer interface (HCI).
Thus, fuel consumption and/or emissions can be monitored
and feedback can be used to optimize driving style and
vehicle behavior. There are severak approaches to acquire
instant driving information from users -e.g. pressure on
breaks or face gestures- in order to provide assistance to the
driver when help is needed [15], but they are mostly focused
on safety issues.

The main goals of the present work are: i) to study
the dynamic impact of driver behavior and chosen routes
on emissions; and ii) to provide feedback for behavior
correction. This goal can be decomposed into the following
ones:

• To experimentally validate theoretical data provided by
official reports using vehicle on board sensors

• To develop a methodology to automatically detect
highly pollutant driving behaviors and routes

• To provide personal feedback to drivers so that they can
change their driving habits if necessary

We propose to use a smartphone to support the whole
system, as it has been reported that smartphones will most
likely be the most crucial tool in the next decade to mo-
tivate behavior changes [8]. It needs to be noted that no
common framework architecture for ITS systems exists, so
maximizing the potential of ITS for reducing emissions
will depend significantly on interoperability. Current cars
are equipped with OBD (On Board Diagnosis) systems that
provide information about a number of vehicle parameters.
Originally, it was not easy to access a car OBD, specially
on the fly. However, nowadays there are electronic systems
that tap into the OBD and return information via standard
communication protocols. Furthermore, these devices have
become progressively cheaper. Specifically, we will use a
ELM327 V1.4 B g, which extracts the OBD information via
Bluetooth (BT) and, hence, easy to capture using any existing
smartphone. Additionally, the smartphone GPS will be used
to extract the vehicle location and geoposition all data. The
mobile phone will analyze the sensor information, plot it
using a GIS -in our case, Google Map- and offer feedback
to users. All these data will be used to validate a general
existing emission model and obtain all estimations for the
user behavior and route on the go. It can be noted that this
approach follows the four main trajectories defined for the
next generation of ICT:

• Networked, mobile, seamless and scalable, offering
the capability to be always best connected any time,
anywhere and to anything.

• Embedded into the things of everyday life in a way that
is either invisible to the user or brings new form-fitting
solutions

• Intelligent and personalised, and therefore more centred
on the user and their needs;

• Rich in content and experiences and in visual and
multimodal interaction.

II. ESTIMATION OF EMISSIONS: THE ARTEMIS PROJECT

There are two main approaches to estimate how much
a vehicle pollutes: i) to carry on-board Portable Emis-
sions Measurement Systems (PEMS) [4][9]; or ii) to es-
timate the emissions from related parameters via system
modeling[6][10]. PEMS based analysis is usually more
reliable, but it requires a very specialized hardware that
limits its practicality for general application. Modeling tech-
niques can be either statistically-based[1][21] or model-
based [10][14][19]. Statistical approaches require fitting of
an analytical model, so they may be affected by errors
derived from ill data fit. Modal based approaches are not
affected by these errors, but they involve a significant amount
of data averaging and, hence, they might not be adequate
for micro scale applications or individual vehicles analysis
(e.g. [6]). This problem is (partially) solved by introducing
simplified physical models that extrapolate required data
from additional parameters. For example, vehicle-specific
power (VSP) -a function of speed, acceleration, and road
grade- is usually a good predictor of vehicle fuel use. Some
of these simple models can be derived from large scale
experiments and used later at smaller scale tests. In this work,
we rely on this third approach, based on the results of project
ARTEMIS.

Project ARTEMIS [3] gathered a data base of 2800
cars and 27000 emission calculations to derive models on
emissions in Europe roads depending on different driving en-
vironment. There have been previous efforts in the field, like
CORIANAI, COPERT (I-IV), EMET, MODEM, COST and
MEET. ARTEMIS has worked with real traffic conditions
in Europe (MODEM-Hyzen database) and, hence, offers
representative results for a diversity of scenarios. ARTEMIS
is based on driving cycles, which correspond to distinct
driving behavior.

A. Defining a driving cycle

A (new) driving cycle is defined each time a vehicle
changes from a specific driving environment to another, e.g.
urban to rural areas. Specifically, ARTEMIS considers 3 kind
of cycles: urban driving, rural driving and motorway driving,
as proposed in [2]. Cycles can be labelled according to road
”official status”, but it was reported in [3] that this status
often did not fit the results of their tests. Instead, ARTEMIS
proposed to define cycles according to vehicle speed and
stop durations. For example, it can be loosely expected that
speed in highway cycles is higher and the number of stops
is lower than in urban cycles. Although somewhat arbitrary,
this definition returned quite homogeneous cycle groups in
ARTEMIS tests, where urban trips, rural trips and motorway
trips reportedly had average stop durations of 28, 10 and 5
% of total trip time and driving speeds of 30, 55 and 98
km/h respectively.

Cycles can be further divided into sub cycles depending
on traffic conditions (e.g. jamming). Specifically, ARTEMIS
detected 12 subcycles (table I). Given this classification,
driving cycles in a running experiment can be automatically
labelled.



Cycle of driving conditions % of total
mileage

running
speed (km/h)

average
speed (km/h)

stop duration
(%)

stop rate
(stop/km)

aver. positive
accel. (m/s2)

1 Congested urban High stop duration 3.7 25.9 10.2 60.8 3.9 0.87
2 5.9 23.6 15.9 32.7 3 0.81
3 Low steady speeds 2.4 16.5 13.2 19.5 3.4 0.67
4 Free-flow urban 5.1 28 26.1 6.7 0.97 0.65
5 Unsteady speeds 12.2 35.6 32.3 9.1 0.98 0.81
6 Secondary roads Unsteady speeds 10.8 52.2 48.8 6.6 0.41 0.75
7 8.8 45.5 43.8 3.7 0.39 0.63
8 Steady speeds 7.2 65 64 1.5 0.15 0.55
9 Main roads Unsteady speeds 11.8 75 72.5 3.3 0.15 0.67
10 6.2 86.1 85.7 0.4 0.04 0.48
11 Motorways Unsteady speeds 10.4 115.6 114.9 0.7 0.03 0.53
12 15.6 123.8 123.7 0.1 0.01 0.4

TABLE I
CLASSIFICATION OF DRIVING CYCLES (ARTEMIS PROJECT)

Depending on the driving cycle and whether the vehicle
is a diesel or a petrol model, emissions are affected by a
different set of parameters. ARTEMIS general conclusions
are briefed below:.

DIESEL VEHICLE
• Urban cycle: i) all pollutes increase with strong accel-

eration -average, frequency and acceleration time-; ii)
HC and CO increase at high speeds (60-100 km/h) and
strong accelerations; iii) HC grows with the number of
stops and CO2 decreases at higher speeds.

• Rural cycle: ii) all pollutes grow with acceleration -
average, frequency and acceleration time-; CO2, HC and
NOx grow with the frequency and duration of stops;
CO2 and NOx decrease when speed grows.

• Highway cycle: i) all pollutes grow with accelerations
at high speeds (120-140 km/h).

PETROL VEHICLE
• Urban cycle: i) all pollutes increase with stop frequency

and duration; ii) all pollutes but CO decrease when
speed grows; CO increases at high speed (60-100km/h);
iii) NOx and CO2 grow with stop frequency and sharp
acceleration.

• Rural cycle: ii) all pollutes increase with stop fre-
quency and duration; ii) all pollutes decrease when
speed grows and increase for low speeds (20-40 km/h)
and positive accelerations; CO is sensitive to large
accelerations/decelerations.

• Highway cycle: i) NOx and CO2 grow at high
speeds (120-140 km/h) and acceleration and decrease
at medium speed (60-100 km/h); ii) CO grows at
medium/low speeds and also with stop frequency and
acceleration; it decreases at low speeds.

In brief, pollutes depend on the following parameters:
speed, acceleration, number and duration of stops. It can also
be observed that CO follows a pattern different from the rest
of the pollutants, that loosely depend on the same factors and
behave similarly. The estimators for each pollutant, cycle and
vehicle type are fully reported in [3]. It must be observed
that these parameters depend on user driving behavior, so
it is not possible to predetermine how green a given route

can be unless the driving conditions and driver behavior are
analyzed. One of the novelties of this work is to extract these
parameters on the fly for any given user using a smartphone.
This approach has a number of benefits, e.g. resulting data
could be used to proactively suggest greener routes to a
destination depending on how a person drives. In this work,
we will use gathered data to obtain emissions in different
routes in a city on the go based on ARTEMIS estimators
and to validate the estimators using OBD information.

B. Parameter acquisition

The ARTEMIS project has been chosen for this study
because all required input parameters can that can be di-
rectly obtained on the fly using a smartphone in a vehicle.
Specifically, we need to obtain the following parameters for
each detected driving cycle:

• Number Elements Cycle: Number of data frames in
the current driving cycle

• Distance Cycle: Total distance in the cycle
• Number Stops Cycle and Stop Km Cycle: Total num-

ber of stops and stop frequency (per km) in the cycle
• Accelerations Km Cycle: Number of (sharp) accelera-

tions per km in the cycle

All these parameters can be obtained from location and
speed, provided by the GPS of an onboard smartphone.
Vehicle acceleration can be approximated as:

acceleration =
�speed

�t
(1)

Distance (D) is obtained as the sum of distances between
consecutive readings d(lat

i

, long
i

lat
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long
i
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i
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i
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These parameters can be combined with the ones obtained
from the OBD in the smartphone to validate ARTEMIS
estimations. Next section covers the OBD parameters that
will be used in our study.



III. THE OBD SYSTEM: INTEGRATION WITH A
SMARTPHONE

It has been consistently reported both by major car man-
ufacturers and by government agencies that simple changes
in driving habits -the so-called Ecodriving- could lead to
significant reductions in emissions and fuel saving4. Rec-
ommendations include actions like Maintaining a Steady
Speed Using Highest Gear Possible, Decelerating Smoothly,
Shifting to a Higher Gear as Soon as Possible, etc. Many
drivers are not aware that they do not drive efficiently.
Furthermore, efficient driving might be impossible due to
traffic conditions -specially in urban environments-. Hence,
it might be interesting to provide feedback to users on their
bad habits and also on greener alternatives to their everyday
routes. This requires instant access to the OBD and an ubiq-
uitous processing/visualization device with geolocalization
capabilities (a smartphone in our case). In our case, we can
use these recommendations to check the ARTEMIS emission
estimations for a vehicle on the go.

A vehicle OBD includes a set of sensors, actuators and
diagnosis software attached to its onboard computer. The
OBD system is expected to operate standalone: it generates
a trouble code (DTC) whenever the system performance
degrades. DTC can be type A, B or C. Both A and B types are
related to emissions. The OBD handles up to 11 systems for
emission control, although not all of them can be performed
while driving. Typically, the OBD communicates with the
user via a Malfunction Indicator Lamp (MIL). MILs inform
on the existence of a problem, but provide no information
about its origin. Hence, this system is not appropriate for
proactive, emission-preventing driving.

Traditionally, OBDs could be accessed via an appropriate
bus connector, usually by specialized staff. There are 5
established communication protocols with the system: ISO
9141-2, SAE J1850, SAE J1850, ISO14230-KWP 2000
and ISO 15765 Controller Area Network (CAN). Although
smartphones can not access the OBD directly, some devices
may work as interface. There are already Android Apps for
instant visualization of OBD parameters, like Ian Hawkins’s
Torque5, but they do not offer any processing or (proactive)
advice on driving.

All tests in this work have been performed using a
basic Android smartphone (with GPS and Bluetooth) and
a ELM327 Bluetooth Versin 1.4 to abstract the low-level
protocol via a UART. ELM327 i) fully supports every OBDII
protocol; ii) presents a low power consumption mode; ii)
it is widely available; and iv) it is very affordable. The
smartphone exchanges information with the device using AT
and OBD commands: if a string does not start with the
characters AT, it is assumed that it is a OBD command.
OBD commands start with a mode identifier. In our case,
we work in mode 1, which returns the OBD parameters on
the go. Fig. 1 shows some OBD frame examples in mode

4Ecodriving: Smart, efficient driving techniques: Treatise training in
environmental transport: Energy Saving Trust, London, 2005

5http://torque-bhp.com/

1. The frames in the examples may include one (A) or two
bytes (A,B) which are used to obtain the desired parameter.

Fig. 1. OBD frame structure

A typical OBD delivers:
• Engine load (%).
• Engine Temperature (oC).
• Fuel Pressure (KPa).
• Engine RPM (rpm).
• Vehicle speed (km/h).
• Air Intake Temperature (oC)
• Mass Air Flow (MAF).
• Ambient Temperature (oC)
Unfortunately, there are several parameters of interest that

are often not provided by OBD, including Air/Fuel ratio
(A/F) (%), Fuel Level Intake or Fuel Consumption (Km/l).
At the very least, an estimation of vehicle fuel consumption
is required. Fortunately, we can estimate this parameter using
vehicle speed and MAF. We need the A/F as well for our
calculation. However, since this parameter is not provided
by most OBD, we have to assume that in modern vehicles
the proportion is close to ideal, i.e. the ratio is close to 1
(multiply AF by 14.7). Finally, we need the fuel density
(FD), which is approximately 680 g/l and 850 g/l for petrol
and diesel motors respectively. Then, fuel consumption can
be approximated as:

Fuel
cons

=
A/F · 14.7 · FD · speed

MAF · 3600 (3)

IV. EXPERIMENTS AND RESULTS

In this section, we are going to use our system to compare
emissions for different routes joining the same starting and
destination point in the city of Malaga (Spain). To acquire
and process data, we have developed and deployed the
application in Fig. 2 in the drivers’ smartphones. Its main
activity is ObdActivity.java. It provides access to:

• ConfigureActivity: Parameters to configure before
connection to OBD, e.g. which OBD parameters
to request, enabling GPS, vehicle and route iden-
tification, etc. These parameters are stored in class
SharedPreferences.



Fig. 2. Android application

• ObdService: acquisition of all specified parameters
from the ELM327 device. These parameters are geolo-
cated using the GPS and the android.location service
in the android.locationpackage.

• The upload thread is in charge of presenting processed
data on screen.

Fig. 3. Android application OBD configuration and examples during a
stop

Fig. 3 shows the parameters that could be obtained in the
test vehicles, plus two screen captures their values. All data
in trajectories in this section has been gathered by different
drivers from real routes in Malaga, using the aforementioned
ELM327 and standard Android phones.

Every route may include different driving cycles. Traffic
conditions, i.e. subcycles, depend on the hour and date, e.g.
Fig. reffig:subcycles shows speed for the same route in dense
and fluid traffic conditions, respectively. For fairness, in this
section we have chosen three routes across the city that
include all 3 types of cycles Fig. 5. All presented results
correspond to the same user, i.e. same driving habits, and

Fig. 4. Speed captured in the same route: a) dense traffic; b) fluid traffic

Fig. 5. Test routes from origin to destination

routes selected presented similar traffic conditions.
Fig. 6 shows the different cycles detected in all three

routes. As commented, these routes were completed by
same driver under similar traffic conditions, so that driving
behavior related to habits are the same in all three cases
and, hence, differences mostly depend on routes. It can be
observed that every cycle defined in ARTEMIS is included at
least in one route. As expected, speed is higher in highway
routes and there are less stops, that are more frequent in
urban cycles. Routes A, B and C in these tests took 12.3, 15.8
minutes and 21.6 minutes and they yield a 58.3%, 69.6% and
100% of urban cycles, respectively

Fig. 7 shows the acceleration in routes A, B and C. Routes
B and C present more variations and these variations have
larger magnitude than route A. Furthermore, it can be ob-
served that these plots are correlated with the RPM changes
in Fig. 8, i.e. larger accelerations match large rpm changes.
This was to be expected: in urban cycles, drivers need to
change gears more frequently, whereas in highway cycles,
speed is consistently larger. In these areas -mostly in urban
and rural cycles- the motor load grows and, consequently,
fuel consumption is larger. This expectation can be checked
by estimating fuel consumption for each route using the OBD
and Eq. III. Results are presented in Fig. 9. It can be observed
that plots for urban and rural cycles present larger variations,
which reportedly lead to higher emissions. Indeed, according
to Ecodriving advice (section III), route A should be the least
pollutant. This expectation is going to be checked using the



Fig. 6. Cycles detected during a run in routes A,B and C

ARTEMIS estimators.
As commented, ARTEMIS estimators require the number

of stops and accelerations per cycle. Tables II and III show
the number of stops per km and accelerations per km in
routes A, B and C. No stops were detected in the highway
and rural cycles and it can be noted that urban cycle 1 has
the larger number of stops in routes A and B. This probably
happened because urban cycle 1 in both cases is close to the
city center. Route B has the highest number of accelerations
per km in both urban cycles, probably because it follows the
main city road from east to west and it presents dense traffic
and many traffic lights.

Emissions in our test routes can be stored in KML for
intuitive visualization on Google Earth. The height of each
location corresponds to the vehicle speed at that position
and the color represents pollutes, ranging from green (low
emissions) to red (high emissions). As commented, all emis-
sions except CO present similar behavior. Hence, we are

Fig. 7. Acceleration for routes A,B and C

TABLE II
STOPS PER KM IN ROUTES A, B AND C

Urban cycle 1 Urban cycle 2
Route A 5.2 stops/km 2.07 stops/km
Route B 4.63 stops/km 1.64 stops/km
Route C 2.72 stops/km —

going to present results for CO in Fig. 10 and for other
pollutants in Fig.11. It can be easily appreciated that, in
both cases, route C is consistently the most polluting one, as
expected. Results on routes A and B depend on the type of
emission: route A is the least pollutant for CO -specially in
the highway cycle-, whereas route B is greener for the other
pollutants. These results are coherent with the previous data
analysis, that validates our ARTEMIS-based estimation. In
this particular example, behavior analysis would point out
that the driver most dominant factor regarding emissions
is a tendency to accelerate/decelerate sharply and, hence,
it would be advisable to use highway cycles as much as

TABLE III
ACCELERATIONS PER KM IN ROUTES A, B AND C

Urban cycle 1 Highway cycle Rural cycle Urban cycle 2
Route A 7.2 acc/km 0.41 acc/km — 4.1 acc/km
Route B 14.41 acc/km — 1.5 acc/km 13.5 acc/km
Route C 12.55 acc/km — — —



Fig. 8. RPM for routes A,B and C

possible.

V. CONCLUSIONS AND FUTURE WORK

This work has presented a smartphone application to
estimate emissions on the fly based on the ARTEMIS
methodology [3]. The application visually offers personal-
ized advice on pollutant driving behaviors are routes so users
may change their driving habits if necessary. The system was
tested in Malaga routes under different traffic conditions. In
order to validate our ARTEMIS estimations, the application
included BT connection to the vehicle OBD. It was checked
that expected pollutant behaviors like frequent changes in
acceleration, using low gears or a high number of stops in the
route corresponded to the areas of largest emissions predicted
by the application. It was also checked that urban cycles
typically present the highest emissions in almost every test
we ran.

Future work will focus on learning the most pollutant
habits and visited city spots for each specific user to propose
greener routes a priori rather than only analyzing results
so users may adapt their future behaviors. To achieve this
goal, we plan to produce personalized ”emission” maps,
annotated with which kind of behavior can be expected from
the user based on previous experience and what emission
costs it would yield at different locations. Combination of
maps from different users could lead to detection of red
spots where most drivers yield high emissions. In these

Fig. 9. Fuel Consumption for routes A,B and C

spots, government intervention might be needed to change
regulations or physically change the road structure.
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surveillance for vehicular pollutants emission, based on Wi-Fi ad-hoc
network. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), volume 8276 LNCS, pages
294–302. Springer International Publishing, 2013.

[5] M.C. Bell. Environmental factors in intelligent transport systems. In
Intell. Transp. Syst. IEEE Proc., volume 153, pages 113–128, 2006.

[6] J Cloke, P Boulter, GP Davies, AJ Hickman, RE Layfield, IS Mc-
crae, and PM Nelson. Traffic management and air quality research
programme. Technical report, 1998.



Fig. 10. CO emissions in routes A, B and C

[7] DG Enterprise & Industry European Commision. The potential
of Intelligent Transport Systems for reducing road transport related
greenhouse gas emissions. Technical Report December, European
Commission, DG Enterprise & Industry, 2009.

[8] BJ Fogg and Dean Eckles. Mobile Persuasion: 20 Perspectives on the

Future of Behavior Change. Stanford Captology Media, 2007.
[9] H Christopher Frey, Kaishan Zhang, and Nagui M Rouphail. Vehicle-

specific emissions modeling based upon on-road measurements. Env-

iron. Sci. Technol., 44(9):3594–600, May 2010.
[10] Robert Joumard, M Rapone, and Michel André. Analysis of the
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