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tarea que es la investigación y tal vez, por qué no, en la tarea de esculpir
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por acogerme como compañera y por siempre saludar con una sonrisa.
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en la vida cuidando siempre de mı́. No sé qué habŕıa hecho esa primera
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1. Estrella Rodŕıguez-Lorenzo, Karell Bertet, Pablo Cordero, Manuel
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and Their Applications. Košice, Slovakia, October 7-10, pp. 145–156,

2014.



Resumen

El tratamiento de la información y el conocimiento es uno de los muchos

campos en los que confluyen los métodos matemáticos y computacionales.

Una de las áreas donde encontramos de forma clara esta concurrencia es en

el Análisis de Conceptos Formales, donde los métodos de almacenamiento,

descubrimiento, análisis y manipulación del conocimiento descansan sobre

las sólidas bases del Álgebra y de la Lógica.

En el Análisis de Conceptos Formales la información se representa en

tablas binarias en las que se relacionan objetos con sus atributos. Dichas

tablas, denominadas contextos formales, son el repositorio de datos del que

se extrae el conocimiento mediante la utilización de técnicas algebraicas.

Este conocimiento se puede representar de diversas formas: ret́ıculos de

conceptos, operadores de cierre y conjuntos de implicaciones.

Una de las principales ventajas de usar sistemas de implicaciones para

representar el conocimiento es que admiten un tratamiento sintáctico por

medio de la lógica, segundo pilar matemático en el que se sustenta la tesis.

Tradicionalmente se han utilizado los Axiomas de Armstrong [4] como he-

rramienta para razonar con implicaciones aunque las limitaciones inherentes

a este sistema axiomático lo inhabilitan como mecanismo de deducción au-

tomática. La mejor alternativa de cara al razonamiento automático viene

de mano de la Lógica de Simplificación [20]. El conjunto de axiomas y reglas

de inferencias de esta lógica lleva directamente a un conjunto de equivalen-

cias que permiten eliminar redundancias en los sistemas de implicaciones,

es decir, simplificarlos. Estas mismas equivalencias proporcionan, a su vez,

un método de deducción automática.

xi



xii Resumen

En este trabajo nos centramos en las implicaciones como método de

representación del conocimiento y mostramos cómo la Lógica de Simplifi-

cación se conforma como el núcleo de los nuevos métodos que proponemos.

Cabe destacar que el conocimiento que se puede extraer de un contexto

formal queda uńıvocamente determinado por un ret́ıculo de conceptos o,

equivalentemente, por un operador de cierre. Sin embargo, el conocimiento

representado por éstos puede ser descrito por diferentes sistemas de impli-

caciones. Esto se debe a que, gracias al tratamiento lógico de estos sistemas,

podemos encontrar diversos subconjuntos que caracterizan al conjunto total

de las implicaciones que se satisfacen en el contexto.

La extracción de sistemas de implicaciones, y su posterior tratamiento

y manipulación, constituyen un tema de actualidad en la comunidad del

Análisis de Conceptos Formales. Los conjuntos de implicaciones extráıdos

pueden contener gran cantidad de información redundante, por lo que el

estudio de propiedades que permitan caracterizar conjuntos equivalentes de

implicaciones con menor redundancia o sin ella, se erige como uno de los

retos más importantes. Sin embargo, como sucede en otras áreas, en algu-

nas ocasiones puede ser interesante almacenar cierta clase de información

redundante en función del uso posterior que se le pretenda dar.

Sobresale pues, entre los temas de interés del área, el problema de la

búsqueda de representaciones canónicas de sistemas de implicaciones que,

satisfaciendo ciertas propiedades, permitan compilar todo el conocimien-

to extráıdo del contexto formal. Estas representaciones canónicas para los

sistemas de implicaciones suelen recibir el nombre de ‘bases’. En esta te-

sis ponemos nuestra atención en un grupo de bases conocidas como ‘bases

directas’, que son aquellas que permiten calcular el cierre de cualquier con-

junto en un único recorrido del sistema de implicaciones.

Los objetivos generales de la tesis son dos:

(i) El estudio de las bases directas en Análisis de Conceptos Formales

clásico con la finalidad de obtener algoritmos eficientes para calcular

dichas bases. Para ello analizamos las definiciones que aparecen en la

bibliograf́ıa y proponemos una alternativa.
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(ii) Establecer las bases para la extensión de estos resultados al Análisis de

Conceptos Triádicos, en particular, introducir una lógica que permita

el razonamiento automático sobre implicaciones en esta extensión.

De acuerdo con estos objetivos generales, la tesis se encuentra organizada en

dos partes: la primera dedicada a las bases directas en el marco del Análisis

de Conceptos Formales clásico y la segunda a introducir un tratamiento

lógico para las implicaciones en el Análisis de Conceptos Triádicos. Además,

el trabajo comienza con un caṕıtulo de resultados preliminares generales

con el fin de hacer, en la medida de lo posible, la tesis autocontenida.

Cada una de las partes, a su vez, comienza con un caṕıtulo de preliminares

espećıficos del problema a tratar en esa parte. Por último, la tesis concluye

con un caṕıtulo de conclusiones y trabajos futuros, con la bibliograf́ıa, y

con los habituales ı́ndices de términos, figuras y tablas.

Antes de comenzar con la descripción a grandes rasgos de las aporta-

ciones, consideramos necesario resaltar que esta tesis doctoral ha sido, en

gran medida, fruto de las estancias en centros de investigación extranje-

ros realizadas por la doctoranda, y que han supuesto la consolidación de

las colaboraciones con la Dra. Kira Adaricheva de la Hofstra University

de Nueva York (Estados Unidos), la Dra. Karell Bertet de la Universidad

de La Rochelle (Francia) y la Dra. Rokia Missaoui de la Universidad de

Quebec en Ottawa (Canadá).

Aportaciones al estudio y tratamiento de bases directas

En la primera parte de la tesis, en el marco clásico del Análisis de Conceptos

Formales, estudiamos las bases directas poniendo especial atención en los

métodos automáticos para obtenerlas.

En la bibliograf́ıa se pueden encontrar diversas definiciones de base.

Algunas de ellas coinciden, pero otras no. En el Caṕıtulo 2 presentamos un

resumen de las definiciones, propiedades y métodos más importantes de la

bibliograf́ıa actual del área.

Para abordar el problema de obtención de bases de implicaciones nece-

sitamos caracterizar qué propiedades tiene que satisfacer este conjunto. De
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entre todas las propiedades destacamos en nuestro estudio las siguientes:

minimalidad, optimalidad y la propiedad de ser directa.

La base más citada en la bibliograf́ıa del Análisis de Conceptos Forma-

les, la conocida como base de Duquenne-Guigues [29], satisface la primera

de las propiedades que garantiza que la base posee el menor número de im-

plicaciones posibles. La propiedad de optimalidad hace referencia a que el

tamaño de la base sea el menor posible, considerando que el tamaño de una

base es el número total de incidencias de los atributos en el conjunto de im-

plicaciones. Por último, las bases directas tienen como caracteŕıstica que la

computación del cierre de cualquier conjunto de atributos se puede obtener

en un solo recorrido (una sola iteración) del conjunto de implicaciones.

El estudio de las bases directas tiene una especial relevancia debido a

que hay diversos problemas de naturaleza exponencial que requieren del

calculo exhaustivo de cierres, de modo que cualquier reducción en el coste

de cómputo de estos cierres tiene una enorme repercusión en el problema.

Si a la condición de ser directa se le añade que, tanto el número de im-

plicaciones como el número de incidencias de los atributos, sea el menor

posible, tendremos una repercusión notable en el coste de los algoritmos

que hacen uso masivo de los cierres. De aqúı la consideración e importancia

de cualquier avance en el tema de las bases directas.

La propiedad de ser directa la podemos encontrar en los albores de

este área, en la conocida como base de premisas propias [26], aunque solo

estudiada desde el punto de vista teórico y no se desarrolló ningún algoritmo

para su cálculo. Se caracteriza por ser una base directa y minimal, es decir,

la de menor cardinal entre todas las directas equivalentes. Esta misma

noción se ha utilizado en distintas áreas bajo distintos nombres, tal y como

se resume en [11]:

• La base implicacional débil [54] usada en la teoŕıa de espacios de

conocimiento.

• La base minimal a la izquierda usada en el área de las bases de datos

relacionales [36] y más tarde en el marco de las teoŕıas de Horn [31].
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• La base de relación de dependencia [39] estudiada en teoŕıa de ret́ıcu-

los y de conjuntos ordenados.

• La base libre de iteración canónica [56] que usa sistemas implicacio-

nales para obtener sistemas de cierre en el área de las bases de datos

relacionales.

Base directa-optimal

Es en el marco del Análisis de Conceptos Formales donde estas bases re-

aparecen en 2004 bajo el nombre de base directa-optimal [12] en la que

los autores presentan un método para calcularla. Posteriormente en [9, 11]

Bertet et al. proponen métodos mejorados para la obtención de dicha base

pero usando sistemas implicacionales unitarios que facilitan la manipula-

ción de las implicaciones a costa de aumentar drásticamente el tamaño del

conjunto de implicaciones de partida.

Cabe destacar que estamos abordando un problema no trivial dado que

la complejidad en el peor caso de los métodos de cálculo de la base directa-

optimal es exponencial respecto al tamaño de la entrada [10]. Precisamente

es este reto lo que motiva el estudio de cómo diseñar métodos más eficientes

que, aunque no puedan evitar la naturaleza exponencial del problema, śı

consigan mejorar los tiempos de cómputo de dichas bases.

En la tesis proponemos nuevos métodos para la obtención de la base

directa-optimal más eficientes que los existentes en la bibliograf́ıa. Se mues-

tra una comparativa entre todos estos métodos para probar la bondad de

nuestra propuesta.

El objetivo ha sido el estudio de cómo la aplicación de las reglas de la

Lógica de Simplificación elimina redundancias de los sistemas de implica-

ciones. Introducimos una nueva regla, denominada regla de simplificación

fuerte, [sSimp], derivada de la Lógica de Simplificación, que añade nuevas

implicaciones de cara a acercarnos a la base directa-optimal sin añadir más

redundancia de la necesaria.

El primero de los métodos que proponemos, doSimp, tiene tres etapas

bien diferenciadas. La primera de ellas usa la equivalencia de simplificación
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(Si-Eq) para transformar el sistema de implicaciones inicial en uno simpli-

ficado equivalente. La segunda etapa usa la regla [sSimp] con el objetivo

de añadir aquellas implicaciones necesarias para convertir el conjunto en

directo. Tras esta etapa, se obtiene un sistema de implicaciones que es el

menor conjunto que contiene al sistema de implicaciones de la entrada y

que es cerrado respecto a [sSimp]. En la última de las etapas optimizamos

el conjunto obtenido anteriormente, consiguiendo la base directa-optimal

tras eliminar toda la redundancia posible de las implicaciones sin perder la

propiedad de ser directa. Presentamos una comparativa que evidencia que

doSimp alcanza la base directa-optimal de una manera mucho más eficiente

que los algoritmos existentes previamente en la bibliograf́ıa.

A pesar de esta mejora, volvemos a hacer un análisis llegando a la

conclusión de que los sistemas implicacionales directos obtenidos tras la

segunda etapa intermedia adquieren tamaños significativamente grandes.

Evidentemente, cuanto mayor sea este tamaño más tiempo necesitará la

etapa de optimización para alcanzar la base directa-optimal.

Proponemos entonces un segundo algoritmo, denominado SLgetdo, que

fusiona las dos últimas etapas de doSimp incorporando la regla [sSimp]

dentro de la función de simplificación. El objetivo es alcanzar la propiedad

de ser directa con la menor redundancia posible. El nuevo método desa-

rrollado va generando conjuntos de implicaciones de menor tamaño por lo

que la regla [sSimp] se aplicará un menor número de veces. Un punto

cŕıtico, en este caso, es cerciorarse de que las implicaciones que se añaden

con [sSimp] después no serán eliminadas con (Si-Eq) para evitar bucles

infinitos. Probamos que esto no puede suceder.

Se realiza un experimento para comparar los dos métodos propuestos en

la tesis. En él, se confirma el mejor comportamiento de SLgetdo respecto

a doSimp, el cual, como se hab́ıa comentado anteriormente, mejoraba a los

ya existentes en la bibliograf́ıa.
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D-base

Más recientemente, Adaricheva et al. [3] proponen una nueva definición de

base directa, la D-base, que es un subconjunto de la base directa-optimal.

Por tanto, ésta suele ser de menor tamaño y sigue permitiendo la compu-

tación de los cierres en una sola iteración.

La definición de D-base se basa en el tratamiento separado de las im-

plicaciones según el cardinal de las premisas. Una D-base es un par de dos

conjuntos de implicaciones: aquellas con premisa unitaria y las que la tie-

nen no unitaria. La D-base permite calcular los cierres en un solo recorrido

del conjunto de implicaciones, siempre que las implicaciones con premisas

unitarias sean utilizadas antes que las de premisa no unitaria. Se dice que

es una base directa ordenada.

El concepto de recubrimiento minimal es clave en la definición de D-

base. A partir de estos recubrimientos se caracterizan los dos conjuntos de

implicaciones que forman la D-base. En la bibliograf́ıa existente, el úni-

co método que la calcula toma como entrada un contexto formal. Cabe

destacar que el cálculo de la D-base a partir de un conjunto arbitrario de

implicaciones era un problema abierto, resuelto en el presente trabajo. Esto

permitirá el uso de las D-bases en las aplicaciones reales. Proponemos dos

algoritmos para el cálculo de la D-base comparando este problema con el

cálculo de los generadores minimales.

El primer método desarrollado se fundamenta en la relación existen-

te entre los generadores minimales y los recubrimientos. Establecemos, en

primer lugar, los fundamentos teóricos de dicha relación. Tras ello, presen-

tamos al primer algoritmo que utiliza, como primera etapa, el algoritmo

MinGen, presentado en [17] y explicado en el caṕıtulo de preliminares. Es-

ta etapa, que calcula todos los generadores minimales, constituye la parte

con complejidad exponencial del algoritmo. A partir de ello resulta sencillo

encontrar la D-base en dos pasos: de los generadores minimales obtenemos

los recubrimientos para cada atributo y, posteriormente, de la lista de recu-

brimientos asociada a cada atributo escogemos aquellos que son minimales.

Con la idea en mente de que no todos los generadores minimales con-
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ducen a recubrimientos minimales, la segunda aproximación desarrollada

evita el cómputo de todos los generadores minimales. Teniendo en mente

las operaciones que realiza MinGen, se diseña un nuevo algoritmo inspirado

en el citado método que va calculando sólo los generadores minimales que

conducen a recubrimientos minimales. Destacamos que el estudio teórico

realizado en este tema ha sido un factor clave que nos permitió el diseño

del nuevo algoritmo y que, tanto en éste como en el anterior, la Lógica de

Simplificación gúıa todos los pasos.

El nuevo método desarrollado mejora considerablemente al primer méto-

do que propusimos tal y como puede comprobarse en la comparativa que

aparece más adelante en la presente memoria de tesis. Para ello se han rea-

lizado dos experimentos: el primero sobre conjuntos de implicaciones gene-

rados de forma aleatoria y el segundo utilizando implicaciones extráıdas de

las bases de datos del repositorio de la UCI, de la “School of Information

and Computer Sciences” de la Universidad de California.

Base dicótoma directa

Como ya hemos comentado, los numerosos beneficios que ofrecen las bases

directas tienen, como contraposición, el alto coste de su cálculo. Una vez

que hemos propuesto algoritmos más eficientes para las bases directas in-

troducidas por otros autores, proponemos la definición de una nueva base

directa con el objetivo último de que pueda ser calculada de manera más

eficiente. Tomamos como inspiración el concepto de D-base que divide el

conjunto de implicaciones en dos partes en función de su comportamiento

de cara al cálculo de cierres. En este caso ponemos nuestra atención en las

implicaciones que llamamos quasi-claves. Se trata de una generalización de

las claves [16, 38], que juegan un papel relevante en la teoŕıa de bases de

datos relacionales.

Llamamos implicación clave a cualquier implicación cuya premisa ten-

ga como cierre todo el conjunto de atributos, y decimos que es propia si

todo atributo aparece, o bien en la premisa, o bien en la conclusión. Para

poder introducir la noción de implicación quasi-clave como una generaliza-
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ción de implicación clave, nos basamos en las definiciones de los conjuntos

Determinado, Dte, y Núcleo, core, que se introdujeron en [40]. Uno de los

resultados que encontramos en ese art́ıculo asegura que los atributos que no

aparecen en ninguna conclusión, los del core, deben pertenecer a todas las

claves. Es importante destacar que cualquier conjunto que contenga a Dte

es cerrado respecto del conjunto de implicaciones. Una implicación quasi-

clave es cualquier implicación cuya premisa cumpla que su cierre contiene

a Dte. Igualmente, una implicación quasi-clave es propia si todo atributo

de Dte aparece en la premisa o en la conclusión.

Se analizan las caracteŕısticas de dichas implicaciones y su relación con

el cálculo del cierres de conjuntos de atributos para discriminar los criterios

que hacen realmente más eficiente dicho cálculo. Introducimos aśı un nuevo

tipo de base directa: la base dicótoma directa.

En primer lugar, se define un sistema de implicaciones dicótomo como

un par de conjuntos de implicaciones, 〈Σ∗,Σk〉, tal que las implicaciones del

primer conjunto no son quasi-claves y las del segundo son todas quasi-claves

propias. Además, los conjuntos de implicaciones deben ser compactos, es

decir, no deben tener dos implicaciones diferentes con la misma premisa.

Obsérvese que cualquier conjunto de implicaciones puede ser transformado

en uno compacto sin más que aplicar (Co-Eq) a todos los posibles pares

de implicaciones del conjunto. Es más, cualquier sistema de implicaciones

puede ser transformado en uno dicótomo equivalente con un procedimiento

cuadrático.

Definimos también un operador de iteración σ〈Σ∗,Σk〉 que, aplicado a un

conjunto de atributos, realiza primero una iteración de cierre respecto de Σ∗

y, al conjunto resultante, le aplica una iteración respecto de Σk. Diremos

que un sistema de implicaciones dicótomo 〈Σ∗,Σk〉 es directo si σ〈Σ∗,Σk〉 es

idempotente, es decir, el cierre de cualquier conjunto de atributos se obtiene

con una sola aplicación del operador de iteración.

Como es usual, el término base se conserva para sistemas de implica-

ciones que satisfacen algún criterio de minimalidad. Siguiendo esta idea,

llamamos base dicótoma directa, o DD-base, a aquellos sistemas de impli-

caciones dicótomos directos cuya primera componente sea simplificada por
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la derecha.

Estudiando la relación existente entre la DD-base y la base directa-

optimal llegamos a un teorema de caracterización que asegura que la con-

dición necesaria y suficiente para que un sistema de implicaciones dicótomo

sea una DD-base es que su primera componente, Σ∗, esté formada por to-

das aquellas implicaciones de la base directa-optimal que no son quasi-clave.

Este último resultado no es solo una cuestión teórica, sino que proporciona

un método de complejidad cuadrática para convertir cualquier base directa-

optimal en una DD-base.

Como hemos dicho, el problema que centra esta parte de la tesis consiste

en transformar cualquier sistema de implicaciones en uno directo. Cabŕıa

considerar la opción de convertirlo en una directa-optimal para luego trans-

formarlo en una DD-base. Sin embargo, los algoritmos que transforman

cualquier sistema de implicaciones en una base directa tienen coste expo-

nencial respecto el tamaño del sistema de implicaciones inicial. En este

caṕıtulo proponemos un algoritmo alternativo y probamos su mejor com-

portamiento. El método consiste en transformar la entrada en un sistema de

implicaciones dicótomo 〈Σ∗,Σk〉. Como hemos dicho, esta parte del método

tiene coste cuadrático. Después, calculamos la base directa-optimal equiva-

lente a la primera componente Σ∗. De este modo, la reducción de tamaño de

la entrada tiene una gran repercusión en el coste de la parte exponencial del

método. Finalmente, al resultado se le vuelven a añadir, convenientemente

tratadas, las implicaciones quasi-claves del sistema inicial. Espećıficamente,

si Σdo es la base directa optimal que cumple que Σdo ≡ Σ∗ y 〈Σ∗do,Σk
do〉 es

la dicotomı́a de Σdo, la DD-base que buscamos es 〈Σ∗do,Σk ∪ Σk
do〉.

Ésta es la principal ventaja de la DD-base respecto a las alternativas

propuestas anteriormente: la base directa-optimal y la D-base. Gracias a

este resultado, esta nueva base reduce el tamaño del conjunto de implica-

ciones que soporta el coste exponencial en el proceso de construcción de la

base. Esta reducción se debe a la eliminación de las implicaciones quasi-

claves de la tarea exponencial, hecho que tiene una gran repercusión en el

coste de la transformación.

En la definición de DD-base se impone cierta restricción de minimalidad
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a la primera componente, pero no a la segunda. Nos encontramos, pues, que

existen varias DD-bases equivalentes a un sistema implicacional dado, todas

ellas compartiendo la misma primera componente. Es habitual que, cuando

usamos el término base, lleve asociado, de por śı, la propiedad de unicidad.

Sucede aśı con la base directa-optimal y con la D-base. Esto nos lleva a

introducir el concepto de DD-base canónica.

Diremos que una DD-base es canónica si el tamaño de su segunda com-

ponente es el menor posible. Esto implica que no puede haber dos implica-

ciones en la segunda componente que cumplan que la premisa de una esté

contenida en la de la otra. De esta forma, la DD-base canónica es la de me-

nor cardinal y menor tamaño de entre todos los sistemas de implicaciones

dicótomos equivalentes.

Finalmente, proporcionamos un teorema que caracteriza las DD-bases

canónicas de la siguiente forma: consideremos un sistema de implicaciones

Σ, la base directa optimal Σdo equivalente a Σ y la base Duquenne-Guigues

ΣDG equivalente a Σ. Un par 〈Σ∗,Σk〉 es la DD-base canónica equivalente

a Σ si y solo si Σ∗ contiene exactamente las implicaciones no quasi-claves

de Σdo y Σk contiene exactamente las implicaciones quasi-claves de ΣDG.

Como método para su cálculo, se propone un algoritmo de coste cuadráti-

co que transforma cualquier DD-base en su DD-base canónica equivalente.

A modo de resumen, en este apartado de la tesis se han dado nuevas

definiciones de bases directas y algoritmos para calcularlas más eficientes

que todos los existentes para la obtención de la base directa-optimal. Pro-

bamos que los métodos desarrollados para la obtención de la DD-base y la

DD-base canónica constituyen una alternativa real a las técnicas habituales

aparecidas en la bibliograf́ıa. Para demostrar todas estas afirmaciones se ha

llevado a cabo un estudio emṕırico en el que se observa cómo el tiempo en

la computación de la DD-base canónica es menor que el que se requiere

para calcular la base directa-optimal.

Marcamos como trabajo futuro, en primer lugar, combinar la aproxi-

mación dicótoma con la de D-base y, en segundo lugar, la generalización

de este paradigma a las implicaciones difusas sobre contextos difusos, don-

de ya hemos empezado a dar algunos pasos. La siguiente parte de la tesis
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constituye también la base para la extensión de estos resultados al Análisis

de Conceptos Triádicos.

Aportaciones al Análisis de Conceptos Triádicos

En la bibliograf́ıa aparecen varias extensiones del Análisis de Conceptos

Formales y en ellas, como es de esperar, se introducen nuevas definiciones de

la noción de implicación como forma de representar conocimiento extraido

del contexto extendido. Su objetivo es recoger la mayor potencia expresiva

de dichas generalizaciones.

Como segundo bloque de esta tesis doctoral abordamos el diseño de

lógicas para razonar sobre implicaciones en una de las extensiones natu-

rales del Análisis de Conceptos Formales que aparece en la bibliograf́ıa: el

Análisis de Conceptos Triádicos.

Esta denominación surge por considerar, en lugar de un contexto formal

clásico, una relación ternaria entre tres conjuntos: los objetos, los atributos

y las condiciones. Relaciones similares entre tres o más conjuntos aparecen

en aplicaciones reales como los data cubes en data warehouses, las tablas tri-

dimensionales estad́ısticas, en los grafos que aparecen en las redes sociales,

etc.

El Análisis de Conceptos Triádicos fue desarrollado inicialmente por

Lehmann y Wille [33] y, en este marco, la noción de implicación es tam-

bién una extensión natural del concepto de implicación en el marco clásico.

Biedermann [13] propuso la primera definición de implicación para contex-

tos triádicos. Más tarde Ganter y Obiedkov [25] dan nuevas definiciones de

implicaciones. Hasta donde sabemos, no existe ningún sistema axiomático

para la manipulación de implicaciones en el caso triádico y estudiar lógicas

en este contexto surgió como un reto a resolver dada la gran importancia

que tiene para el área.

La manera natural de representar un contexto triádico es en una ta-

bla tridimensional [13] donde en cada dimensión se representan los objetos,

los atributos y las condiciones. Es fácil darse cuenta de que esa tabla tri-

dimensional estaŕıa formada por todos los contextos diádicos asociados a
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cada condición, es decir, se puede visualizar colocando los contextos diádi-

cos uno tras otro (véase la Figura 6.1) como capas. Esta representación se

asemeja a los cubos OLAP en las bases de datos multidimensionales.

Desafortunadamente, este tipo de representación es dif́ıcil de manejar.

Por este motivo, algunos autores utilizan alguna forma de aplanamiento.

Una posibilidad es seleccionar uno de los conjuntos y relacionarlo con el

producto cartesiano de los otros dos, dando lugar a un contexto diádico.

En este caso, habŕıa tres representaciones diferentes, dependiendo de qué

conjunto seleccionemos (véase la Figura6.2).

Otra forma alternativa de aplanar el contexto seŕıa la utilizada por

Ganter et al. en [25]. Ésta consiste en una tabla en las que cada fila se refiere

a cada objeto, cada columna a cada atributo y, en las celdas intersección de

objetos y atributos, estaŕıan todas las condiciones que se cumplen para estos

objetos y atributos a la vez (véase la Figura 6.3). Esta última alternativa

será la que se utilice en este trabajo.

Los conceptos se pueden entender como unidades de pensamiento ho-

mogéneas y cerradas [13,33]. Con homogeneidad nos referimos al hecho de

que todos los objetos comparten los mismos atributos bajo las mismas con-

diciones dentro del concepto. El cierre asegura que el concepto es maximal

respecto a la homogeneidad. Por tanto, se pueden entender los conceptos

triádicos como cubos maximales en la tabla tridimensional. Sin embargo, es-

ta forma de entenderlos no es muy práctica a la hora de calcularlos. Como

alternativa, se proponen los operadores de derivación en [33], una herra-

mienta útil para la caracterización de conceptos triádicos haciendo uso de

la propiedad de idempotencia de las conexiones de Galois que forman la

composición de dichos operadores de derivación.

Los operadores de derivación nos permiten definir semánticamente el

concepto de implicación. Como se ha comentado anteriormente y hasta

donde sabemos, la primera definición de implicación triádica se debe a

Biedermann [13]. Él considera que una implicación triádica es de la forma

(X → Y )C y se satisface si “siempre que ocurra X bajo las condiciones de

C también ocurre Y bajo las mismas condiciones”.

Años más tarde, Ganter et al. [25] extendieron el trabajo de Biedermann
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y definieron tres tipos de implicaciones:

• Las implicaciones atributo×condición (AxCIs). Éstas son implicacio-

nes diádicas en las que los elementos son pares cuyas componentes

son atributos y condiciones respectivamente, es decir, tienen la forma

X → Y , donde X e Y son subconjuntos del producto cartesiano de

atributos y condiciones.

• Las implicaciones de condiciones bajo atributos (ACIs). Son aquellas

de la forma X
A−→ Y , donde X e Y son conjuntos de condiciones y A

es un conjunto de atributos. Esta implicación se satisface si “siempre

que las condiciones de X se cumplen para cada uno de los atributos

de A entonces las condiciones de Y también se cumplen para cada

uno de ellos”.

• Las implicaciones de atributos bajo condiciones (CAI s). Las implica-

ciones de atributos bajo condiciones son aquellas de la forma X
C−→ Y ,

donde X e Y son conjuntos de atributos y C es un conjunto de con-

diciones. Esta implicación se satisface si “siempre que los atributos

de X se cumplen bajo cada una de las condiciones de C entonces los

atributos de Y se cumplen también bajo cada una de ellas”.

Como dijo Biedermann en [13], las implicaciones que él define tienen un

matiz artificial aunque son adecuadas para la introducción de las implica-

ciones triádicas. Por otro lado, las AxCIs son exactamente las implicaciones

diádicas ya conocidas. Aśı, centramos nuestro trabajo en las CAI s, aunque

todos los resultados se pueden extrapolar a las ACIs ya que ambas tienen

la misma estructura.

En este bloque de la tesis, proponemos el primer sistema axiomático

para implicaciones de atributos bajo condiciones (CAIs). La lógica desarro-

llada permitirá diseñar nuevos métodos de razonamiento automático y su

uso como herramienta automática en todas las aplicaciones citadas anterior-

mente. Aunque se ha desarrollado la lógica para implicaciones de atributos

bajo condiciones (CAIs), seŕıa directamente traducible a implicaciones de
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condiciones bajo atributos (ACIs) dada la similitud de ambos tipos de im-

plicaciones triádicas, tal y como acabamos de comentar.

Para la definición de la nueva lógica se introducen el lenguaje, la semánti-

ca y el sistema axiomático. De hecho, en este bloque se introducen tres

sistemas axiomáticos demostrando su corrección y completitud.

Las tres lógicas desarrolladas se denominan:

• CAIL (Conditional Attribute Implication Logic): Lógica de Implica-

ciones de Atributos bajo Condiciones.

• B Axiomatic System: Sistema Axiomático B.

• CAISL (Simplification Logic for CAIs): Lógica de Simplificación para

Implicaciones de Atributos bajo Condiciones.

Como resultado a destacar se demuestra en la tesis la equivalencia de

los tres sistemas axiomáticos desarrollados. En el Caṕıtulo 7 aparecen los

detalles del lenguaje y la semántica de estas tres lógicas y sólo mostramos

en este resumen las reglas del sistema axiomático de cada una de ellas.

La primera de ellas, CAIL, es una generalización de los ampliamen-

te conocidos Axiomas de Armstrong para la extensión triádica; tiene dos

axiomas (Inclusión y No-Restricción) y cuatro reglas de derivación: Aumen-

to, Transitividad, Descomposición Condicional y Composición Condicional.

Como es usual en lógica, se define la derivación sintáctica y se muestra cómo

se pueden utilizar dichas reglas para razonar con implicaciones triádicas.

Al igual que en los Axiomas de Armstrong en el marco clásico de traba-

jo consideramos el estudio de reglas derivadas de las reglas primitivas an-

tes citadas, definiendo las siguientes: Descomposición, Pseudotransitividad,

Adición, y Acumulación. Estas reglas nos permitirán acortar las cadenas

de derivación en los razonamientos.

Por último, extendemos la definición del cierre sintáctico clásico para

esta lógica y proponemos un algoritmo para calcularlo. Una vez que estas

reglas y el cierre están definidos, se prueba la corrección y completitud del

sistema axiomático de CAIL.
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Como alternativa al sistema axiomático de CAIL presentamos el siste-

ma axiomático B que se inspira en los B-Axiomas de Maier [36]. Tiene,

como esquemas de axiomas los mismos que CAIL y, como reglas de infe-

rencia, las de Acumulación, Descomposición, Descomposición condicional y

Composición condicional. Demostramos que el sistema axiomático de CAIL

y B son equivalentes, con lo que se prueba su corrección y completitud.

Por último, presentamos la Lógica de Simplificación para implicaciones

de atributos bajo condiciones - CAISL. Esta lógica es una generalización

al caso triádico de la Lógica de Simplificación del marco clásico. Tiene dos

esquemas de axiomas y cuatro reglas de derivación sintáctica: Composición,

Descomposición, Simplificación y Composición Condicional. Demostramos

en el Caṕıtulo 7 su corrección y completitud probando la equivalencia de

CAIL y CAISL.

La caracteŕıstica más interesante de CAISL, frente a las otras dos lógi-

cas, es que las reglas de derivación o inferencia de CAISL inducen reglas

de equivalencia (de hecho reciben el mismo nombre) que pueden ser utili-

zadas directamente para eliminar información redundante de los sistemas

de implicaciones, es decir, simplificarlos.

Destacamos el Teorema de la Deducción que, junto con las equivalencias

comentadas, permite desarrollar de forma casi directa el primer método

de razonamiento automático para CAISL, denominado CAISL-Prover, que

decide si una implicación puede ser derivada o inferida del conjunto de

implicaciones inicial.

Las aportaciones de esta parte abren la puerta al uso de la lógica en

Análisis de Conceptos Triádicos y a una nueva ĺınea de investigación muy

prometedora para nuestro grupo de investigación. Hay un gran número de

trabajos que pueden plantearse a partir de este punto con la generalización

al marco triádico de todos los trabajos sobre eliminación de redundancia,

cierres, generadores minimales, bases de implicaciones, etc. Muy especial-

mente estamos interesados en extender los resultados de la primera parte

de la tesis al caso triádico.



Introduction

The management of information is a wide research area where mathematical

and computational methods can be combined to provide solid and efficient

results in a proper way. In this work we focus on Formal Concept Analysis

(FCA), a robust framework to store information, discover knowledge and

manage it efficiently.

In Formal Concept Analysis, the data is represented using tables which

relate objects with their attributes. These tables are called formal contexts

and collect information which will be used to extract information. There

are basically two representations for this knowledge: the concept lattice

or the sets of implications. The handling of the latter is more suitable to

automatization in terms of logic-based methods. We emphasize that one

single concept lattice describes the same knowledge as several equivalent

sets of implications. This situation leads to the search for a kind of canonical

representation, characterizing those ones that provide a better and more

efficient management.

Besides that, implications can be directly mined from a formal context.

Frequently, a set of implications obtained in this way has a huge amount of

redundancy. Achieving equivalent sets of implications with less redundancy,

or without it, is one of the main challenges. On the other hand, it is not

always desirable to eliminate all redundancy. It is noteworthy that, for

some tasks, storing a certain type of redundancy can improve the efficiency

of the algorithms.

There are several incentives to work on the definition of canonical forms

for implicational sets, called bases. The importance of the notion of basis

1
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resides on the fact that the set of all valid implications in a context can be

summarized by a smaller subset. In addition, the rest of implications can

be syntactically derived from this small set by means of the symbolic com-

putation, a task that cannot be directly tackled over the concept lattice.

The logical approach is possible thanks to sound and complete axiomatic

systems: Armstrong’s Axioms [4] and Simplification Logic [20], among oth-

ers.

Thus, the search for bases leads to the following questions:

• How to characterize a canonical representation for a given set of im-

plications?

• Which properties does this canonical representation have to fulfill?

• How to design methods to automatically transform an arbitrary sub-

set into its corresponding basis?

Concerning the first question, among the different notions of basis, the

Duquenne-Guigues (or stem) basis [29] is the most cited because of its

widely acceptation in the FCA area. It is characterized by having the

minimum number of implications. Nevertheless, after this first keystone,

several authors have worked in depth to provide new definitions of basis,

incorporating very interesting properties. As Ryssel et al. stated in [55],

“for many years, computing the stem basis has been the default method

for extracting a small but complete set of implications from a formal con-

text”. Another alternative of Duquenne-Guigues basis was the so-called

basis of proper premises [26]. This basis is also a sound and complete set

of implications for a context, and improves the Duquenne-Guigues one by

adding directness [26, Proposition 22], which provides a new direction to

answer the second question: some properties to be fulfilled by the basis

are not oriented to its configuration but to its further use. In this line,

Rudolph [53] remarks: “one central task when dealing with concept lat-

tices is to represent them in a succinct way while still allowing for their

efficient computational usage”.
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So, it was in the early days of Formal Concept Analysis when directness

appeared although it did not receive that name yet. The benefit offered by

the basis of proper premises is evident: to improve the generation of a clo-

sure operator by a specific implicational system. Nevertheless, the author

presents the characterization of this basis, but not the way to compute it.

Because of its benefits, this notion of basis is used in different areas under

different names as shown in [11]:

• The weak-implicational basis. This basis is used by Rusch [54] to

demonstrate that “methods of formal concept analysis can be suc-

cessfully applied to the theory of knowledge spaces”.

• The left-minimal basis. This kind of basis appears in the framework

of relational databases [36] and later in the area of Horn Theories [31].

• The dependence relation’s basis. It is based on the dependence relation

defined in [39] in lattice and ordered set theory.

• The canonical iteration free basis. Wild considers in [56] that it is

worth managing implicational bases to work with closure systems.

So, he proposes this basis within the theory of relational data bases

and Formal Concept Analysis.

In the framework of Formal Concept Analysis the same notion of basis

appears again in 2004 under the name of direct-optimal basis [12]. In that

work, besides giving the definition, the authors also present a method to

compute it, opening the door to a discussion to answer the third question.

This first method can be enhanced and, this is the reason why Bertet et

al. kept on working on its improvement [9, 11] by using unitary implica-

tional systems. The use of unitary implicational systems is due to the fact

that their management seems to be easier, even though working with them

causes a growth in the size of the implicational sets.

Indeed, the time complexity of the methods for computing the direct-

optimal basis from an arbitrary implicational system is exponential in the

worst case [10]. This issue motivates the idea of obtaining other methods
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that, without avoiding the intrinsic exponential complexity of the problem,

provides a better performance than previous works.

Thus, we can affirm that there exist a wide range of definitions of basis in

the literature, providing different properties and minimality measures. The

previously mentioned works point out to study not only some minimality

guideline regarding the whole set of implications, but also the form of its

implications. One of the approaches following this line is the left-minimal

direct basis [18]. This basis holds the minimum property of stem basis

to have minimal information on the left-hand side as well. The authors

propose it because “minimality in the number of implications is a criteria

that may be enhanced”. By reducing the left-hand side of implications,

this approach comes near the optimality, which aims at the lowest number

of attributes involved in the implicational set.

From a wider perspective, this work deals with direct bases and their

minimality criteria. The main goal is to obtain a single approach cover-

ing the three issues: definitions, properties and computational methods.

Our starting point was the work developed by Bertet et al. in [12], where

the authors proposed an optimal and direct basis explaining that the com-

putation of the closure is more efficient when the implicational system is

optimal. This proposed basis is called direct-optimal basis. As the authors

said, its importance resides on the fact that “the number of Σ-implications

needed to compute the closure can be reduced to 1”, where Σ is the im-

plicational system. Obviously, this basis is not minimal in the sense of

Duquenne-Guigues basis, but it is minimal among all the direct bases.

Later on, Adaricheva et al. [3] propose another kind of direct basis, the

D-basis, being a subset of the direct-optimal basis. Authors consider that

“while the D-basis is not direct in this meaning of the term, the closures

can still be computed by a single iteration of the basis, provided the basis

was put in a specific order prior to computation”. The D-basis introduced

in [3] exploits the concept of ordered direct computation of closures to

find the way to shorten the direct-optimal basis without losing its good

properties in applications. As the authors mentioned, the D-basis is usually

a proper subset of the direct-optimal basis and it preserves the property
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of computation of closures in one iteration, assuming that implications are

given in a prescribed order. More theoretical results were obtained in [1],

where the authors studied the connection between the D-basis and the

Duquenne-Guigues basis.

One key point in the definition of D-basis is the separated treatment of

implications according to the cardinality of their premises. Thus, D-basis

cannot be properly considered a set of implications but a pair of two sets of

implications, the one collecting the implications with unitary premises and

the other collecting the rest of implications. Thus, the order in Adaricheva’s

basis is not imposed to the implications but to these two subsets.

Moreover, as an illustration of the incipient development in this area,

we remark that the definition of D-basis is not accompanied with a method

to transform an arbitrary set of implications into its equivalent D-basis.

Based on the fact that the D-basis is always a subset of any direct basis,

in [3] the authors partially approached the problem of generating the D-

basis. They designed a method where the input must be a direct basis. In

this case, the algorithm of obtaining the D-basis is polynomial in the size

of the input basis. Nevertheless, the generation of a general method to get

the D-basis from an arbitrary implicational set has not been solved.

This open problem is a fundamental issue to promote its use in applica-

tions. As a general conclusion, there still are a lot to do in the field of direct

bases, with the general objective to balance a compact representation and

an efficient method of transformation.

Inspired by the schema of D-basis, we have also analyzed the features

of implications and its relation to closure computation looking for a new

criterion to discriminate implications belonging to a basis. If this criterium

can be evaluated in an efficient way, we can provide a dichotomous repre-

sentation of the basis which allows an ordered approach to compute closures

even in a more efficient way. This new line has been fruitful providing a

new kind of basis structured according to the support of the implications.

Since our new basis is born with the idea to be used in applications, we

also study the development of methods to get a basis from an arbitrary set

of implications.
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As we mentioned, our intention is to cover all issues related with direct

basis (from its definition to its management), taking into account differ-

ent properties and optimality criteria. Moreover, we have gone one step

beyond, studying implications in a richer framework. Thus, implications

have revealed the great power of symbolic representation and automated

management of information in classical FCA. In the literature, some au-

thors have proposed several extensions of the FCA and the corresponding

notion of implication to improve its expressive power and capture more and

more information. Thus, some approaches have incorporated imprecise in-

formation [6, 7], negative information [38, 45], etc. In this work, we pay

attention to the Triadic Concept Analysis (TCA).

Charles Sanders Peirce, in 1903, developed a system of categories related

among them. His three universal categories of Firstness, Secondness, and

Thirdness lead to the notion of triadic concept:

• The first category is a quality of feeling: the Idea of that which is

such as it is regardless of anything else.

• The second category is a reaction as an element of the phenomenon:

the Idea of that which is such as it is as being Second to some First,

regardless of anything else.

• The third category is a representation as an element of the phe-

nomenon: the Idea of that which is such as it is as being a Third, or

Medium, between a Second and a First.

Relations among three or more different sets occur in many real-life

situations such as data cubes in data warehouses, tridimensional statistical

tables, multidimensional social networks and so on.

For these situations where the consideration of one dyadic context is not

sufficient because of the complexity of the information, it is desirable to in-

troduce a formalization of a network of contexts or extend formal concept

analysis to the preprocessing of multi-relational datasets. The formaliza-

tion is given by the notion of multicontext [59] and the extension by Rela-

tional Concept Analysis [30]. Pierce’s pragmatic philosophy together with
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the existence of the situations suggesting an extension of formal concepts

with a third component, have motivated the development of TCA. Initially

investigated by Lehmann and Wille [33], TCA is a natural extension of

Formal Concept Analysis. To the best of our knowledge, Biedermann [13]

was the first researcher who investigated the implication issue in triadic

contexts. Later on, Ganter and Obiedkov [25] explored other variants of

triadic implications.

In the same way as the triadic context, the notion of triadic implication

is also a natural extension of the implications in FCA. For this reason,

our interest focuses on the study of these triadic implications to develop

logics for their automated management. In addition to a formal definition

of implications and its language, the introduction of a sound and complete

inference system is needed to take the most of implications. Soundness

ensures that implications derived by using the axiomatic system hold in

the context and completeness guarantees that all implications which are

satisfied can be derived from the implicational system. Nowadays, there is

not an axiomatic system in triadic concept analysis.

In summary, the general aims of this work are the following:

(i) Studying in depth the problem of the direct bases to obtain efficient

algorithms that calculate them. We will look for efficient algorithms

for the bases already presented in the literature and we will propose a

new definition of direct basis, with better properties to be calculated.

(ii) Taking the first steps to extend these results to TCA with the defini-

tion of a logic to reason with implications, in this framework, through

sound and complete axiomatic systems.

Once we have introduced the framework of our work and our main

goals, in the next section we will describe the main contributions of this

PhD Thesis.



8 Introduction

Contributions and structure of the work

As previously stated, we study the direct bases as a whole, covering the

definitions, the properties fulfilling by them and their automated gener-

ation. At the same time, these three dimensions have to be developed

over the most outstanding notions appeared in the literature, mainly the

direct-optimal basis and the D-basis.

Regarding the direct-optimal basis [12], the background covers the three

aspects in a successful way. However, the method to generate them can be

improved. Our aim is the development of methods taking advantage of

the avoidance of generating extra implications, inherent to the methods

based on unitary implicational systems, as well as the benefits offered by

the non-unitary implicational systems about the size of the implicational

system.

In Chapter 3 we focus on the development of new methods to com-

pute the direct-optimal basis from an arbitrary non-unitary implicational

system. This chapter contains the results of the collaboration with Karell

Bertet that have been published in [48,49]. Specifically, in this chapter we

traverse the following path:

• A new inference rule is introduced: the strong Simplification rule.

This rule allows to add new implications avoiding redundant at-

tributes in both, the premises and the conclusions.

• A first algorithm with four separated steps is developed. This algo-

rithm receives as input an arbitrary implicational system, reduces it,

simplifies it, adds new rules by applying Strong Simplification rule

and, lastly, simplifies it again obtaining the direct-optimal basis.

• A second algorithm where separated steps have been integrated to

improve the performance during its execution. In this one, we prop-

erly combine the previous step maintaining the implicational system

simplified all the time.

• A comparison between the methods is done in order to illustrate the
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benefits of our new methods in practice.

The work with the D-basis [3] has covered an interesting set of results

making progress in the issue of the direct bases. The results presented in

Chapter 4 are the result of a collaboration with Kira Adaricheva and have

been published in [46,47]. In summary, we develop the following stages:

• A deep study about the relationships between covers, minimal cov-

ers, generators and minimal generators. This will be strong point

to develop, for first time, a method to compute the D-basis from an

arbitrary implicational system.

• A first approach to tackle the problem of computing the D-basis has

been developed. In this approach, the D-basis is computed by means

of an algorithm generating all the minimal generators and, then, it

selects the ones being minimal covers.

• We also develop a second approach that integrates the stages of the

previous one in an smart way. This method computes the D-basis in

a more efficient way that the first one.

• As in the case of the direct-optimal basis, we have shown a comparison

between both methods to state their benefits in practice.

Besides studying the notions already appeared in the literature, we

provide a new notion of direct basis, covering the three main related issues.

The main results presented in Chapter 5, which have been published in [50],

are the following:

• The definition of dichotomous implicational system, which will be the

pillar of the new basis and is based on the notion of quasi-key.

• The introduction of the notion of direct dichotomous basis (DD-basis)

as an alternative to the others, as well as the illustration of its ad-

vantages.
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• The development of a well-founded method to compute a dichotomous

direct basis.

• The definition of the canonical DD-basis, showing its uniqueness and

optimality and providing a quadratic method to compute this basis.

Moreover, we also present contributions related with the extended frame-

work of Triadic Concept Analysis. In particular, we propose a logic, named

CAIL, to manage implications in the framework of TCA. Notice that this

is the first logic in the literature to manage implications in triadic formal

concept analysis. We define its language, semantics and inference system.

The language is the set of formulas representing conditional attribute im-

plications defined in [25]. We also prove the soundness and completeness

of CAIL.

Moreover, we provide an equivalent system to CAIL to manage this

kind of implications, called B, which is inspired in the B-axioms of Maier,

and we prove the equivalence of both axiomatic systems.

Finally, in order to get an automated reasoning method, we introduce

an alternative equivalent logic, called CAISL. It belongs to the family of

Simplification Logics and is inspired in the idea of redundancy removing.

To show the advantages of using this logic as methods to manipulate impli-

cations, we describe, at the end of the chapter, a method to compute the

closure of a set of attributes under a given set of conditions. The proof of

the correctness of this algorithm is also provided.

Our contributions to this area, collected in Chapter 7, are the culmi-

nation of a collaboration with Rokia Missaoui and have been published

in [51, 52]. In summary, in this chapter we enclose the following contribu-

tions:

• The extension of some classical notions given in Formal Concept Anal-

ysis and the relations among these notions.

• The development of two equivalent sound and complete logics, CAIL

and CAISL, which open the door to the automatic management of
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TCA implications. As evidence to confirm it, we have developed an

extended version of closure algorithm.

• We introduce two ways to verify the validity of a formula: a first one

based on the notion of closure and a second one in a logical style.

Moreover, in Chapter 1, we have collected a set of needed preliminaries

related with closure operators, FCA, logic and implicational systems. We

have organized the results in two parts: the first one is related with the

notions of direct bases, and the second one is related with implications

in TCA. At the beginning of each part, we have included a chapter (see

Chapters 2 and 6) with the specific preliminaries needed in this part. We

end this work with a chapter devoted to conclusions and future works.

For a better understanding and illustration of all the contributions of

this PhD Thesis, we have depicted all of them in Figure 1.

Bases

Stem basis

[V. Duquenne]

Direct basis

Direct Optimal basis
[K. Bertet]

doSimp
[E. Rodríguez-Lorenzo]

SLgetdo
[E. Rodríguez-Lorenzo]

D-basis
[K. Adaricheva]

D-basis
[E. Rodríguez-Lorenzo]

Fast D-basis
[E. Rodríguez-Lorenzo]

Direct Dichotomous basis
[E. Rodríguez-Lorenzo]

Direct Dichotomous basis
[E. Rodríguez-Lorenzo]

Definition Executable methods

Implications

Triadic
[Lehman & Wille]

CAI
[Ganter & Obiedkov]

Canonical Dichotomous 
Direct basis

[E. Rodríguez-Lorenzo]

Definition Executable logics

[E. Rodríguez-Lorenzo]
CAIL

[E. Rodríguez-Lorenzo]
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[E. Rodríguez-Lorenzo]
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Direct basis

Figure 1: Schema of the state of the art of direct bases and contributions.
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Preliminaries





I
n order to make this work self-contained, in this chapter we introduce

the main notions and results about Galois connections and closure

operators, which will be used throughout the manuscript. Although

the literature concerning these issues is very wide, the most relevant books

about this subjects are [28], [14] and [21].

We will also include the main ideas, definitions and properties of For-

mal Concept Analysis, the main research area of this work. The standard

reference book about these topics is [26].

1.1 Closure Operators and Galois Connections

Along this dissertation, we will work on the Boolean algebra (2M ,⊆), where

M is a finite set. In the following we will refer to it as 2M .

In this section, the notions of closure operators, closure systems, Moore

families and Galois connections are introduced. Moreover, the relationships

among them are highlighted.

Definition 1.1.1. Given a non-empty set M , a closure operator on M is

a mapping ϕ : 2M → 2M that satisfies the following properties:

(i) Extensiveness: X ⊆ ϕ(X) for all X ∈ 2M .

15
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(ii) Isotonicity: X ⊆ Y implies ϕ(X) ⊆ ϕ(Y ) for all X,Y ∈ 2M .

(iii) Idempotence: ϕ(ϕ(X)) = ϕ(X) for all X ∈ 2M .

The pair 〈M,ϕ〉 is called a closure system and a set A ⊆ M is called a

closed set for ϕ if it is a fix-point for ϕ, i.e. ϕ(A) = A.

The idempotence of closure operators leads to the fact that, for all

closure system 〈M,ϕ〉 and all A ⊆M , the set ϕ(A) is closed for ϕ.

Definition 1.1.2. Given a non-empty set M , a set S ⊆ 2M is said to be a

Moore family1 on 2M if it satisfies the following conditions:

(i) M ∈ S

(ii) For all X,Y ∈ S, we have that X ∩ Y ∈ S.

Thus, a Moore family is closed by intersection and contains the universal

set M . It is well known that there is a one-to-one correspondence between

closure operators and Moore families.

Proposition 1.1.3. Let M be a non-empty set.

(i) Given a closure operator ϕ : 2M → 2M , the family of closed sets of ϕ,

Sϕ = {A ⊆M such that ϕ(A) = A},

is a Moore family.

(ii) Given a Moore family S in 2M , the mapping ϕS : 2M → 2M , where

ϕS(A) =
⋂
{X ∈ S | A ⊆ X},

is a closure operator.

Moreover, ϕ = ϕSϕ
and S = Sϕ

S
.

1Moore families are also called closure systems in other research areas.
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The set Sϕ is called Moore family associated with ϕ and, ϕS is the

closure operator associated with S.

There are other notions that are equivalent to closure operators, e.g.

Galois connections [43] and implicational systems [26]. In the following,

the notion of Galois connection will be introduced and the notion of impli-

cational system will be introduced in Section 1.3.

Definition 1.1.4. Let G and M be two non-empty sets. A pair 〈f, g〉 of two

mappings f : 2G → 2M and g : 2M → 2G is said to be a Galois connection

between G and M if, for every A ⊆ G and B ⊆M :

A ⊆ g(B) if and only if B ⊆ f(A)

In order to introduce another characterization of Galois connections in

the theorem below, we need to recall the following property of functions.

Definition 1.1.5. Let G and M be non-empty sets. A mapping f : 2G → 2M

is said to be antitone if A1 ⊆ A2 implies f(A2) ⊆ f(A1) for all A1, A2 ⊆ G.

Theorem 1.1.6. Let G and M be two non-empty sets and f : 2G → 2M

and g : 2M → 2G two mappings. The following items are equivalent:

(i) 〈f, g〉 is a Galois connection.

(ii) f and g are antitone and f ◦ g and g ◦ f are extensive.

(iii) f is antitone and g(B) =
⋃
{A ⊆ G | B ⊆ f(A)}

(iv) g is antitone and f(A) =
⋃
{B ⊆M | A ⊆ g(B)}

Consequently, in a Galois connection, each mapping directly determines

the other one. On the other hand, from the second characterization above

it is easy to notice that g ◦ f ◦ g = g and f ◦ g ◦ f = f . This property

induces the following theorem.

Theorem 1.1.7. If 〈f, g〉 is a Galois connection between G and M , then

g ◦ f is a closure operator on G and f ◦ g is a closure operator on M .
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Theorem 1.1.8. Let 〈f, g〉 be a Galois connection between G and M . The

following conditions hold:

(i) f(
⋃
i∈I Xi) =

⋂
i∈I f(Xi) for all family of sets {Xi | i ∈ I} ⊆ 2G.

(ii) g(
⋃
i∈I Yi) =

⋂
i∈I g(Yi) for all family of sets {Yi | i ∈ I} ⊆ 2M .

Closure operators, Moore families, Galois connections and implicational

systems are essentially the same thing. All of these notions and proper-

ties are foundations over which Formal Concept Analysis (FCA) is consol-

idated. In fact, restructuring this theory is the original motivation of de-

veloping FCA, which attempts to use the mathematical theory of concepts

and concept hierarchies in order to support the rational communication

of humans and clarify the connections to Philosophical Logics of human

thought [57,60].

The following section is devoted to the introduction of Formal Con-

cept Analysis and pays particular attention to the notion of implicational

system, which plays an important role in this work.

1.2 Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced by Rudolph Wille [57] in

the 80’s. It is a conceptual environment to structure, analyze, minimize,

visualize and reveal hidden knowledge from the data using techniques of

data mining about a binary relationship between the elements of two sets:

objects and attributes. In the last decades, the FCA techniques have suc-

ceeded in diverse research areas such as data mining, social networks anal-

ysis, marketing, medical diagnosis, etc.

The starting point is the relationship between a set of objects and its

properties.

Definition 1.2.1. A formal context is a triplet K = 〈G,M, I〉 which con-

sists of two non-empty sets G and M and a binary relation I between G

and M . The elements of G are called the objects and the elements of M
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are called the attributes of the context. For g ∈ G and m ∈ M , we write

〈g,m〉 ∈ I or gIm if the object g has the attribute m.

The following example will be often cited in the rest of the work. It is

taken from [26] where the authors consider data about 130 countries. For

the sake of readability, we only consider a part of this dataset taking into

consideration 8 countries.

Example 1.2.2. The data consists of knowing whether these countries be-

long or not to Gr77 (Group of 77), NA (Non-alligned), LLDC (Least Devel-

oped Countries), MASC (Most Seriously Affected Countries), OPEC (Orga-

nization of Petrol Exporting Countries) and ACP (African, Caribbean and

Pacific Countries). The triplet K0 = 〈G,M, I〉 is a formal context where

the set of objects and the set of attributes are, respectively, the following:

G = {Afghanistan, Algeria, Benin, Botswana, Cameroon, Gabon, Haiti, Kiribati}

M = {Gr77, NA, LLDC, MASC, OPEC, ACP}.

Table 1.1 depicts the binary relation I of the formal context K0.

I Gr77 NA LLDC MASC OPEC ACP

Afghanistan × × × ×
Algeria × × ×
Benin × × × × ×

Botswana × × × ×
Cameroon × × × ×

Gabon × × × ×
Haiti × × × ×

Kiribati × ×

Table 1.1: Membership of countries in supranational groups.

Thus, 〈Cameroon, Gr77〉 ∈ I means “the object Cameroon has the at-

tribute Group of 77” or “Cameroon belongs to Group of 77”. However,

〈Cameroon, OPEC〉 6∈ I, i.e., “Cameroon does not belong to OPEC”.

Knowledge extracted from the formal context needs to be represented.

There are two main ways of representation: either by the so-called concept
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lattice or by means of a set of attribute implications. Indeed, both ways

are equivalent: they represent the same knowledge and any of them can be

built from the other without the need of the formal context.

1.2.1 Formal Concepts

Formal concepts are pairs of subsets of objects and attributes that are

somehow related in context. Before introducing them, we start defining

the derivation or concept-forming operators.

Definition 1.2.3. Given a formal context K = 〈G,M, I〉, two mappings

(−)↑ : 2G → 2M and (−)↓ : 2M → 2G, named concept-forming operators,

are defined as follows:

A↑ ={m ∈M | 〈g,m〉 ∈ I for all g ∈ A}

B↓ ={g ∈ G | 〈g,m〉 ∈ I for all m ∈ B}

for any A ⊆ G and B ⊆M .

The set A↑ is the set of all the common attributes shared by all the

objects of A, and the set B↓ is the set of objects sharing all the attributes

of B.

Example 1.2.4. From the context K0 depicted in Table 1.1, one can obtain:

{Algeria}↑ = {Gr77, NA, OPEC} G↑ = ∅
{Afghanistan,Algeria}↑ = {Gr77, NA} ∅↑ = M

{OPEC}↓ = {Algeria,Gabon} M↓ = ∅
{OPEC,ACP}↓ = {Gabon} ∅↓ = G

One of the fundamental results of FCA is the following theorem that

relates it to the notions described in the previous section.

Theorem 1.2.5. Let K = 〈G,M, I〉 be a formal context. The pair of the

concept-forming operators 〈(−)↑, (−)↓〉 is a Galois connection between G

and M .

Therefore, from the above theorem and Theorems 1.1.6 and 1.1.7, the

following corollary is directly obtained.
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Corollary 1.2.6. In any context 〈G,M, I〉, the following properties hold:

(i) A1 ⊆ A2 implies A↑2 ⊆ A
↑
1 for all A1, A2 ⊆ G.

(ii) B1 ⊆ B2 implies B↓2 ⊆ B
↓
1 for all B1, B2 ⊆M .

(iii) A ⊆ A↑↓ and B ⊆ B↓↑ for all A ⊆ G and B ⊆M .

(iv) A↑ = A↑↓↑ and B↓ = B↓↑↓ for all A ⊆ G and B ⊆M .

In addition, both compositions of the two concept-forming operators,

(−)↑↓ : 2G → 2G and (−)↓↑ : 2M → 2M ,

are closure operators.

Moreover, the closed sets of these two mappings, that is, the fixpoints

of the closure operators, define the so-called formal concepts. As we shall

see, formal concept is a key point in FCA which formally describes an idea

of the model and it allows us to characterize a set of objects by means of

the attributes they share and vice versa.

Definition 1.2.7. Let K = 〈G,M, I〉 be a formal context and A ⊆ G,B ⊆
M . The pair 〈A,B〉 is called a formal concept if A↑ = B and B↓ = A.

The set of objects, A, is said to be the extent and the set of attributes, B,

the intent of the concept 〈A,B〉.

In other words, 〈A,B〉 is a formal concept if A contains all the objects

sharing the attributes in B and, analogously, B contains all the attributes

sharing the objects in A. The set of all concepts of the context K, denoted

by B(K), constitutes a lattice that is called concept lattice, where the order

relation is defined as follows:

〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆ A2 or, equivalently, B2 ⊆ B1.

Example 1.2.8. There are 26 formal concepts associated with the formal

context K0 introduced in Table 1.1. One concept is, for instance, the pair

〈{Benin, Botswana, Haiti, Kiribati}, {LLDC, ACP}〉, which describes the notion
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of the least developed countries in a certain region providing its properties

and characterizing its countries. Note that the sets {LLDC, ACP} and {Benin,

Botswana, Haiti, Kiribati} are closed sets:

{Afghanistan, Benin, Botswana, Haiti}↑↓ = {Afghanistan, Benin, Botswana, Haiti}
{LLDC, ACP}↓↑ = {LLCD, ACP}

There is an alternative way to define the formal concepts. They can be

defined as maximal rectangles in the cross-table of the formal context.

Definition 1.2.9. A rectangle in K = 〈G,M, I〉 is a pair 〈A,B〉 such that

A× B ⊆ I. For rectangles 〈A1, B1〉 and 〈A2, B2〉, put 〈A1, B1〉 v 〈A2, B2〉
if and only if A1 ⊆ A2 and B1 ⊆ B2.

Theorem 1.2.10. A pair 〈A,B〉 is a formal concept of K = 〈G,M, I〉 if

and only if 〈A,B〉 is a maximal rectangle in K w.r.t. v.

Example 1.2.11. In the formal context K0 from Table 1.1, the pair

〈{Benin, Botswana}, {Gr77, NA, ACP}〉

is a rectangle in K0, but it is not a formal concept because it is not maximal

with respect to v. The pair

〈{Benin, Botswana, Cameroon, Gabon}, {Gr77, NA, ACP}〉

is a maximal rectangle (i.e. formal concept) containing it (see Table 1.2).

As it has been said, FCA is a different view of the notions introduced

in the previous section. Thus, on the one hand, Galois connections and

Moore families (which can be seen as concept lattices) allow a graphical

representation. On the other hand, closure operators lead to the notion

of implicational systems, which facilitate the reasoning by means of logic.

The following section is devoted to this notion.
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I Gr77 NA LLDC MASC OPEC ACP

Afghanistan × × × ×
Algeria × × ×
Benin × × × × ×

Botswana × × × ×
Cameroon × × × ×

Gabon × × × ×
Haiti × × × ×

Kiribati × ×

Table 1.2: The concept 〈{Benin, Botswana, Cameroon, Gabon}, {Gr77, NA, ACP}〉 as

a maximal rectangle.

1.3 Implicational Systems

Although later we will give a formal definition of attribute implication, we

anticipate that it is a pair of attribute sets (premise and conclusion) and

that it is satisfied in a context if every object that has all the attributes

of the premise, has also the attributes of the conclusion. The advantage

of using attribute implications is two-fold: on the one hand, it allows for a

logic-based management of knowledge (with the potential benefit of auto-

mated reasoning techniques); on the other hand, attribute implications are

the key to more efficient ways of knowledge representation than concept

lattices.

We introduce the results related to attribute implications considering

the usual components of a logic: language, semantics, axiomatic system or

syntactic inference, and its automated reasoning method.

Language

Definition 1.3.1. Given a finite non-empty set of attributes M , the lan-

guage is defined as LM = {A→ B | A,B ⊆M}.
Formulas A→ B ∈ LM are called attribute implications, or simply, im-

plications, and the sets A and B are called the premise and the conclusion

of the implication, respectively.
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Sets Σ ⊆ LM are called implicational systems on M .

As usual, in order to distinguish between language and metalanguage,

inside implications, the union is denoted by juxtaposition (e.g. XY means

X ∪Y ) and the set difference by the symbol “-” (e.g. X-Y denotes XrY ).

Moreover, for the sake of readability, inside of the formulae, we omit the

brackets and commas (e.g. abc denotes the set {a, b, c}).

Example 1.3.2. Given M = {a, b, c, d}, let us consider the sets X = {a, b},
Y = {b, c} and Z = {c, d}.

• X → Y is written as ab→ bc instead of {a, b} → {b, c}.

• XY → Z-Y denotes abc→ d.

Finally, we will use the term unitary implication to refer to implications

in which the conclusion is a singleton, and the term unitary implicational

system to refer to sets of unitary implications.

Semantics

Once the language has been defined, we introduce the semantics in order

to give a meaning to the formulae of the language.

Definition 1.3.3. Let K = 〈G,M, I〉 be a formal context and A → B ∈
LM . The context K is said to be a model for A → B if B ⊆ A↓↑. It is

denoted by K |= A→ B.

The definition above, and all the results proposed in this section, can

be introduced in terms of arbitrary closure operators instead of contexts.

Note that, by Corollary 1.2.6, one has that

K |= A→ B if and only if A↓ ⊆ B↓

As usual, the notion of models can be extended to implicational systems:

given Σ ⊆ LM , the expression K |= Σ means that K |= A → B for all

A→ B ∈ Σ.
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Example 1.3.4. Considering the formal context K0 from Table 1.1, one

can notice that K0 |= MASC→ Gr77 whereas K0 6|= MASC→ LLDC.

Definition 1.3.5. Let M be a set of attributes, A→ B ∈ LM and Σ ⊆ LM .

The implication A→ B is said to be semantically derived from Σ, denoted

by Σ |= A→ B, if K |= Σ implies K |= A→ B for every formal context K.

On the other hand, two implicational systems Σ1,Σ2 ⊆ LM are seman-

tically equivalent, denoted by Σ1 ≡ Σ2, if the following equivalence holds

K |= Σ1 if and only if K |= Σ2

for every formal context K.

In summary, Σ |= A → B if every model for Σ is a model for A → B

and Σ1 ≡ Σ2 if their models are the same, it means, both sets represent

the same knowledge.

Example 1.3.6. Let M = {a, b, c} be a set of attributes. Observe that

{a→ b, a→ c} ≡ {a→ bc} because, for every formal context K = 〈G,M, I〉,
{b, c}↓ = {b}↓ ∩ {c}↓ holds. Therefore:

{a}↓ ⊆ {b}↓ and {a}↓ ⊆ {c}↓ if and only if {a}↓ ⊆ {b, c}↓

This example can be easily extended to ensure that any implicational

system is equivalent to a unitary implicational system.

Proposition 1.3.7. Let M be a set of attributes and Σ ⊆ LM . The fol-

lowing equivalence holds:

Σ ≡
⋃

A→B∈Σ

{A→ b | b ∈ B}

Armstrong’s Axioms

The axiomatic system known as “Armstrong’s Axioms” encloses one axiom

scheme and two inference rules. Let A,B,C be subsets of M ,

Inclusion [Inc] `A AB → A

Augmentation [Aug] A→ B `A AC → BC

Transitivity [Trans] A→ B,B → C `A A→ C
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From the above axiomatic system, the notion of deduction (`) is defined

as usual:

Definition 1.3.8. Let M be a set of attributes, σ ∈ LM and Σ ⊆ LM . We

say that σ is syntactically derived, or deduced, from Σ, denoted Σ `A σ, if

there exists a sequence σ1, . . . , σn such that σn = σ and, for all 1 ≤ i ≤ n,

we have that σi ∈ Σ, σi is an axiom or is obtained by applying the inference

rules from Armstrong’s Axioms to some formulas in {σj | 1 ≤ j < i }.
In this case, the sequence {σi | 1 ≤ i ≤ n} is said to be a proof for

Σ `A σ.

This axiomatic system has its origin in [4], where it was used to study

the properties of functional dependencies in Codd’s relational model [15].

Later on, other works have proposed other equivalent axiomatic systems [5,

22,31,44]. The one presented here is the original one.

On the other hand, the axiom scheme is commonly known as “reflexiv-

ity”. Here, we call it “inclusion” because we reserve the name “reflexivity”

for another scheme that fits better with the mathematical idea of reflexivity.

Example 1.3.9. Let M = {a, b, c, d, e} be a set of attributes. The following

chain proves that {ab→ cd, bc→ e} `A ab→ e:

σ1 = ab→ cd by hypothesis

σ2 = bc→ e by hypothesis

σ3 = ab→ bcd by applying [Augm] to σ1 with b

σ4 = bcd→ de by applying [Augm] to σ2 with d

σ5 = ab→ de by applying [Trans] to σ3 and σ4

σ6 = de→ e by [Inc]

σ7 = ab→ e by applying [Trans] to σ5 and σ6

The following theorem ensures that the syntactic and semantic deriva-

tion coincide. It means that every rule one can deduce with this axiomatic

system can be semantically derived (the axiomatic system is sound) and

vice versa (the axiomatic system is complete).
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Theorem 1.3.10. Let M be a finite non-empty set of attributes, Σ ⊆ LM
and A→ B ∈ LM . Then Σ |= A→ B if and only if Σ `A A→ B.

Simplification Logic

Although Armstrong’s axiomatic system is cited in lots of works, it is used

in practice just for the theoretical study of implications instead of the de-

velopment of applications and algorithms. The inherent problem is the fact

that the proofs are difficult to automatize. Due to that, in [41] it was pre-

sented the Simplification Logic, more appropriated for the automatization

of reasoning with implications [42].

Definition 1.3.11. Simplification Logic considers reflexivity axiom

[Ref] `S A→ A;

and the following inference rules (called fragmentation, composition and

simplification, respectively):

[Frag] A→ BC `S A→ B;

[Comp] A→ B, C → D `S AC → BD;

[Simp] If A ⊆ C and A ∩B = ∅, then A→ B, C → D `S C-B → D-B.

Theorem 1.3.12 (Cordero et al. [20]). Let M be a non-empty set of at-

tributes. For every Σ ∈ LM and every A → B ∈ LM ,Σ `S A → B if and

only if Σ `A A→ B.

Corollary 1.3.13. Simplification logic is sound and complete.

Due to the theorem above, from now on, we will omit the subscript and

merely write `.

The main advantage of Simplification Logic is that inference rules can

be considered as equivalence rules. Thus, they have been used as the core

of automated methods for removing redundancies, obtaining minimal keys,

or computing closures (see [42] for further details and proofs).
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Theorem 1.3.14 (Mora et al. [42]). The following equivalences hold:

{A→ B} ≡ {A→ B-A} (Fr-Eq)

{A→ B,A→ C} ≡ {A→ BC} (Co-Eq)

If A ∩B = ∅ and A ⊆ C then

{A→ B,C → D} ≡ {A→ B,C-B → D-B} (Si-Eq)

If A ∩B = ∅ and A ⊆ C ∪D then

{A→ B,C → D} ≡ {A→ B,C → D-B} (rSi-Eq)

These equivalences are called also Fragmentation, Composition and

Simplification equivalences respectively. Notice that these equivalences

(read from left to right) remove redundant information. Simplification

Logic was conceived as a simplification framework, hence its name.

Automated reasoning

For each implicational system, the axiomatic system defines a closure op-

erator in 2M , which we call syntactic closure.

Definition 1.3.15. Let M be a set of attributes and Σ ⊆ LM . We say

that a subset X ⊆ M is closed with respect to Σ if, for each A → B ∈ Σ,

we have that A ⊆ X implies B ⊆ X.

The set of all the closed sets with respect to Σ forms a Moore family

(see Definition 1.1.2), and, by Proposition 1.1.3, a closure operator in 2M .

Definition 1.3.16. Let M be a set of attributes and Σ ⊆ LM . For each

X ⊆M , the closure of X with respect to Σ is defined as:

X+
Σ =

⋂
{C ⊆M | X ⊆ C and C is closed with respect to Σ}

Thus, the closure of X with respect to Σ is the largest subset of M such

that Σ ` X → X+
Σ . When no confusion arises, we will denote the closure

of a subset of attributes as X+ instead of X+
Σ .

The following theorem is not only essential to compute closures but also

to introduce an automated reasoning method.
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Theorem 1.3.17. Let M be a set of attributes, Σ ⊆ LM and A,B ⊆ M .

The following conditions are equivalent:

Σ ` A→ B iff B ⊆ A+
Σ iff {∅→ A} ∪ Σ ` ∅→ B.

As a direct consequence of the previous theorem, we have that:

X+
Σ = max{Y ⊆M | Σ ` X → Y }

Based on Theorem 1.3.17, in [42] the method Cls is introduced. This

method receives as input a set X ⊆ M and a set of implications Σ and

renders the pair (X+
Σ ,Σ

′) where Σ′ is the simplified set of implications with

respect to ∅ → X+
Σ and, thus, Σ′ ⊆ LMrX+

Σ
(i.e. Σ′ is the contraction of

Σ to 2MrX
+
Σ ). Therefore, this allows to determine whether an implication

X → Y can be deduced from Σ. Moreover, Σ′ contains relevant information

about the implicational system and the closed set, as it will be shown in

the next section.

The Cls algorithm computes the closure of a set of attributes X with

respect to Σ as follows:

(i) ∅→ X is added to Σ. This implication is used as a seed which guides

the reasoning to render its closure A+
Σ . For this reason, it is called

the guide.

(ii) While it is possible, the procedure compares the guide with the rest

of the implications and applies the corresponding equivalence (Theo-

rem 1.3.14) among the following:

Eq. I: If B ⊆ A then {∅→ A,B → C} ≡ {∅→ AC}

Eq. II: If C ⊆ A then {∅→ A,B → C} ≡ {∅→ A}

Eq. III: Otherwise, {∅→ A,B → C} ≡ {∅→ A,B-A→ C-A}

(iii) As soon as a fix point is achieved, if the guide is ∅ → A, then we

have that X+
Σ = A.
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Cls returns the closure of X (the conclusion of the guide) and the set of

simplified implications.

If we want to determine whether Σ ` X → Y or not, the answer will

be affirmative if and only if Y ⊆ A. Observe that the procedure can be

interrupted before getting the fix point: when Y ⊆ A.

Example 1.3.18. Let Σ be {ab → c, ac → df, bcd → ef, f → c}. To

compute {a, f}+Σ, we consider the implication ∅→ af as a guide and apply

the equivalences previously described.

Guide Σ

∅→ af ab→ c ac→ df bcd→ ef f → c

∅→ af �ab→ c �ac→ d��f bcd→ e��f ��f → c

∅→ acf b→ �c �c→ d b�cd→ e

∅→ acdf b�d→ e

∅→ acdf b→ e

Thus, once the procedure has been applied, it renders Cls(af,Σ) =

(acdf, {b → e}) where {a, f}+Σ = {a, c, d, f} and Σ′ = {b → e} has im-

portant information that, for instance, will be used for computing minimal

generators in the following section.

The previous method does not only compute the closure of a set of

attributes in the guide. It renders also a set of simplified implications that

contains relevant information.

1.3.1 Closed Sets and Minimal Generators

In this section we summarize how the inference system of Simplification

Logic SLFD [17, 20] and the output of the algorithm Cls can be used to

enumerate all closed sets and all minimal generators.

For X,Y ⊆ M satisfying that X = Y +
Σ , it is usual to say that Y is a

generator of the closed set X. Notice that any subset of X containing Y is

also a generator of X. As we work with finite sets of attributes, the set of

generators of a closed set can be characterized by its minimal ones.
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Definition 1.3.19. Let M be a finite set of attributes and Σ an implica-

tional system on M . X ⊆ M is said to be a minimal generator, or briefly

mingen if, for all proper subsets Y  X, one has Y +
Σ  X+

Σ .

A method to compute all minimal generators was presented in [19]. The

algorithm called MinGen is based on the closure algorithm Cls mentioned

above and it takes the advantages of the additional information that it pro-

vides. That is, Cls is used not only to compute closed sets from generators

but also a smaller implicational set which guides us in the search of new

subsets to be considered as minimal generators. The following definition

specifies what the algorithm is assumed to compute.

Definition 1.3.20. Let M be a set of attributes. For each implicational

system Σ over M , the set of labeled closed sets (LCS) with respect to Σ is

{〈C,mg(C)〉 | C ⊆M,C+
Σ = C}

where mg(C) = {D ⊆M | D is a mingen and D+
Σ = C}.

MinGen [19] is outlined in Algorithm 1.1. It is based on the recursive

computation of closed sets and generators. Since different parts of the

method compute partial information about the set of LCS, some specific

operators that allow us to work with this kind of sets are needed. Specif-

ically, given two sets of LCSs Φ and Ψ, the join of Φ and Ψ, Φ t Ψ, is

defined as follows: 〈A1, B1〉 ∈ ΦtΨ if and only if one of the three following

conditions holds:

(i) 〈A1, B1〉 ∈ Φ and any 〈A2, B2〉 ∈ Ψ satisfies A1 6= A2.

(ii) 〈A1, B1〉 ∈ Ψ and any 〈A2, B2〉 ∈ Φ satisfies A1 6= A2.

(iii) There exist 〈A1, B2〉 ∈ Φ and 〈A1, B3〉 ∈ Ψ such that B1 is the set of

minimal elements of B2 ∪B3.

Example 1.3.21. Consider Φ = {〈abcd, {ac, ad}〉, 〈ab, {a}〉, 〈∅, {∅}〉} and

Ψ = {〈abcd, {c}〉, 〈b, {b}〉, {〈∅, {∅}〉}. Then

Φ tΨ = {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈∅, {∅}〉}.
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Two other operators are required as well. The first one is the trivial

operator. It has as input a pair (M,Σ) where M is the set of attributes

and Σ is an implicational system, and its output is the following LCS:

trv(M,Σ) = {〈X, {X}〉 | X ⊆M with A 6⊆ X for all A→ B ∈ Σ}

Example 1.3.22. Let M = {a, b, c, d} and Σ = {a→ b, c→ bd, bd→ ac}.
Then, the trivial operator renders the following:

trv(M,Σ) = {〈∅, {∅}〉, 〈b, {b}〉, 〈d, {d}〉}

Moreover, we need the operator Add given by:

Add(〈C, {D}〉,Φ) :=
{〈
A ∪ C, {X ∪D | X ∈ B}

〉 ∣∣ 〈A,B〉 ∈ Φ
}

Example 1.3.23. Considering the set of attributes from Example 1.3.22,

the LCS Φ = {〈cd, {c, d}〉, 〈∅,∅〉} and the pair 〈ab, {a}〉, the Add operator

renders:

Add(〈ab, {a}〉,Φ) = {〈abcd, {ac, ad}〉, 〈ab, {a}〉}

Now, we have the necessary operators to describe the procedure.

Algorithm 1.1: MinGen
Data: M,Σ

Result: Φ

begin

Let Φ := trv(M,Σ)

if Σ 6= ∅ then

Let Mnl := {A ⊆M | A→ B ∈ Σ for some B ⊆M and

C ⊆ A implies C = A for all C → D ∈ Σ}
foreach A ∈ Mnl do

Let (A′,Σ′) = Cls(A,Σ)

Let Φ := Φ t Add
(
〈A′, {A}〉, MinGen(M rA′,Σ′)

)
return Φ

The input of MinGen is a subset of M and a set of implications Σ and

the output is the set of closed sets together with all the minimal generators

that generate them, i.e. {〈C,mg(C)〉 : C is a closed set} where mg(C) is

the set of minimal generators D satisfying D+
Σ = C.
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Example 1.3.24. Let M = {a, b, c, d} and Σ = {a → b, c → bd, bd → ac}
as in Example 1.3.22. Then the MinGen algorithm returns the following set:

MinGen(M,Σ) = {〈abcd, {c, ad, bd}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

The trace of the algorithm is the following:

Step 1. Φ = trv(M,Σ) = {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Mnl = {a, c, bd}

Step 2. Cls(a,Σ) = (ab, {c→ d, d→ c})

MinGen({c, d}, {c→ d, d→ c}):

Step 2.1. Φ = trv({c, d}, {c→ d, d→ c}) = {〈∅, {∅}〉}
Mnl = {c, d}

Step 2.2. Cls(c, {c→ d, d→ c}) = (cd,∅)

Φ = {〈∅, {∅}〉} t Add(〈cd, {c}〉, MinGen(∅,∅))

= {〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.3. Cls(d, {c→ d, d→ c}) = (cd,∅)

Φ = {〈cd, {c}〉, 〈∅, {∅}〉} t Add(〈cd, {d}〉, MinGen(∅,∅)})
= {〈cd, {c, d}〉, 〈∅, {∅}〉}

Thus, MinGen({c, d}, {c→ d, d→ c}) = {〈cd, {c, d}〉, 〈∅, {∅}〉}

Φ = {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}t
t Add(〈ab, {a}〉, {〈cd, {c, d}〉, 〈∅, {∅}〉})

= {〈abcd, {ac, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Step 3. Cls(c,Σ) = (abcd,∅)

Φ = {〈abcd, {ac, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉} t
t Add(〈abcd, {c}〉, MinGen(∅,∅))

= {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Step 4. Cls(bd,Σ) = (abcd,∅)

Φ = {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉} t
t Add(〈abcd, {bd}〉, MinGen(∅,∅))

= {〈abcd, {c, ad, bd}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
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Therefore, MinGen(M,Σ) returns

{〈abcd, {c, ad, bd}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Notice that, from the point of view of the implications, some trivial in-

formation (e.g. 〈b, {b}〉) is included in the output of this algorithm. In [19],

a version of MinGen, named MinGen0, is also presented. The difference

between this algorithm and the previous one is that here only non-trivial

generators are calculated. To do it, we only need to change the function

trv by the following one:

trv0(M,Σ) = {〈∅, {∅}〉} for all Σ ⊆ LM .

Example 1.3.25. For the same input as in Example 1.3.24, we have:

MinGen0(M,Σ) = {〈abcd, {c, ad, bd}〉, 〈ab, {a}〉, 〈∅, {∅}〉}
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T
hanks to the existence of a logic to reason with implications, given a

context, we do not need to work with the huge set of implications

that hold in it. This set is called the full implicational system.

Instead, we can select a smaller set from which we can derive all the others.

The following definition formalizes this idea.

Definition 2.0.1. Let K be a context. An implicational system Σ is com-

plete for K if, for all implication A→ B, the following equivalence holds:

K |= A→ B if and only if Σ ` A→ B.

Clearly, any complete implicational system for the same context is con-

tained in the equivalent full implicational system and all the complete im-

plicational systems for a context are equivalent:

If Σ1 and Σ2 are complete for K then Σ1 ≡ Σ2.

In addition, when an implicational system Σ is complete for a context K,

it is well-known that the (syntactic) closed sets of attributes with respect

to Σ are in bijection with the concepts of K. Specifically, for any attribute

set X one has

X↓↑ = X+
Σ

39
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Given the importance of the notion of complete implicational system,

a relevant issue in FCA is to find, among the different equivalent implica-

tional systems, those that have better properties. Before beginning with

the contributions, we summarize the state of the art in this topic.

In Section 2.1 below, we introduce the notion of basis as a complete

implicational system that satisfies some minimality criteria. Then, in Sec-

tion 2.2, we summarize the works of Bertet et al. [9, 11, 12] to obtain the

direct-optimal basis associated with a formal context whereas Section 2.3

is devoted to present a survey of the work of Adaricheva et al. [3] to obtain

the associated D-basis. We summarize these works in great detail since

most of the thesis is oriented to propose more efficient alternatives to the

algorithms proposed there.

2.1 Bases

Among the different complete implicational systems for a context, a rele-

vant issue is to characterize those ones without redundant information or,

satisfying some minimality criteria. The term basis is commonly used to re-

fer to implicational systems where some minimality criteria holds. Among

those minimality criteria, the most used are the following:

Definition 2.1.1. An implicational system Σ is said to be:

i) minimal when Σr {A→ B} 6≡ Σ for all A→ B ∈ Σ;

ii) minimum when |Σ| ≤ |Σ′| for all Σ′ ≡ Σ;

iii) optimal when ‖Σ‖ ≤ ‖Σ′‖ for all Σ′ ≡ Σ;

where |Σ| is the cardinality of Σ and ‖Σ‖ is its size, i.e.

‖Σ‖ =
∑

A→B∈Σ

(|A|+ |B|).

Obviously, any minimum implicational system is minimal. Moreover,

Maier showed in [35] that optimal sets of implications are also minimum.

So, among these properties, minimality is the weakest one.
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Figure 2.1 shows three equivalent implicational systems. Notice that the

optimal one is also minimum (it has three implications), and all of them are

also minimal because if one implication is removed, the new implicational

system is not equivalent.

Optimal

Minimum

Minimal

{ABC ⟶D, AB ⟶E, E ⟶AB} 

{EC ⟶D, AB ⟶E, E ⟶AB} 

{ABC ⟶D, AB ⟶E, E ⟶A, E ⟶B}

Figure 2.1: Relationships among minimal, minimum and optimal implicational systems.

The term basis is used to refer to a minimal set of implications. There-

fore, a minimum basis is then a basis of least cardinality. The following

definition formally introduces the notion of basis:

Definition 2.1.2. An implicational system Σ is said to be a basis for a

formal context K if it is a minimal complete implicational system for K.

Therefore, if Σ is a basis for K, the following conditions are fulfilled:

Correctness: K |= Σ.

Completeness: K |= A→ B if and only if Σ ` A→ B.

Minimality: Σr {A→ B} is not complete for K for all A→ B ∈ Σ.
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Since all the complete implicational systems for a context are equivalent,

the problem of computing a basis can be stated in two versions, depending

on what is the starting point. On the one hand, we could need to compute

a basis that is complete for a given context. On the other hand, given an

implicational system, we could be interested in finding an equivalent basis.

In this thesis, we focus on the latter. Therefore, the following results will

be stated with this aim in mind.

Deepening about bases, the most used minimum basis is the so-called

Duquenne-Guigues basis or stem basis [29]. This one is defined using the

notion of a pseudo-closed set (also named pseudo-intent).

Definition 2.1.3. Let Σ be an implicational system on M . A set A ⊆ M

is quasi-closed if, for any B ⊆ A, one has B+
Σ ⊆ A or B+

Σ = A+
Σ.

In addition, a quasi-closed set A is pseudo-closed if A+
Σ 6= A and for

any quasi-closed set B  A one has B+
Σ  A.

An arbitrary set A is quasi-closed if either it is closed or a new Moore

family is obtained by adding it to the set of all closed sets. Moreover, every

pseudo-closed set is a minimal quasi-closed set in its closure class, defined

to be the class containing all quasi-closed with the same closure. Notice

that the uniqueness of minimal quasi-closed elements is not ensured: in

some closure classes there can be several minimal quasi-closed elements.

The following example illustrates the notions of quasi-closed and pseudo-

closed sets.

Example 2.1.4. Consider the following implicational system:

Σ = {OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

MASC OPEC→ LLDC ACP,

LLDC OPEC→ MASC ACP}

The set Σ is complete for the formal context presented in Table 1.1.

• The set A = {Gr77, OPEC} is quasi-closed because {Gr77}+Σ ⊆ A and

{OPEC}+Σ = A+
Σ. However, it is not pseudo-closed because A+

Σ 6= A

but for the quasi-closed {OPEC}, we have that {OPEC}+Σ = A+
Σ.
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• The set B = {Gr77, NA, MASC, OPEC} is pseudo-closed. One can check

that it is quasi-closed because, for all subset of B, its closure is a strict

subset of B or M (notice that B+
Σ = M).

Moreover, B+
Σ 6= B and, for any quasi-closed subset, its closure is

strictly contained in B. Those quasi-closed sets of B appear in grey

colour (see Figure 2.2).

{Gr77}+Σ = {Gr77} {MASC}+Σ = {MASC,Gr77}

{NA}+Σ = {NA,Gr77} {OPEC}+Σ = {OPEC,Gr77,NA}

{MASC,OPEC}+Σ = M {NA,MASC}+Σ = {MASC,Gr77,NA}

{Gr77,NA}+Σ = {Gr77,NA} {NA,OPEC}+Σ = {OPEC,Gr77,NA}

{Gr77,MASC}+Σ = {Gr77,MASC} {Gr77,OPEC}+Σ = {OPEC,Gr77,NA}

{Gr77,MASC,OPEC}+ = M {Gr77,NA,OPEC}+Σ = {OPEC,Gr77,NA}

{NA,MASC,OPEC}+ = M {Gr77,NA,MASC}+Σ = {MASC,Gr77,NA}

Figure 2.2: Closures of the subsets of B = {Gr77, NA, MASC, OPEC} with respect to the

implicational system from Example 2.1.4.

The taxonomy of closed, quasi-closed and pseudo-closed and their rela-

tionships has been thoroughly studied. For a more in-depth study of these

notions the reader is referred to [32]. The following proposition is the key

for the important role of pseudo-closed sets in the implicational systems.

Proposition 2.1.5 (Ganter et al. [26]). Let Σ be an implicational system.

For every pseudo-closed set C with respect to Σ there is A → B ∈ Σ such

that A ⊆ C and A+
Σ = C+

Σ .

Based on the definition of pseudo-closed sets and its properties, the

Duquenne-Guigues basis was introduced in [29].

Definition 2.1.6. Given an implicational system Σ, the Duquenne-Guigues

basis for Σ is defined as

ΣDG = {A→ A+
Σ-A | A is pseudo-closed w.r.t. Σ}
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Example 2.1.7. The Duquenne-Guigues basis associated with the implica-

tional system introduced in Example 2.1.4, and therefore complete for the

formal context presented in Table 1.1, is the following [26]:

Σ = { OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

Gr77 NA MASC OPEC→ LLDC ACP,

Gr77 NA LLDC OPEC→ MASC ACP}

Given an implicational system, the existence and the unicity of an equiv-

alent Duquenne-Guigues basis are ensured. Moreover, this basis has mini-

mum cardinality.

Theorem 2.1.8 (Ganter et al. [26]). Let Σ be an implicational system. If

ΣDG is its Duquenne-Guigues basis, then Σ ≡ ΣDG.

In addition, |ΣDG| ≤ |Σ′| for any implicational system Σ′ such that

Σ′ ≡ ΣDG.

Ganter introduced in [24] a well-known algorithm for computing the

unique Duquenne-Guigues basis that is complete for a given formal context.

This algorithm, known as Next-Closure, is easily adapted for considering

an implicational system as the input.

Observe that, since Duquenne-Guigues basis is minimum, it is also min-

imal, i.e. no implication can be removed because they are non-redundant.

Some authors call superfluous to implications that can be removed and

preserve the term redundant for a more general notion. There is an exten-

sive literature about these ideas [18–20, 36]. We do not deepen in this line

because our objective is different.

As in many other fields of research, some redundant information may

be useful for improving the efficiency of methods. The key is to find an

equilibrium between the amount of redundant information we handle and

the efficiency of the algorithms we use frequently. In the case of implica-

tional systems, there are lots of applications that require the systematic

calculation of attribute set closures. For example, there are algorithms for

solving problems of exponential nature in which the atomic operation is
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the computation of closures. From now on, we will focus on this idea in

this part of the thesis.

2.2 Direct-Optimal bases

In order to formally introduce the notion of directness, in [11], the authors

define the operator πΣ : 2M → 2M , for each implicational system Σ ⊆ LM ,

as follows:

πΣ(X) = X ∪ {b ∈ B | A→ B ∈ Σ for some A ⊆ X}. (2.1)

The function πΣ is isotone and extensive, and, therefore, for all X ∈ 2M ,

the chain X, πΣ(X), π2
Σ(X), π3

Σ(X), . . . reaches a fixpoint. The closure of

the set X with respect to Σ, i.e. X+
Σ , coincides with this fixpoint. For some

particular implicational systems, πΣ is idempotent, i.e. πΣ ◦ πΣ = πΣ. In

these cases, the fixpoint is reached in the first iteration and Σ is called a

direct implicational system [11].

Definition 2.2.1. A set Σ ⊆ LM is said to be a direct implicational system

if X+
Σ = πΣ(X) for all X ⊆M .

In [11] Bertet et al. give a characterization of directness that we extend

for non-unitary implicational systems. Its proof is straightforward from the

definition of closure operator.

Lemma 2.2.2. A set Σ ⊆ LM is a direct implicational system if and only

if π2
Σ(X) ⊆ πΣ(X) for all X ⊆M .

Example 2.2.3. Consider the following equivalent implicational systems.

ΣDG = {OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

Gr77 NA MASC OPEC→ LLDC ACP,

Gr77 NA LLDC OPEC→ MASC ACP}

Σd = {OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

MASC OPEC→ LLDC ACP,

LLDC OPEC→ MASC ACP}

ΣDG is the Duquenne-Guigues basis of Example 2.1.7 and Σd is an equiv-

alent direct basis. Notice that ΣDG is not a direct basis:
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π2
ΣDG

({MASC, OPEC}) = πΣDG
({MASC, OPEC, Gr77, NA}) =

= {MASC, OPEC, Gr77, NA, ACP, LLDC}

However, with πΣd
, the closure is reached in just one iteration:

πΣd
({MASC, OPEC}) = {MASC, OPEC, Gr77, NA, ACP, LLDC}

It is worth noting that, if an implicational system Σ is direct for a set of

attributes M , the complexity of the closure is O(|Σ|) instead of O(|Σ| |M |),
which coincides with the complexity in the worst case of classical closure

algorithms.

When a huge amount of closures of attribute sets has to be computed,

it would be interesting those direct bases which have the smallest size. So,

we do not just seek the minimum number of implications but the minimum

number of attributes too.

Definition 2.2.4. A direct implicational system Σ is said to be a direct-

optimal basis if, for any direct implicational system Σ′, one has Σ′ ≡ Σ

implies ‖Σ‖ ≤ ‖Σ′‖.

The following theorem ensures the existence and unicity of a direct-

optimal basis that is equivalent to any given implicational system.

Theorem 2.2.5 (Bertet et al. [11]). For any implicational system Σ, there

exists a unique direct-optimal basis Σdo such that Σ ≡ Σdo.

In addition, this unique direct-optimal basis is characterized in the fol-

lowing theorem.

Theorem 2.2.6 (Bertet et al. [12]). A direct implicational system Σ is

direct-optimal if and only if the following properties hold:

Extensiveness: If A→ B ∈ Σ then A ∩B = ∅.

Isotony: If A→ B,C → D ∈ Σ and C  A then B ∩D = ∅.

Premise: if A→ B,A→ B′ ∈ Σ then B = B′.

Non-empty conclusion: if A→ B ∈ Σ then B 6= ∅.
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Direct-optimal basis combines the directness and optimality properties.

On the one hand, directness ensures that the computation of the closure

may be done in just one traversal of the implication set. On the other

hand, due to its minimal size provided by the optimality, the number of

visited implications is reduced to the minimum. Due to these features, it

is desirable to design methods to transform an arbitrary set of implications

into its equivalent direct-optimal basis. Thus, the problem of building a

direct-optimal basis is one of the outstanding problems in FCA.

Given an arbitrary implicational system Σ, the way to proceed to obtain

the direct-optimal basis proposed in [12] is the following: first, a direct

implicational system Σd is built by adding new implications to Σ. Then the

direct-optimal basis Σdo is obtained by removing from Σd those implications

without modifying the directness property up to get a fixpoint.

In the first step, the following rule is exhaustively applied:

Overlap [Ovl]:
A→ B,C → D

A(C-B)→ D
, when B ∩ C 6= ∅

Then, the direct implicational system generated from an implicational

system Σ is defined as the smallest implicational system that contains Σ

and is closed for [Ovl].

Definition 2.2.7. The direct implicational system Σd generated from Σ is

defined as the smallest implicational system such that:

(i) Σ ⊆ Σd and

(ii) If A→ B,C → D ∈ Σd and B ∩ C 6= ∅ then A(C-B)→ D ∈ Σd.

The function which computes this direct implicational system will be

called Bertet-Nebut-Direct in this work.

The second step of the transformation, the shrinking stage, is inspired

by Theorem 2.2.6 and it is mainly based on the following inference rule:

Optimization [Opt]:
A→ B,C → D

A→ B-AD
, when C ( A

This rule induces the Optimization Equivalence defined as follows:
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Function Bertet-Nebut-Direct(Σ)

input : An implicational system Σ

output: The direct implicational system Σd equivalent to Σ

begin
Σd := Σ

foreach A→ B ∈ Σd do

foreach C → D ∈ Σd do

if B ∩ C 6= ∅ then add A(C-B)→ D to Σd

return Σd

Proposition 2.2.8. Let A,B,C,D ⊆M . If C ⊆ A, then

{A→ B,C → D} ≡ {C → D,A→ B-AD} (Opt-Eq)

To compute the unique direct-optimal implicational system equivalent

to Σd, the sequence (Co-Eq)+(Opt-Eq)+(Fr-Eq) is exhaustively applied.

If the application of (Opt-Eq) returns a trivial implication A → ∅, it is

removed from the output as we can see in Bertet-Nebut-Minimize.

Function Bertet-Nebut-Minimize(Σd)

input : A direct implicational system Σd

output: The direct-optimal basis Σdo equivalent to Σd

begin
Σdo := ∅
foreach A→ B ∈ Σd do

B′ := B

foreach C → D ∈ Σd do

if C = A then B′ := B′ ∪D
if C  A then B′ := B′ rD

B′ := B′ rA
if B′ 6= ∅ then add A→ B′ to Σdo

return Σdo

Bertet-Nebut-DO computes the direct-optimal basis Σdo generated from

an arbitrary implicational system Σ. Firstly, it computes the set of im-

plications Σd using Bertet-Nebut-Direct and then minimizes Σd using

Bertet-Nebut-Minimize.
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Function Bertet-Nebut-DO(Σ)

input : An implicational system Σ

output: The direct-optimal basis Σdo equivalent to Σ

begin
Σd := Bertet-Nebut-direct(Σ)

Σdo := Bertet-Nebut-Minimize(Σd)

return Σdo

The following theorem ensures the correctness of the method above.

Theorem 2.2.9 (Bertet et al. [12]). Let Σ be an implicational system.

(i) Bertet-Nebut-Direct(Σ) is an equivalent direct implicational sys-

tem.

(ii) Bertet-Nebut-DO(Σ) is the unique direct-optimal basis that is equiv-

alent to Σ.

Example 2.2.10. Let Σ be the implicational system considered in Exam-

ple 2.1.7:

Σ = { OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

Gr77 NA MASC OPEC→ LLDC ACP,

Gr77 NA LLDC OPEC→ MASC ACP}

In the first step, Bertet-Nebut-DO builds the following direct implicational

system with 31 implications:
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Σd = {NA→ Gr77, OPEC Gr77 NA LLDC→ MASC ACP,

MASC→ Gr77, OPEC Gr77 NA MASC→ LLDC ACP,

OPEC→ Gr77 NA, OPEC NA LLDC→ MASC ACP,

OPEC→ Gr77, OPEC NA MASC→ LLDC ACP,

OPEC MASC→ LLDC ACP, OPEC Gr77 NA LLDC→ Gr77,

OPEC MASC→ Gr77, OPEC Gr77 NA MASC→ MASC ACP,

OPEC LLDC→ MASC ACP, OPEC NA MASC LLDC→ MASC ACP,

OPEC NA LLDC→ Gr77, OPEC NA LLDC→ LLDC ACP,

OPEC MASC LLDC→ LLDC ACP, OPEC NA MASC LLDC→ Gr77,

OPEC NA MASC→ Gr77, OPEC Gr77 NA MASC→ Gr77,

OPEC LLDC→ Gr77, OPEC Gr77 NA MASC LLDC→ LLDC ACP,

OPEC MASC LLDC→ MASC ACP, OPEC Gr77 NA MASC LLDC→ MASC ACP,

OPEC MASC→ MASC ACP, OPEC NA MASC LLDC→ LLDC ACP,

OPEC MASC LLDC→ Gr77, OPEC Gr77 NA LLDC→ LLDC ACP,

OPEC LLDC→ LLDC ACP, OPEC Gr77 NA MASC LLDC→ LLDC ACP,

OPEC NA MASC→ MASC ACP}

After this, the function returns, in the second step, the following direct-

optimal basis, having 5 implications:

Σdo = {OPEC→ NA Gr77, LLDC OPEC→ MASC ACP,

NA→ Gr77, MASC OPEC→ ACP LLDC,

MASC→ Gr77}

Notice that, in the first step, the function calculates a lot of redundant

implications.

Some of this redundancy could have been avoided if we had worked with

unitary implications. For this reason, Bertet et al. later introduced a new

method that we describe below.

2.2.1 Unitary Direct-Optimal bases

In the same way as in other fields, the use of formulas in a given normal form

allows the design of simpler methods with a better performance than those

working with arbitrary expressions (e.g. the use of Horn clauses in Logic

Programming). Thus, in FCA the usual normal form to improve the meth-

ods to get the direct-optimal basis is the unitary implication. Nevertheless,

the advantages provided by the limited languages have a counterpart: a

significant growth of the input set.
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After Bertet et al. [12] proposed the method that we have just described,

Bertet proposed a second method which works with unitary implicational

systems [9]. The main advantage in the use of general implicational sys-

tems is the minor size of the input implication set while the use of unitary

implicational system allows a better performance of the second method.

They provided versions of the above functions for unit implicational

systems. First, the method calculates a direct unitary implicational system

Σd by exhaustively applying the following inference rule:

Pseudo Transitivity [PsTran]:
A→ b, Cb→ d

AC → d
, if d 6= b and d 6∈ A

This procedure is carried out by Bertet-Unit-Direct.

Function Bertet-Unit-Direct(Σ)

input : A proper unitary implicational system Σ

output: A direct unitary implicational system Σd equivalent to Σ

begin
Σd := Σ

foreach A→ b ∈ Σd do

foreach Cb→ d ∈ Σd do

if b 6= d and d 6∈ A then add AC → d to Σd

return Σd

The second stage is strongly based on a slight derivation of the Arm-

strong’s [Augm] Rule:

Unit Augmentation [UnAugm]:
C → b

A→ b
, if C ( A

The above rule is indeed used to narrow the implications. It leads to the

following equivalence, which is a particular case of (Co-Eq):

If C ( A then {A→ b, C → b} ≡ {C → b} (Na-Eq)

Unlike the previous case, we do not have to check whether the conclusion

is empty. Working with unitary implicational system, we do not remove

attributes from the conclusion so, it will never be the empty set.
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Function Bertet-Unit-Minimize(Σd)

input : A direct unitary implicational system Σd

output: The direct-optimal unitary basis Σdo equivalent to Σ

begin
Σdo := Σd

foreach A→ b ∈ Σdo do

foreach C → b ∈ Σdo do

if A  C then remove C → b from Σdo

return Σdo

The above functions were used in [9] to build a method which trans-

forms an arbitrary unitary implicational system into an equivalent unitary

implicational system with the same properties that the direct-optimal basis

for general implicational systems. Since any non-unitary implicational sys-

tem can be trivially turned into an unitary implicational system, we may

encapsulate both functions to provide another method to get the direct-

optimal basis from an arbitrary implicational system. Thus, the following

function, which solves the problem proposed in this section, incorporates

a first step to convert any implicational system into its equivalent unitary

implicational system and concludes with the converse switch.

Function Bertet-Unit-DO(Σ)

input : An implicational system Σ

output: The direct-optimal basis Σdo equivalent to Σ

begin
Σu := {A→ b | A→ B ∈ Σ and b ∈ B rA}
Σud := Bertet-Unit-Direct(Σu)

Σudo := Bertet-Unit-Minimize(Σud)

Σdo :=
{
A→ B | B = {b | A→ b ∈ Σudo} and B 6= ∅

}
return Σdo

The following theorem ensures the correctness of the Bertet-Unit-DO

function.

Theorem 2.2.11 (Bertet [9]). Let Σ be an implicational system. The
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output of Bertet-Unit-DO(Σ) is the unique direct-optimal implicational

system equivalent to Σ.

We illustrate the method in the following example:

Example 2.2.12. The unitary implicational system equivalent to the im-

plicational system showed in Example 2.1.7 is:

Σu = {OPEC→ Gr77,

OPEC→ NA,

NA→ Gr77,

MASC→ Gr77,

Gr77 NA MASC OPEC→ LLDC,

Gr77 NA MASC OPEC→ ACP,

Gr77 NA LLDC OPEC→ MASC,

Gr77 NA LLDC OPEC→ ACP}

First, from this set with 8 unitary implications, the following direct unitary

implicational system with 26 implications is generated by Bertet-Unit-Direct:

Σud = {OPEC→ Gr77, OPEC→ NA,

NA→ Gr77, MASC→ Gr77,

OPEC Gr77 NA MASC→ LLDC, OPEC Gr77 NA MASC→ ACP,

OPEC Gr77 NA LLDC→ MASC, OPEC Gr77 NA LLDC→ ACP,

OPEC NA LLDC→ ACP, OPEC NA MASC LLDC→ ACP,

OPEC Gr77 LLDC→ ACP, OPEC NA LLDC→ MASC,

OPEC Gr77 LLDC→ MASC, OPEC NA MASC→ ACP,

OPEC Gr77 MASC→ ACP, OPEC NA MASC→ LLDC,

OPEC Gr77 MASC→ LLDC, OPEC MASC LLDC→ ACP,

OPEC NA LLDC→ Gr77, OPEC MASC→ ACP,

OPEC MASC→ LLDC, OPEC LLDC→ ACP,

OPEC LLDC→ MASC, OPEC LLDC→ Gr77,

OPEC NA MASC→ Gr77, OPEC MASC→ Gr77}

Notice that in this case, the intermediate direct basis is smaller than those

presented in Example 2.2.10 for non-unitary implicational systems. Now,

Bertet-Unit-Minimize is applied, returning the unitary direct-optimal ba-

sis with 8 unitary implications.

Σudo = {OPEC→ Gr77,

OPEC→ NA,

NA→ Gr77,

MASC→ Gr77,

OPEC, MASC→ LLDC,

OPEC, MASC→ ACP,

OPEC, LLDC→ MASC,

OPEC, LLDC→ ACP}

When it is turned into a non-unitary implicational system, we reach the

direct-optimal basis of the Example 2.2.10.
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An analysis of both methods provides a set of interesting conclusions

which motivate the design of new methods proposed in this work (see Chap-

ter 4). Although the use of unitary implicational systems causes a signif-

icant growth of the set of implications with respect to non-unitary ones

(from 5 to 8 in the cardinality and from 19 to 28 in the size, for the case of

the implicational system of Example 2.1.7), the method based on unitary

implicational system shows a better performance. One reason is that the

intermediate direct basis built after the first step is smaller in the unitary

implicational system method than in the non-unitary implicational system

one (26 vs 31 in cardinality and 95 vs 144 in size respectively). This is

a key point in the better performance of the unitary implicational system

method because the size of the implicational set has a direct impact on it

due to a decreasing number of applications of the rules and equivalences.

Thus, the total number of applications is 57 in the case of the non-unitary

implicational system method and 36 in the unitary one, i.e. a reduction

of 63%. This significant difference is due to the fact that unitary impli-

cations have a lower possibility to fit the set of conditions imposed in the

equivalences, which are based on the operators of inclusion and intersec-

tion. Thus, the growth induced by the use of unitary implicational systems

provides a greater number of reading of the implication set, but the lower

number of further set transformations balances out such initial growth.

Nevertheless, the growth in the use of unitary implicational systems

deserves further attention. A right direction to improve even more the

efficiency of these methods may be to reduce the cardinality/size of the

intermediate direct basis, which strongly influences the cost of the second

stage. Thus, our aim is to design a new method which combines the best of

these two approaches: to work with implicational systems so that we limit

the cardinality and size of the set of implications at any time and to define

new rules which reduce the number of applications, avoiding a growth in

the first stage that have to be narrowed in the second stage.

In Table 2.1 we summarize the performance of the methods presented

in [12] and [9] over Example 2.1.7. This table shows the cardinality and the

size of the implicational set at each stage of the methods and the number
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Bertet-Nebut-DO

|Σ| ‖Σ‖ |Σd| ‖Σd‖ Num. Rules Applied |Σdo| ‖Σdo‖
5 19 31 144 57 5 15

Bertet-Unit-DO

|Σ| ‖Σ‖ |Σd| ‖Σd‖ Num. Rules Applied |Σdo| ‖Σdo‖
8 28 26 95 36 8 20

Table 2.1: Comparison of Bertet-Nebut-DO and Bertet-Unit-DO.

of applications of the rules throughout their execution.

2.3 Ordered-direct bases and D-bases

Adaricheva et al. [3] introduce an alternative approach to directness, named

ordered-directness. For Σ = {A1 → B1, . . . , An → Bn} being an indexed

implicational set, the notion of ordered-direct implicational system is in-

troduced by replacing the above function πΣ by a new function

ρΣ : 2M → 2M with ρΣ = πΣn ◦ · · · ◦ πΣ2 ◦ πΣ1 (2.2)

where Σi = {Ai → Bi} for each 1 ≤ i ≤ n. The operator ρΣ will be named

ordered iteration of Σ.

Both operators, πΣ and ρΣ, have the following common features: they

have the same computational cost and they are isotone and extensive.

Moreover, for all X ⊆ M , we have that πΣ(X) ⊆ ρΣ(X). This fact leads

to a faster fixpoint convergence of the chain X, ρΣ(X), ρ2
Σ(X), ρ3

Σ(X), . . .

Following the same scheme used in the definition of the direct implica-

tional system, a set Σ is named an ordered-direct implicational system if

ρΣ is idempotent.

Definition 2.3.1. Let Σ = {Ai → Bi | 1 ≤ i ≤ n} be an indexed im-

plicational system. Σ is said to be ordered-direct if X+
Σ = ρΣ(X) for all

X ⊆M .
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Note that any direct implicational system is ordered-direct, but the con-

verse assertion is not always true as the following example illustrates.

Example 2.3.2. Consider the following implicational system [3]:

Σ = {5→ 4, 23→ 4, 24→ 3, 34→ 2,

14→ 235, 25→ 1, 35→ 1, 123→ 5}

This set is ordered-direct, but it is not direct because

πΣ({3, 5}) = {1, 3, 4, 5}  ρΣ({3, 5}) = {3, 5}+Σ = {1, 2, 3, 4, 5}.

Adaricheva et al. [3] introduced another definition of basis strongly

based on the ρΣ operator, called D-basis. It is a specific kind of ordered-

direct basis. In that work, they consider a closure operator as the starting

point and assume certain property without loss of generality. This property

is rewritten in terms of implicational systems as follows:

Remark 2.3.3. In the rest of this chapter, we will assume that the impli-

cational system Σ satisfies ∅+
Σ = ∅ and the following property:

for all x, y ∈M, if {x}+Σ = {y}+Σ then x = y. (2.3)

In order to facilitate the readability of the definition of D-basis, we

introduce a new operator.

Definition 2.3.4. Let Σ be an implicational system on M . We define (−)∗Σ
as a self-map on 2M such that X∗Σ =

⋃
x∈X
{x}+Σ for all X ⊆M .

For the sake of readability, for each element x ∈M , we write x+
Σ instead

of {x}+Σ and x∗Σ instead of {x}∗Σ.

The idea underlying this closure operator is to conceive the closure

defined as the union of all the “unit closures”. Obviously, X∗Σ ⊆ X
+
Σ for all

X ⊆M .

Example 2.3.5. Considering the implicational system Σ given in Exam-

ple 2.1.7, we show how (−)∗Σ works:
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{MASC,OPEC}∗Σ = MASC+
Σ∪OPEC+

Σ ={MASC,Gr77}∪{OPEC,Gr77,NA}=

= {MASC,Gr77,OPEC,NA} ⊆ {MASC,OPEC}+Σ = M

{NA,MASC}∗Σ = NA+
Σ ∪MASC+

Σ = {NA,Gr77} ∪ {MASC,Gr77} =

= {NA,MASC,Gr77} = {NA,MASC}+Σ

The following lemma ensures that this new operator is also a closure

operator.

Lemma 2.3.6. For any implicational system Σ, the mapping (−)∗Σ is a

closure operator.

Proof. i) Extensiveness: It is straightforward that X ⊆ X∗Σ because

x ∈ x+
Σ for each x ∈ X.

ii) Isotonicity: If X ⊆ Y ⊆M , then X∗Σ =
⋃
x∈X

x+
Σ ⊆

⋃
x∈Y

x+
Σ = Y ∗Σ .

iii) Idempotency: We only have to prove (X∗Σ)∗Σ ⊆ X∗Σ because the other

inclusion is a consequence of extensiveness and isotonicity. Consider

z ∈ (X∗Σ)∗Σ. Then, there exist y ∈ X∗Σ and x ∈ X such that z ∈ y+
Σ

and y ∈ x+
Σ . Therefore, since (−)+

Σ is a closure operator, one has

z ∈ y+
Σ ⊆ (x+

Σ)+
Σ = x+

Σ ⊆ X∗Σ.

The notion of minimal proper covers1, which appears in [3], can be

redefined in terms of (−)+
Σ and (−)∗Σ.

Definition 2.3.7. Let Σ be an implicational system, X ⊆ M and y ∈ M .

The set X is said to be a proper cover of y with respect to Σ if y ∈ X+
ΣrX

∗
Σ.

It is denoted by the expression y ∼̇ΣX.

1Although in [3] it was introduced with the name of minimal cover, here we name it

minimal proper cover because in this work we further generalize the notion of cover in

Chapter 4.
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Example 2.3.8. Let M = {1, 2, 3, 4, 5} be a set of attributes and Σ the

implicational system extracted from [11], which is equivalent to the one

given in Example 2.3.2.

Σ = {5→ 4, 23→ 4, 24→ 3,

34→ 2, 14→ 235, 25→ 13,

35→ 12, 15→ 23, 123→ 5}

Consider, for instance, 4 ∈M . We have that:

4 ∼̇Σ{2, 3} because 4 ∈ {2, 3}+Σ r {2, 3}∗Σ = {2, 3, 4}r {2, 3} = {4}.

4 ∼̇Σ{1, 2, 3} because 4 ∈ {1, 2, 3}+Σ r {1, 2, 3}∗Σ = M r {1, 2, 3} = {4, 5}.

4 6∼̇Σ{1, 5} because 4 6∈ {1, 5}+Σ r {1, 5}∗Σ = M r {1, 4, 5} = {2, 3}.

The following table shows the sets of proper covers of each attribute:

Attribute Proper Covers

1 {2, 5}, {3, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {2, 3, 4, 5}

2
{1, 4}, {1, 5}, {3, 4}, {3, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {3, 4, 5}, {1, 3, 4, 5}

3
{1, 4}, {1, 5}, {2, 4}, {2, 5}, {1, 2, 4}, {1, 2, 5},
{1, 4, 5}, {2, 4, 5}, {1, 2, 4, 5}

4 {2, 3}, {1, 2, 3}

5 {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}

Definition 2.3.9. Let Σ be an implicational system, X ⊆ M and y ∈ M .

The set X is said to be a minimal proper cover of y with respect to Σ, if

the following conditions hold:

(i) y ∼̇ΣX.

(ii) y ∼̇Σ Z and Z ⊆ X∗Σ imply X ⊆ Z.
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Example 2.3.10. For the implicational system introduced in Example 2.3.8,

the following table shows the minimal proper covers of each attribute.

Attribute Minimal Proper Covers

1 {2, 5}, {3, 5}

2 {1, 4}, {3, 4}

3 {1, 4}, {2, 4}

4 {2, 3}

5 {1, 4}, {1, 2, 3}

The existence of a minimal proper cover is guaranteed by the following

lemma. Specifically, it ensures that every proper cover can be reduced to

a minimal proper cover under the subset relation combined with the (−)∗Σ
operator.

Lemma 2.3.11 (Adaricheva et al. [3]). Let Σ be an implicational system,

X ⊆M and y ∈M . If x ∼̇ΣX, then there exists Y ⊆ X∗Σ such that x ∼̇Σ Y

and Y is a minimal proper cover for x.

These ideas lead to the definition of the implicational system strongly

based on the minimal proper covers given in [3], which was named there

the D-basis.2

Definition 2.3.12 (Adaricheva et al. [3]). Let Σ be a reduced implicational

system. The D-basis for Σ is the pair 〈Σa,Σn〉 where

Σa = {y → x | y ∈M, x ∈ y+
Σ , x 6= y}

Σn = {X → x | X ⊆M, x ∈M, X is a minimal proper cover of x}

Example 2.3.13. The D-basis associated with the implicational system

given in Example 2.3.8 is the the pair 〈Σa,Σn〉 where Σa = {5→ 4} and

Σn = {23→ 4, 24→ 3, 34→ 2, 14→ 2,

14→ 3, 14→ 5, 25→ 1, 35→ 1, 123→ 5}
2The name is justified because it is a subset of the so-called dependence relation basis

(briefly, D-relation), which is a relevant concept in the study of free lattices [23].



60 CHAPTER 2. BASES AND DIRECTNESS

The subscript “a” is justified because implications in Σa are atomic

in the sense that both premise and conclusion are singletons, atoms of

M . According to its cardinality, both sets are unitary. But we have not

used this term to avoid confusion with the unitary implications previously

introduced in Section 1.3. Implications in Σn have unitary conclusion but

n-ary premise.

The following theorem summarizes the properties of the D-bases.

Theorem 2.3.14 (Adaricheva et al. [3]). Let Σ be an implicational system.

If 〈Σa,Σn〉 is its D-basis and ΣD is the set Σa ∪ Σn ordered in such a way

that implications from Σa goes before than implications from Σn, then ΣD

is an ordered-direct basis such that ΣD ≡ Σ.

In addition, if Σudo is its unitary direct-optimal basis, ΣD ⊆ Σudo.

Notice that the D-basis belongs to the family of the unit bases: impli-

cations have unitary conclusions. Based on this result, the authors propose

there a quadratic method to extract ΣD from Σudo.

Now, we justify why it can be done without loss of generality. Fol-

lowing the work of Adaricheva et al. [3], we have done an assumption in

Remark 2.3.3. On the one hand, given an implicational system Σ on M , if

there exist x, y ∈M such that x 6= y but x+
Σ = y+

Σ , then we could compute a

new implicational system Σ′ by replacing each instance of y by x. It is easy

to see that Σ ≡ {x → y, y → x} ∪ Σ′. Therefore, by iteratively applying

this transformation, any implicational system can be turned into an impli-

cational system that satisfies the property (2.3) described in Remark 2.3.3.

In addition, this transformation can be made in polynomial time.

Therefore, given an arbitrary implicational system Σ, it can be trans-

formed into another one, Σ′, that satisfies (2.3). Suppose M ′ is the set of

attributes that remains in Σ′. Then, we can compute the D-basis, 〈Σa,Σn〉,
that is equivalent to Σ′. Finally, a new ordered implicational system Σod is

obtained as follows:{
x→ y, y → x | x ∈M ′, y ∈M rM ′ such that x+

Σ = y+
Σ

}
∪ Σa ∪ Σn

It is easy to prove that Σod is an ordered-direct basis such that Σod ≡ Σ.
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On the other hand, given an implicational system Σ on M , if ∅+
Σ = A

where A is a non-empty set of attributes, then we could compute a new

implicational system Σ′ by removing all the attributes in A. It is easy to

see that Σ ≡ {∅→ A} ∪ Σ′. Thus, if 〈Σa,Σn〉 is the equivalent D-basis to

Σ′, then the one equivalent to Σ is obtained as follows:

{
∅→ ∅+

Σ

}
∪ Σa ∪ Σn

We have summarized the previous works about the direct-optimal basis

and the D-basis. Notice that, up to now, the best way to obtain both bases

is to manage unitary implications. However, in this work we propose an

alternative way strongly based on non-unitary implications, which improves

the efficiency of the computation of these bases.

The two following chapters are devoted to the design of novel algo-

rithms computing the direct-optimal basis as well as the D-basis. They are

thoroughly studied in Chapter 3 and Chapter 4, respectively.





Chapter 3

Computing Direct-Optimal

Bases





T
he time complexity of the methods for computing the direct-optimal

basis from an arbitrary implicational system is exponential in the

worst case with respect to the input, as stated in [10]. This issue

motivates the idea of obtaining other methods that, without avoiding the

intrinsic exponential complexity of the problem, provides a better perfor-

mance than previous works.

This chapter is focused on the development of new methods to com-

pute the direct-optimal basis from an arbitrary non-unitary implicational

system. Our aim is the development of methods that avoid generating

extra implications and to take advantage of the benefits offered by the non-

unitary implicational systems about the size of the implicational systems.

The methods presented in this chapter are the result of a collaboration

with Karell Bertet and have been published in [48,49].

3.1 Simplified implicational systems

Up to now, the design of logic-based methods to compute the direct-optimal

basis from an arbitrary implicational system has shown to be unsuccessful

because of the great number of applications of inference rules, which usu-

ally produce redundant attributes in both sides of the new implications.

These superfluous attributes can be safely removed from the right-hand

65
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side avoiding, in this way, extra applications of the inference rules in the

future. This is the problem that Bertet et al. found in Bertet-Nebut-DO and

tried to solve in Bertet-Unit-DO [9] by using unitary implicational systems.

But, using unitary implicational systems has implicit an increasing of the

input size that we would like to avoid. Let us show an example to illustrate

this situation:

Example 3.1.1. Consider the implicational system Σ from Example 2.1.7.

The second and fifth implications are respectively:

MASC→ Gr77

Gr77 NA LLDC OPEC→ MASC ACP

These implications satisfy the precondition of the rule [Ovl] and, after its

application, we obtain:

NA LLDC OPEC MASC→ MASC ACP

Notice that MASC attribute is redundant and it will cause new applications

of the rule [Ovl] when the method continues.

Our goal here is to design a new method admitting arbitrary implica-

tional systems to provide a more compact representation of the new im-

plicational systems. The use of the paradigm of reduction to achieve a

method working with (not necessarily unitary) implicational systems re-

duces the extra coupling of implications as well. To this end, we propose

to work with reduced implications, which do not have redundant attributes

in their right-hand sides. Before describing the new methods, we introduce

several definitions that we will use hereafter.

Definition 3.1.2. An implicational system Σ is said to be reduced if the

following condition holds:

A→ B ∈ Σ implies B 6= ∅ and A ∩B = ∅. (3.1)

A reduced implicational system Σ is said to be compact if, in addition, the

following condition holds:

A→ B,A→ C ∈ Σ implies B = C. (3.2)
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Definition 3.1.3. An implicational system Σ is said to be left-simplified

if it is compact and the following condition holds:

A→ B,C → D ∈ Σ and A  C imply C ∩B = ∅. (3.3)

An implicational system Σ is said to be right-simplified if it is compact and

the following condition holds:

A→ B,C → D ∈ Σ and A  C imply D ∩B = ∅. (3.4)

An implicational system Σ is said to be simplified if it is left- and right-

simplified.

Note that a set is a reduced implicational system if non-trivial informa-

tion is included in the conclusions; it is compact if, in addition, there are no

two implications with the same premise; and it is a simplified implicational

system if the Simplification equivalence (Si-Eq) cannot remove redundant

information. Clearly, to be simplified implies to be compact, and to be

compact implies to be reduced. Notice that an implicational system is sim-

plified if the conclusions in the implications are non-empty and equivalences

in Theorem 1.3.14 do not allow to remove redundant attributes.

Now, we introduce a function called Simplify, which transforms any

implicational system into an equivalent simplified one.

Theorem 3.1.4. For any implicational system Σ, Simplify(Σ) ends and,

if Σs is the output, then Σ ≡ Σs and Σs is a simplified implicational system.

Proof. First, we prove Σ ≡ Σs. The function, in Line #1, applies (Fr-Eq)

to the formulas A→ B ∈ Σ such that B 6⊆ A, and discards the rest because

they are axioms (i.e. they always hold because they are implications with

the empty set as conclusion). The following part of Simplify is a loop in

which the function exhaustively applies (Co-Eq) and (Si-Eq) equivalences

until a fixpoint is reached. Specifically, each step of the loop copies each

implication A→ B from Σs to Σ once it has been simplified by comparison

with the implications that have been previously added to Σ. Thus, for each

C → D ∈ Σ, the function distinguishes the following situations:
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Function Simplify(Σ)

input : An implicational system Σ

output: A simplified implicational system Σs equivalent to Σ

begin

#1 Σ := {A→ B-A | A→ B ∈ Σ, B 6⊆ A}
repeat

Σs := Σ; Σ := ∅
foreach A→ B ∈ Σs do

Γ := ∅
foreach C → D ∈ Σ do

#2 if C ⊆ A ⊆ C ∪D or A ⊆ C ⊆ A ∪B then

A := A ∩ C; B := B ∪D
else

#3 if A  C then

if D 6⊆ B then add C-B → D-B to Γ

else

#4 if C  A then A := ArD; B := B rD
add C → D to Γ

#5 if B = ∅ then Σ := Γ else Σ := Γ ∪ {A→ B}

until Σs = Σ

return Σs

Line #2: It considers two cases:

(i) If C ⊆ A ⊆ C ∪ D then, applying (Si-Eq) and (Co-Eq), and

taking into account that there are no common attributes between

premises and conclusions in the implications, one has

{A→ B, C → D} ≡
≡ {A-D → B-D,C → D} = {C → B-D,C → D}
≡ {C → (B-D)D} = {C → BD}

(ii) If A ⊆ C ⊆ A ∪ B, by following a similar reasoning, one has

{A→ B,C → D} ≡ {A→ BD}.

In both cases {A → B,C → D} ≡ {E → BD} where E = A ∩ C.
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Therefore, the function replaces A → B by E → BD and removes

C → D from Σ.

Line #3: When A  C but C 6⊆ A∪B, the function distinguishes two cases

again:

(i) If D ⊆ B, by (Si-Eq) and knowing that an implication with an

empty conclusion always holds, one has

{A→ B,C → D} ≡ {A→ B,C-B → D-B} ≡ {A→ B}

Then, Simplify removes C → D from Σ.

(ii) Otherwise, using (Si-Eq), C → D is replaced by C-B → D-B

in Σ.

Line #4: In the case of C  A but A 6⊆ C ∪ D, by (Si-Eq), one has

{A→ B,C → D} ≡ {A-D → B-D,C → D}. Therefore, the function

replaces A→ B by A-D → B-D and does not modify C → D in Σ.

The last step in the loop (Line #5) includes the simplified implication

A→ B to Σ, only when B 6= ∅.

Therefore, at the end of each iteration Σs ≡ Σ. Finally, the loop ends,

because the size of Σs strictly decreases in each iteration, and, when a

fixpoint is reached, one has that (Fr-Eq), (Co-Eq) and (Si-Eq) does not

modify any pair of implications in Σs. That is, Σs is a simplified implica-

tional system.

Observe that the complexity of Simplify, in the worst case, is ‖Σ‖·|Σ|2.

3.2 doSimp: A first Simplification-based method

for computing direct-optimal bases

In this section, we introduce Algorithm 3.1, called doSimp, having three

main stages, each one consisting of the transformation of a previous impli-

cational system into an equivalent one fulfilling some additional property.



70 CHAPTER 3. COMPUTING DIRECT-OPTIMAL BASES

Algorithm 3.1: doSimp
input : An implicational system Σ

output: The direct-optimal basis Σdo

begin

Σs := Simplify(Σ)

Σdr := Complete(Σs)

Σdo := Optimize(Σdr)

return Σdo

Notice that the condition being reduced is a natural one in the original

specification of the problem, but the inspiration of the method proposed in

this section is to maintain intermediate implicational systems reduced at

any time by means of the application of inference rules that always produce

non-redundant implications. Then, the first stage of the algorithm executes

Simplify to make the implicational system simplified.

In the second stage of doSimp, Σs is transformed into an equivalent

direct reduced implicational system by exhaustively applying the following

rule 1, called strong Simplification rule,

[sSimp]
A→ B,C → D

A(C-B)→ D-(AB)
, if B ∩ C 6= ∅ 6= D r (A ∪B)

In order to prove that Σdr is a direct reduced implicational system which is

equivalent to Σs, firstly the following lemma ensures the soundness of the

Strong Simplification rule.

Lemma 3.2.1. [sSimp] is a derived inference rule.

Proof. Assume B ∩ C 6= ∅ 6= D r (A ∪B). The following sequence proves

the soundness of [sSimp]:

σ1: A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: B → B ∩ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Inc]

σ3: A→ B ∩ C . . . . . . . . . . . . . . . . . . . . . . by σ1, σ2 and [Trans]

1Notice that, if the implicational system is reduced, it is not necessary to put brackets

in the premise A(C-B) because (AC)-B = A(C-B).
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σ4: C-B → C-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref]

σ5: A(C-B)→ C . . . . . . . . . . . . . . . . . . . . . . . . . by σ3, σ4, [Comp],

and (B ∩ C)(C rB) = C.

σ6: C → D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis

σ7: A(C-B)→ D . . . . . . . . . . . . . . . . . . . . by σ5, σ6 and [Trans]

σ8: A(C-B)→ D-(AB) . . . . . . . . . . . . . . . . . . by σ7, and [Frag]

Function Complete(Σs)

input : A simplified implicational system Σs

output: A direct reduced implicational system Σdr equivalent to Σs

begin

Σdr := Σs

Γ := ∅
repeat

Σdr := Σdr ∪ Γ

Γ := ∅
foreach A→ B ∈ Σdr do

foreach C → D ∈ Σdr do

if B ∩ C 6= ∅ 6= D r (A ∪B) then

σ :=
(
AC-B → D-(AB)

)
if σ /∈ Σdr then add σ to Γ

until Γ = ∅
return Σdr

The implicational system Σdr in doSimp, which is the output of Complete

when it is applied to a simplified implicational system Σs, is the smallest set

such that Σs ⊆ Σdr and it is closed with respect to [sSimp]. The following

theorem characterizes this implicational system.

Theorem 3.2.2. For any simplified implicational system Σs, Complete(Σs)

ends and, if Σdr is the output, then Σdr ≡ Σs and Σdr is a direct reduced

implicational system.
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Proof. Since Σdr is the smallest set such that Σs ⊆ Σdr and it is closed

w.r.t. [sSimp], by Lemma 3.2.1, Σdr ≡ Σs. Moreover, Σdr is reduced

because [sSimp] preserves this property. Finally, we prove the directness.

By Lemma 2.2.2, it is sufficient to prove that πΣdr
(πΣdr

(X)) ⊆ πΣdr
(X)

for all X ⊆ M . Consider Y = πΣdr
(X) and y ∈ πΣdr

(Y ). We will prove

y ∈ πΣdr
(X).

First, y ∈ πΣdr
(Y ) implies A→ B ∈ Σdr exists with A ⊆ Y and y ∈ B

and, since Σdr is a reduced implicational system, one has y ∈ B r A. If

A ⊆ X, then y ∈ πΣdr
(X). Otherwise, if A 6⊆ X, there exists a set of

implications {Ai → Bi | 1 ≤ i ≤ k} ⊆ Σdr such that A r X ⊆
⋃

1≤i≤k Bi

and Ai ⊆ X for all 1 ≤ i ≤ k. Assume without loss of generality that2

(ArX) ∩Bi 6= ∅ and y /∈ Bi rX 6⊆
⋃

1 ≤ j ≤ k

j 6= i

Bj (3.5)

for all 1 ≤ i ≤ k. Consider now:(
C1 → D1

)
=
(
A1(A-B1)→ B-(A1B1)

)
and(

Ci → Di

)
=
(
Ai(Ci−1-Bi)→ Di−1-(CiDi)

)
for all 1 < i ≤ k.

By (3.5), A∩B1 6= ∅, D1 6= ∅, Ci−1rBi 6= ∅ and Di 6= ∅ for all 1 < i ≤ k.

Therefore, {Ci → Di | 1 ≤ i ≤ k} ⊆ Σdr because Σdr is closed with respect

to [sSimp]. Finally, it is easy to see that

Ck ⊆
⋃

1≤i≤k
Ai ∪

(
Ar

( ⋃
1≤i≤k

Bi
))
⊆

⋃
1≤i≤k

Ai ∪
(
Ar

(
ArX

))
⊆ X

and y ∈ Dk = B r
⋃

1≤i≤k(Ai ∪Bi) and, therefore, y ∈ πΣdr
(X).

The following theorem ensures that doSimp transforms an arbitrary

implicational system into its equivalent direct-optimal basis.

2First, y /∈ Bi rX can be assumed because, otherwise, one already has y ∈ πΣdr (X).

Second, if there exists 1 ≤ i ≤ k such that (ArX)∩Bi = ∅ or BirX ⊆
⋃

1≤j≤k,j 6=iBj ,

then {Aj → Bj | 1 ≤ j ≤ k, j 6= i} can be considered instead of {Ai → Bi | 1 ≤ i ≤ k}.
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Function Optimize(Σdr)

input : A direct reduced implicational system Σdr

output: The direct-optimal basis Σdo equivalent to Σdr

begin
Σdo := ∅
foreach A→ B ∈ Σdr do

foreach C → D ∈ Σdr do

#1 if C  A then B := B rD
#2 if C = A then B := B ∪D

#3 if B 6= ∅ then add A→ B to Σdo

return Σdo

Theorem 3.2.3. For any implicational system Σ, Algorithm 3.1 (doSimp)

ends and, if Σdo is the output, then Σdo is the direct-optimal basis that

satisfies Σdo ≡ Σ.

Proof. From Theorems 3.1.4 and 3.2.2, one has Σdr is a direct reduced

implicational system such that Σdr ≡ Σ. First, obviously, Optimize(Σdr)

ends in |Σdr|2 steps. Second, if Σdo is the output of Optimize(Σdr), it is

straightforward that πΣdo
(X) = πΣdr

(X) for all X ⊆ M . Therefore, by

Lemma 2.2.2, Σdo is a direct implicational system. Now, by Theorem 2.2.6,

Σdo is direct-optimal if and only if the following properties hold:

(i) If A→ B ∈ Σdo then A ∩B = ∅.

(ii) If A→ B,C → D ∈ Σdo and C  A then B ∩D = ∅.

(iii) If A→ B,A→ B′ ∈ Σdo then B = B′.

(iv) If A→ B ∈ Σdo then B 6= ∅.

Condition (i) is ensured because Σdr is a reduced implicational system.

Conditions (ii), (iii) and (iv) are fulfilled with the transformations done in

lines #1, #2 and #3 respectively. Finally, Σdo ≡ Σdr is a consequence of

(Co-Eq) and

{A→ B,C → D} ≡ {A→ B,C → D-B}

when A  C and A ∩B = ∅.
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3.2.1 The performance of doSimp

This section begins with an illustrative example that shows some informa-

tion about the execution of the method and, then, we present the analysis

of our experimental evaluation in order to obtain the conclusions on its

performance in practice.

Example 3.2.4. Consider the implicational system from Example 2.1.7:

Σ = {OPEC→ Gr77 NA,

MASC→ Gr77,

NA→ Gr77,

Gr77 NA MASC OPEC→ LLDC ACP,

Gr77 NA LLDC OPEC→ MASC ACP}

Simplify(Σ) returns the equivalent simplified implicational system Σs:

Σs = {OPEC → NA,

NA→ Gr77,

MASC→ Gr77,

LLDC OPEC→ MASC,

MASC OPEC→ ACP LLDC}

And Complete(Σs) returns the equivalent direct reduced implicational sys-

tem Σdr:

Σdr = {OPEC → NA,

NA→ Gr77,

MASC→ Gr77,

LLDC OPEC→ MASC,

MASC OPEC→ ACP LLDC,

OPEC→ Gr77,

LLDC OPEC→ Gr77,

LLDC OPEC→ ACP}

This set of implications is smaller (in size) than those built with the

previous methods presented in [12] and [9, 11]. The cardinality of Σdr is 8

whereas the previous methods return implicational systems with cardinality

26 (see Example 2.2.12) and 31 (see Example 2.2.10) for unitary implica-

tional systems and non-unitary ones, respectively (see Table 3.1).
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Algorithm |Σ| ‖Σ‖ |Σd| ‖Σd‖ N. Rules App. |Σdo| ‖Σdo‖
Bertet-Nebut-DO 5 19 31 144 57 5 15

Bertet-Unit-DO 8 28 26 95 36 8 20

doSimp 5 19 8 21 5 5 15

Table 3.1: Comparison of Bertet-Nebut-DO, Bertet-Unit-DO and doSimp.

Moreover, by applying [sSimp], we achieve an extra reduction in the

size of the implicational system, ‖Σdr‖ = 21. We also remark that the size

of Σdr is smaller than the size of the direct implicational systems obtained

with previous methods for both, unitary and non-unitary implicational sys-

tems, which were 95 and 144, respectively.

In the last stage the direct-optimal basis Σdo is obtained from Σdr:

Σdo = {OPEC → NA Gr77,

NA→ Gr77,

MASC→ Gr77,

LLDC OPEC→ MASC ACP,

MASC OPEC→ ACP LLDC}

Regarding the number of rules applied, the total number of rules which have

been applied is 5 whereas in the previous methods 57 and 36 rules were nec-

essary for non-unitary implicational systems and unitary ones, respectively.

In summary, the new method improves all the previously published ones

(see Table 3.1). The great improvement illustrated in the above example is

due to several issues. The key point in our method is to reduce the implica-

tions and ensure that the property of being reduced is always preserved at

any time dealing with smaller implicational systems than any other method

based on unitary implicational systems. It also narrows the input by us-

ing (Si-Eq) and by adding less implications to compute the intermediate

direct implicational system by using [sSimp]. As stated previously, this

was the main aim of the method presented in this section: to combine the

advantages of using both, unitary and non-unitary, implicational systems.

Now, an empirical study to get some practical conclusions on the per-

formance of the algorithm is presented. The methods of Bertet et al. [11,12]
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and our newly proposed method have been implemented in SWI-Prolog. In

particular, the input are sets of implications randomly generated, increas-

ing their size until the resources of the computer are exhausted when each

algorithm is executed.

BertetNebutDO BertetUnitDO doSimp

Ex. |Σ| Time Rules Time Rules Time Rules

1 10 535.67 33 242 36.68 2 778 0.001 15

2 10 100.86 27 568 55.52 2 781 0.002 47

3 10 63.65 22 929 6.20 1 471 0.003 54

4 10 1 741.84 62 901 318.77 5 210 0.003 62

5 10 428.08 32 658 30.26 2 348 0.009 166

6 10 412.92 31 280 102.64 4 022 0.003 51

7 10 4 458.85 74 664 224.05 5 009 0.017 358

8 10 11 606.55 90 602 1 113.77 7 925 0.020 442

9 10 755.77 38 970 167.04 4 100 0.010 118

10 10 281.43 34 805 30.7 2 538 0.011 194

11 15 7.920 6 484

12 15 0.067 1 068

13 15 0.194 1 965

14 15 2.191 2 838

Table 3.2: Measures of the better performance of doSimp compared with previous meth-

ods

Table 3.2 summarizes the results of the execution of the algorithms

when they compute the direct-optimal basis. For each method, there are

two columns showing the following information: the first one is the execu-

tion time in seconds; and the second one stores the number of couples of

implications in which a rule is applied. Table 3.2 shows that experiments

with 15 implications saturate machine resources for the previous methods.

In all parameters, the method proposed in this section obtains much better

results.
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3.3 SLgetdo: An improved method

In this section, we show a new algorithm, called SLgetdo, to compute

the direct-optimal basis. In the previous section we designed a method

which combines the advantages of Simplification Logic and of the methods

proposed by Bertet et al. Here, our aim is to design a new algorithm, which,

as we shall see, has a better performance than the previous ones. The main

improvement comes from a deeper analysis on the behavior of the inference

rules enclosed in the method.

The first difference between doSimp and the methods that can be found

in the literature is that it begins with a transformation of the input into an

equivalent simplified implicational system. It is done by using Simplify

and its aim is to reduce the size of the input as much as possible, with a

polynomial cost. As in the previous method, SLgetdo begins also applying

Simplify.

Once this function is applied, a simplified implicational system is ob-

tained, which, in particular, is a reduced one. Then, instead of applying

[Ovl], doSimp applies [sSimp] in order to maintain the property of be-

ing a reduced implicational system. This inference rule is used to achieve

the directness property, but with less cost. The main underlying idea is

also to reduce the size of the intermediate implicational system as much as

possible.

Then, once [sSimp] has been exhaustively applied, the method sim-

plifies the implicational system and returns the direct-optimal basis. This

last stage is also quadratic. Therefore, the exponential cost of the method

lies in the central stage.

This approach presents an intrinsic weak point: the larger output an

algorithm creates, the more time and memory space takes [53]. In such

approach, the big size of the direct implicational system created in the in-

termediate steps causes that the next step takes a long time to be executed.

In this section, we avoid the extra-cost of this computation. The key

is, as the following theorem shows, that direct-optimal basis is also a sim-

plified implicational system. Therefore, the method can be significantly
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improved if we reach the aim of maintaining the implicational system, in

all intermediate stages, being, not only a reduced one, but also a simplified

one.

Theorem 3.3.1. Let Σ be an implicational system.

(i) If Σ is direct and Σ′ is obtained from Σ by (left-to-right) applying

(Fr-Eq), (Co-Eq) or (Si-Eq), then Σ′ is also direct.

(ii) Σ is a direct-optimal basis if and only if Σ is a direct simplified im-

plicational system.

Proof. Item (i) is straightforward in the cases of (Fr-Eq) and (Co-Eq). For

(Si-Eq), we consider A → B,C → D ∈ Σ such that A ∩ B = ∅, A ⊆ C

and Σ′ =
(
Σ r {C → D}

)
∪ {C-B → D-B} and prove πΣ(X) = πΣ′(X)

for all X ⊆ M . On the one hand, since Σ ≡ Σ′ and Σ is direct, one has

πΣ′(X) ⊆ X+
Σ′ = X+

Σ = πΣ(X). On the other hand, if x ∈ πΣ(X), there

exists U → V ∈ Σ such that U ⊆ X and x ∈ V . Trivially, we only need

to study the case of C → D. Assume C ⊆ X and x ∈ D. If x ∈ D r B

then x ∈ πΣ′(X) because C r B ⊆ X and C-B → D-B ∈ Σ′. Otherwise,

x ∈ πΣ′(X) because A ⊆ C ⊆ X, x ∈ B and A→ B ∈ Σ′.

For item (ii), as a consequence of Theorem 2.2.6, one has Σ a direct-

optimal basis if and only if it is a direct right-simplified implicational sys-

tem (see Definition 3.1.3). In addition, by item (i) and Definitions 2.2.4

and 3.1.3, it is equivalent to Σ being a direct simplified implicational sys-

tem.

Algorithm SLgetdo embeds [sSimp] in Simplify. Obviously, this new

way of applying both rules, in an integrated way, generates a smaller im-

plicational set, and henceforth, a less number of possible matches between

pairs of implications in which the rule [sSimp] is applied. As a consequence

thereof, the size of the generated implicational system does not grow more

than necessary (see Figure 3.1). To successfully achieve a proper behavior

of this new approach, it is very important to ensure that the implications

added by [sSimp] are not removed by (Si-Eq) later in order to avoid in-

finite loops. For this reason, we present a function called Add-sSimp that
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Size of Σ  

Execution time

Σ  
Σ  do

DoSimp Algorithm

New Direct-Optimal Algorithm

Σ  do

Figure 3.1: Behaviour of doSimp vs the new method, SLgetdo.

applies [sSimp] and checks whether the new implication is simplifiable

before including it in the set.

Function Add-sSimp(A→ B,C → D,Σ)

begin

if A 6⊆ C and B ∩ C 6= ∅ 6= D r (A ∪B) then

#1 E := A ∪ (C rB); F := D r (A ∪B)

foreach X → Y ∈ Σ do

if X ⊆ E then

#2 if F ⊆ Y then return ∅
else E := E r Y ; F := F r Y

return {E → F}
else return ∅

Theorem 3.3.2. Let Σ be a simplified implicational system. For any pair

of implications A → B,C → D ∈ Σ, if Add-sSimp(A → B,C → D,Σ)

returns {E → F} and Σs = Simplify(Σ ∪ {E → F}), the following condi-

tions holds:

(i) F 6= ∅ and E ∩ F = ∅.

(ii) For all X → Y ∈ Σ, if X ⊆ E then Y ∩ F = ∅.
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(iii) There exists X → Y ∈ Σs such that X = E and F ⊆ Y .

Proof. Let Σ = {Xi → Yi | 1 ≤ i ≤ n} be a simplified implicational system

and A → B,C → D ∈ Σ. If Add-sSimp(A → B,C → D,Σ) = {E → F}
then A 6⊆ C, B∩C 6= ∅ and D 6⊆ A∪B. Let E0 and F0 be the sets defined

in Line #1, i.e. E0 = A∪ (C rB) and F0 = Dr (A∪B). Moreover, since

A and B are disjoint, one has E0 = (A ∪ C)rB.

Consider now i1, . . . , im ∈ {1, . . . , n} with subscript (in increasing order-

ing) such that Xij ⊆ E0r
⋃

1≤k<j Yik . Thus, Add-sSimp defines a sequence

of implications {Ej → Fj | 0 ≤ j ≤ m} such that Em = E, Fm = F and,

for each 0 ≤ j ≤ m,

Ej = E0 r
⋃

1≤k≤j
Yik and Fj = F0 r

⋃
1≤k≤j

Yik .

Item (i) follows from Line #2 and the facts that E0 ∩ F0 = ∅, E =

En ⊆ · · · ⊆ E0 and F = Fn ⊆ · · · ⊆ F0.

Consider now X → Y ∈ Σ such that X ⊆ E. Then, there exists

j ∈ {i, . . . ,m} with X = Xij ⊆ E ⊆ Ej and Y = Yij . Therefore, Y ∩ F =

Yij ∩ Fm = ∅, i.e. item (ii) is proved.

Assume now Σs = Simplify(Σ ∪ {E → F}). From the facts that Σ is

a simplified implicational system and items (i) and (ii) hold, we have that

Simplify only can apply (Co-Eq) or (Si-Eq) over implications belonging

to

{E → F} ∪ {C → D ∈ Σ | E ⊆ C}.

Therefore, necessarily, item (iii) holds.

As a consequence of the previous theorem, given a simplified implica-

tional system, if Add-sSimp adds a new implication and then we simplify

it, the new implication remains (probably with a bigger conclusion). Now,

we have all the previous necessary results to introduce the new algorithm

for computing the direct-optimal basis.

The following theorem ensures that SLgetdo transforms any implica-

tional system to their equivalent direct-optimal basis.
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Algorithm 3.2: SLgetdo(Σ)

input : An implicational system Σ.

output: The equivalent direct-optimal basis Σdo.

begin
Σ := Simplify(Σ)

repeat

Σdo := Σ; Σ := ∅
foreach A→ B ∈ Σdo do

Γ := ∅
foreach C → D ∈ Σ do

if C ⊆ A ⊆ C ∪D or A ⊆ C ⊆ A ∪B then

A := A ∩ C; B := B ∪D
else

if A  C then

if D 6⊆ B then add C-B → D-B to Γ

else

if C  A then A := ArD; B := B rD
Γ := Γ ∪ {C → D}∪
∪ Add-sSimp(A→ B,C → D,Σ)

∪ Add-sSimp(C → D,A→ B,Σ)

if B = ∅ then Σ := Γ else Σ := Γ ∪ {A→ B}

until Σdo = Σ

return Σdo

Theorem 3.3.3. Algorithm 3.2, SLgetdo, ends for any implicational sys-

tem Σ and, if Σdo is the output, then Σdo is the unique direct-optimal basis

that is equivalent to Σ.

Proof. Algorithm 3.2 initializes the implicational system by applying the

function Simplify, which always ends, as guaranteed by Theorem 3.1.4.

The rest of the algorithm is similar to Simplify with the only difference

that, when it is not possible to apply any equivalence from Theorem 1.3.14,

Add-sSimp is used in order to include a new implication, which is inferred

by [sSimp] and remains (probably with a bigger conclusion) in the impli-

cational system. As a consequence of Theorems 2.2.5 and 3.3.2, the loop

always ends and the reached fix-point obtained is an equivalent direct sim-
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plified implicational system. Finally, Theorem 3.3.1 ensures that it is the

equivalent direct-optimal basis.

3.3.1 The performance of SLgetdo

In this section, first, we show an example which clearly illustrates the differ-

ent behavior of both methods, doSimp and SLgetdo, and, then, a complete

experiment will be developed.

We have computed the direct-optimal basis corresponding to an impli-

cational system whose cardinality and size are, respectively, 7 and 27. The

size and cardinality of its corresponding direct-optimal basis are 78 and 15.

This example visualizes how SLgetdo achieves a significant better manage-

ment of resources than doSimp (see Figure 3.2). The embedding of [sSimp]

in the Simplify carried out by SLgetdo avoids the extra increase of size

and cardinality. As the data shows, it always maintains the resources below

a maximum value of 17 in cardinality and 95 in size, whereas doSimp rises

up to 29 in cardinality and 188 in size. This better management of the

resources allows SLgetdo to deal with greater problems without overtak-

ing the computer capabilities and, at the same time, to produce the final

output faster than doSimp. Now, we explain in detail such example:

Example 3.3.4. Let Σ be the following implicational system over the set

of attributes M = {a, b, c, d, e, f, g, h, i, j}:

Σ = {a→ bc, b→ def, aj → hi, ci→ j, dh→ ae, fg → be, bei→ gh}

In this example, we compare the algorithms doSimp and SLgetdo. We have

executed both methods over Σ providing the following direct-optimal basis

with 15 implications and 78 in size:

Σdo = {a→ bcdef, b→ def, ai→ ghj, aj → ghi, bi→ acghj, bh→ ac,

ci→ j, dh→ abcef, fg → bde, bhj → gi, dhi→ gj, dhj → gi,

fgh→ ac, fgi→ achj, fghj → i}
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Figure 3.2: Visualization of the behavior of size and cardinality parameters (respectively)

in the computation of the direct-optimal basis executing doSimp and SLgetdo methods.

As explained in this section, doSimp is composed of 3 stages whereas

SLgetdo has only two stages. In Figure 3.2, we have outlined the corre-

sponding stages of doSimp (at the top of the charts) and SLgetdo (at the

botton of the charts). The first stage is the same in both algorithms. Thus,

at the end of this first stage, both algorithms produce the same implica-

tional system. In this example, only one attribute has been removed from

the original Σ.

The second stage shows a very different behavior of both methods, with

a greater increase (almost twice) in size and cardinality of doSimp. In its

second stage, this method generates all the necessary implications to ensure

directness (remarked in the top of the peak of the two charts). On the

contrary, SLgetdo empowers simplification paradigm in its second stage.

In this way, it limits the growth of the intermediate implicational system



84 CHAPTER 3. COMPUTING DIRECT-OPTIMAL BASES

size and cardinality, as Figure 3.2 shows. The improved simplification also

avoids the execution of a third stage. Such an stage constitutes a critical

stage in doSimp, needed to clean superfluous information in order to return

the direct-optimal basis.

In particular, in the second and third stages, doSimp applies 50 times

the [sSimp] rule and 23 times the (Si-Eq) rule. In the second stage, the

input implicational system is transformed from a 27-size and 7-cardinality

set to a 188-size and 29-cardinality set. The third stage simplifies this

large intermediate implicational system, returning the direct-optimal basis.

Notice that the behavior of this method draws a curve with an obvious

inverted V-shape (see Figure 3.2).

On the other hand, SLgetdo computes the direct-optimal basis by fusing

the last two stages into a single one. It applies 26 times the [sSimp] rule

and 14 times the (Si-Eq) rule in a interweaving way. As Figure 3.2 shows,

the curve fluctuates controlling the size and cardinality of the intermediate

implicational system and they do not exceed 95 and 17 respectively. The

execution of [sSimp] implies an increase in the implicational basis size and

cardinality, whereas the application of (Si-Eq) decreases these measure-

ments. The smart way in which they are combined provides a cautious

growth of the implication set during the direct-optimal basis computation.

Now, we focus on the development of an empirical experiment to test

the performance of our method, SLgetdo. We only compare the SLgetdo

and doSimp methods since, as was shown in Section 3.2.1, doSimp has the

best performance among all methods existing in the literature to get the

direct-optimal basis.

We have designed a test consisting of several randomly generated im-

plication sets. In particular, we have generated 340 sets combining two

parameters: the number of implications (varying from 5 to 30) and the

number of attributes (varying from 5 to 25). In Table 3.3 we present some

data to provide an overall view of the generated test. More specifically,

for each value of the number of implications, we show the maximum and

minimum sizes, its average size and the average of the density (number of

implications divided by the size).
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Implications Max Size Min Size Size (average) Density (average)

10 65 50 58.9 0.171

15 282 207 244.6 0.062

20 481 107 266.16 0.091

25 588 439 518.15 0.048

30 697 161 405.16 0.092

Table 3.3: Experiment overview.

Function doSimp SLgetdo

Input size correlation 0.31 0.35

Input cardinality correlation 0.18 0.26

Attribute number correlation 0.32 0.32

Output Size correlation 0.45 0.55

Output cardinality correlation 0.46 0.51

Standard deviation 44 973.26 1 643.52

Average 12 388.80 449.09

Table 3.4: Basic statistical information.

Concerning the implementation details, we have also developed a Prolog

prototype for the new method: SLgetdo. The experiment was run on an

iMac computer with a 2.93GHz Intel Core i7 processor, 8GB of RAM, with

Mac OS X Yosemite 64 bits.

Implications doSimp SLgetdo

10 1.20 1.40

15 59.75 31.60

20 3 473.40 131.57

25 20 927.95 556.55

30 3 189.56 168.32

Table 3.5: Execution time average (milliseconds).

In a preliminar step, we have studied the (possible) correlation between

the execution time and, respectively, some input or output data. Regarding

the input parameters, we have analyzed the correlation between the elapsed

time and each of the following values: the input size, the input cardinality
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and the total number of attributes. On the other hand, we have also stud-

ied the possible correlation between time execution values and the size and

the cardinality of the output direct-optimal basis. The correlation values

are really low, which denotes that the random generation works quite well,

providing different problems for the same parameters and returning a wide

variability in the execution times of both algorithms. In Table 3.4 we show

the correlation values together with some basic statistical data: standard

deviation and time average of the results of each method. This table indi-

cates that the output size of the set of implications fits with the complexity

of the problem.
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Figure 3.3: Comparison of execution times (milliseconds) of doSimp (red color) versus

SLgetdo (blue color). We have ordered the X axis by the output size and grouped the

experiments by the number of attributes.

As a very general conclusion, the experiment establishes a better perfor-
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Figure 3.4: Execution times of randomly generated implicational systems. The blue

square indicates the execution time with doSimp and the red cross with SLgetdo.

mance of SLgetdo, as the average execution times shows (499.09 ms versus

12 388.8 ms). To get a more detailed view, we have grouped the data by the

number of implications of the input (see Table 3.5). We may ensure that the

complete integration of the Simplification paradigm in the direct-optimal

basis search produces a great benefit. More specifically, apart from the tiny

problems built just with 5 attributes, in all the other scenes SLgetdo beats

doSimp (see Figure 3.3). This figure shows that the greater the number

of attributes and the complexity of the problem (provided by the output

size) are, the better the behavior of the new method is. In the experiments

with a few number of attributes, our method does not show its advantages

because such a few number naturally limits the intermediate implicational

system size and cardinality. Consequently, the execution is overloaded by

the check in the (possible) use of the (Si-Eq), without a significant benefit.

In most cases, SLgetdo has a better behavior than doSimp, as Figure 3.4

illustrates. Thus, this figure shows how SLgetdo remains in the lower part
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of the chart whereas the other method remains in the top. We would like

to remark that we have used a vertical axis with logarithmic scale, due

to the huge differences between the values returned by both methods. In

addition, we have also included the tendency lines corresponding to the two

methods, showing that SLgetdo has a better tendency.

At the same time, in a significant number of cases, doSimp get the

solution in a rather longer execution time than SLgetdo. Figure 3.5 shows

the difference between execution times of SLgetdo and doSimp. The cases

where doSimp beats SLgetdo (in red color) are grouped in the left part of the

horizontal axis, corresponding to problems with less complexity. Moreover,

in these cases the execution times are very small (less than 10 milliseconds).

Only in 7 experiments these values are greater than this bound, and the

greatest one is 89 ms. Regarding the cases where SLgetdo wins, they

are in the large-scale execution times: hundreds and, even, thousands of

milliseconds (the greatest value is 373 841 ms).

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

10000000	  

8	   15	   20	   39	   64	   88	   120	   158	   208	   285	   393	  

SLgetdo	  profit	  

doSimp	  Profit	  

Figure 3.5: Difference of execution time: SLgetdo vs doSimp. Blue lines represent a

better behavior of SLgetdo and the red ones the better behavior of doSimp.
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To sum up, this experiment has proved the better behavior of the new

method proposed. As far as we know, at this time, it is the fastest algorithm

to compute the direct-optimal basis.

Again, we show that Simplification Logic is the central tool to obtain

new efficient methods to deal with implications.





Chapter 4

Computing D-bases





L
ooking for effective ways to reduce the size of the direct-optimal

basis, we focus on the D-basis due to the good balance between

the compact representation and the efficiency in obtaining closures.

In [2] the authors proposed an algorithm to compute the D-basis taking

as input a formal context. However, it remained an open problem to de-

velop an algorithm to generate the D-basis from an arbitrary implicational

system. This is the aim of this chapter.

The results presented in this chapter are the culmination of a collabo-

ration with Kira Adaricheva and have been published in [46,47].

Throughout this chapter we assume that there is no implication with

the empty set as premise and there is no pair of attributes whose closures

are the same (see Remark 2.3.3) following Adaricheva’s approach.

4.1 Covers and Generators: Relationships

In this section, we study the relationships between covers and generators.

These links will be used in this chapter as the kernel of the new algorithm

to compute the D-basis. The definition of D-basis is strongly based on

the notion of a proper minimal cover, and the latter is connected with the

notion of a minimal generator.

Recall that the D-basis is defined as a pair of two sets where the first

93
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one consists of implications where the premises and the conclusions are

singletons (atomic implications) and the second one consists of implications

where the premise is a proper cover of the conclusion. In order to compute

the D-basis in a uniform way, we generalize the notion of proper cover

(Definition 2.3.7). This generalization allows us to compute the D-basis

without separating the implications where the premise is a singleton from

the second ones.

Definition 4.1.1. Let Σ be an implicational system on M . A set X ⊆M
is said to be a cover of an attribute x ∈M with respect to Σ if x ∈ X+

Σ rX.

It is denoted by x ∼Σ X.

The following proposition illustrates the relationships among proper

covers, covers and minimal generators.

Proposition 4.1.2. Let Σ be an implicational system on M and C ⊆ M

be a closed set with respect to Σ. For each X  C, one has

(i) X is a generator of C if and only if x ∼Σ X for all x ∈ C rX.

(ii) x ∼̇ΣX implies x ∼Σ X for all x ∈M .

Proof. (i) If X is a generator of C, then C rX = X+
Σ rX and, trivially

x ∼Σ X for all x ∈ C rX.

Conversely, if x ∼Σ X for all x ∈ CrX, then CrX ⊆ X+
Σ rX and,

therefore, C ⊆ X+
Σ . Finally, since C is closed w.r.t. Σ and X  C,

one has C = X+
Σ , i.e. X is a generator of C.

(ii) It is straightforward because X ⊆ X∗Σ and, then X+
Σ rX

∗
Σ ⊆ X

+
Σ rX.

The second item in the previous proposition ensures that any proper

cover is a cover. Notice that the converse result is not true as the following

example shows.

Example 4.1.3. Consider M = {a, b, c, d} and Σ = {a→ b, c→ bd, bd→
ac}, we have that {a, d} is a cover of b with respect to Σ, b ∼Σ {a, d},
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Attributes Covers

a {c, d}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {b, c, d, e}

b {a, c}, {a, e}, {c, d}, {a, c, d}, {a, c, e}, {a, d, e}, {c, d, e}, {a, c, d, e}

c {a, b}, {a, e}, {a, b, d}, {a, b, e}, {a, d, e}, {b, d, e}, {a, b, d, e}

d {a}, {a, b}, {a, c}, {a, e}, {a, b, c}, {a, b, e}, {a, c, e}, {b, c, e}, {a, b, c, e}

e {a, b}, {a, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}

Closed Sets Minimal Generators

{a, b, c, d, e} {a, b}, {a, c}, {a, e}, {b, c, e}, {b, d, e}, {c, d}

{a, d} {a}

Table 4.1: Covers, Proper Covers and Minimal Generators.

because b ∈ {a, d}+Σ r {a, d} = {b, c}. However, it is not a proper cover

because b ∈ a+
Σ ⊆ {a, d}∗Σ.

As a direct consequence of the previous proposition, we have also that,

for each closed set C ⊆M and each X  C, if X is a minimal generator of

C then X is a cover of any x ∈ C rX. The following example illustrates

these relationships and gives a counterexample to the converse statement.

Example 4.1.4. Consider M = {a, b, c, d, e} and

Σ = {a→ d, bce→ ad, bde→ ac, ade→ bc, cd→ abe, abd→ ce}.

In Table 4.1, the covers of each element of M and the non-trivial minimal

generators of each closed set are shown. Moreover, blue covers are not

proper covers whereas the others are.

Notice that, by Proposition 4.1.2, X is a cover of an element x if and

only if there exists a closed set C such that X is a generator of C and

x ∈ C r X. Thus, there exists a minimal generator Y of C such that

Y ⊆ X. For example, {c, d} is a minimal generator of {a, b, c, d, e}. In

order to give a counterexample, consider {c, d, e}, which is a cover of a, but

not a minimal generator because {c, d} ⊆ {c, d, e}.
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To introduce the notion of minimal cover, the closure operator (−)∗Σ
will be used in order to avoid redundancies in the implications of the basis.

Definition 4.1.5. Let Σ be a set of implications on M . Given X ⊆ M

and x ∈M , X is a minimal cover of x if x ∼Σ X and one of the following

conditions hold:

(i) X is a singleton.

(ii) For all Y ⊆ X∗Σ, if x ∼Σ Y then X ⊆ Y .

The following example illustrates the definition of minimal covers.

Example 4.1.6. For the data of Example 4.1.4, the minimal covers are

shown in Table 4.2 (cf. Table 4.1).

Attribute Minimal Covers

a {c, d}, {b, c, e}, {b, d, e}

b {a, e}, {c, d}

c {a, b}, {a, e}, {b, d, e}

d {a}, {b, c, e}

e {a, b}, {c, d}

Table 4.2: Minimal Covers.

The following proposition relates minimal generators and minimal cov-

ers.

Proposition 4.1.7. Let Σ be a set of implications on M . For any X ⊆M
and x ∈ M , if X is a minimal cover of x, then X 6= X+

Σ and X is a

minimal generator of X+
Σ .

Proof. Let us assume that X is a minimal cover of x. By Proposition 4.1.2,

X is a generator of X+
Σ 6= X and we prove that it is minimal generator.

If |X| = 1, since ∅+
Σ = ∅ (see Remark 2.3.3) we have X is a minimal

generator. Otherwise, if |X| > 1, consider any ∅ 6= Y  X. Then,
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Y +
Σ ⊆ X+

Σ . Since X is minimal cover of x, we have x 6∼Σ Y (see item

(ii) in Definition 4.1.5) i.e. x 6∈ Y +
Σ r Y . Since Y  X and x ∈ X+

Σ rX,

we have Y +
Σ  X+

Σ . Therefore, X is a minimal generator of X+
Σ .

Therefore, any minimal cover is a non-trivial minimal generator, but

the converse result does not hold. For instance, in Example 4.1.6, although

{a, e} is a minimal generator of {a, b, c, d, e}, it is not a minimal cover for

d ∈ {a, b, c, d, e}+Σ r {a, e} = {b, c, d}.

4.2 D-basis by means of Minimal Generators

As stated, the design of an algorithm for computing the D-basis from an

arbitrary implicational system was an open problem. In this section, we

will introduce the algorithm presented in [46] and based on the strong

connection between minimal covers and minimal generators discussed in

the previous section.

Basically, the method proposed here has four stages for computing the

minimal generators from the implicational system, the covers emanating

from minimal generators, the minimal covers from the covers, and finally

the D-basis, which is obtained from the minimal covers. This sequence of

tasks is illustrated in Figure 4.1.

• In the first stage, the algorithm computes all non-trivial closed sets

with their minimal generators by means of MinGen0, proposed in [17].

Implicational System

Original Situation

Ak⟶Bk

....

Set of (non trivial) Closed sets 
and Minimal Generators

Stage 1

<Xk , Y1...Yn>
........

....

Set of Covers

Stage 2

....

....
a , ...Yk...

a ~Yk

Set of Minimal Covers

Stage 3

....

....
a , ...Yk...

Yk minimal cover

Figure 4.1: Stages of D-basis method described in Algorithm 4.1.
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This algorithm is strongly based on the computation of closures by

using Simplification Logic (see Section 1.3.1).

• In the second stage, it associates each minimal generator with all

elements for which it is a cover. In this stage, we have calculated

the set of covers, which contains all the minimal covers for a given

attribute.

• In the third stage, from the set of minimal covers we obtain all mini-

mal covers for each attribute, by means of MinimalCovers.

• Finally, the algorithm ends with the fourth stage where the D-basis

is computed by applying OrderedComp. The D-basis preserves the

order proposed in [1].

Algorithm 4.1 outlines this method. As Figure 4.1 shows, the transition

from stage 1 to stage 2 needs a way to associate the minimal generators

with some of the elements in its closed set. Thus, the relationship between

the attribute a and the set of minimal generators whose closure contains a,

is denoted as the pair 〈a,mga〉.

Algorithm 4.1: D-basis
input : An implicational system Σ

output: The D-basis 〈Σa,Σn〉 on M

begin
MG:=MinGen0(M , Σ)

Φ := ∅
foreach 〈C,mg(C)〉 ∈ MG do

foreach a ∈ C do Φ:=Gather(〈a,mg(C)〉,Φ)

ΣD := ∅
foreach 〈a,mga〉 ∈ Φ do

mga :=MinimalCovers(mga)

foreach g ∈ mga do ΣD := ΣD ∪ {g → a}
〈Σa,Σn〉 :=OrderedComp(ΣD)

return 〈Σa,Σn〉
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To carry out this transition, we need a new operator, Gather, which

builds the set of covers produced in stage 2 as follows:

Let Φ be a set of such pairs of attributes with their covers.

Gather(〈a,mg〉,Φ) = {〈a, {g ∈ mg|a 6∈ g} ∪ {mga}〉 | 〈a,mga〉 ∈ Φ}

Function MinimalCovers(L)

input : A set of covers L

output: The set of minimal covers

begin

foreach g ∈ L do

if |g| > 1 then

foreach h ∈ Lr {g} do
if h ⊆ g then remove g from L

else if h ⊆ g∗Σ then remove g from L

return L

We emphasize that MinimalCovers removes those covers which are not

minimal, that is, when one of them, h, is included in another, g, or h is

included in the atomic closure of g. Notice that in this function, although

the condition h ⊆ g implies h ⊆ g∗Σ and both of them lead to the same

action, it is more efficient to split them off because the cost of the first one

is lower. Thus, we previously check the first one and, if it is not fulfilled,

then the other one is tested.

The method ends with OrderedComp which applies the Composition

Rule and, simultaneously, orders the implications in the following sense:

the first implications in the D-basis are the atomic ones (those with the

left-hand side being a singleton).

In the following, we present the trace of the execution of the proposed

method in order to illustrate (stage by stage) how the algorithm works.

A detailed illustrative example

Here, we show how the method computes theD-basis. LetM = {1, 2, 3, 4, 5}
be a set of attributes and Σ the following set of implications from [11], which
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Function OrderedComp(Σ)

input : A set of unitary implications Σ

output: A pair of implicational systems whose union is equivalent to Σ

begin
Σa := ∅
Σn := ∅
foreach X → y ∈ Σ do

remove X → y from Σ

Z := {y}
foreach V → w ∈ Σ do

if X = V then Z := Z ∪ {w} and remove V → w from Σ

if |X| = 1 then Σa := Σa ∪ {X → Z} else Σn := Σn ∪ {X → Z}
return 〈Σa,Σn〉

was also used later to illustrate the D-basis definition in [3].

Σ = {5→ 4, 23→ 4, 24→ 3, 34→ 2, 14→ 235,

25→ 134, 35→ 124, 15→ 24, 123→ 45}

In the first step the algorithm MinGen0 returns the following set of pairs of

closed sets and their non-trivial minimal generators (see Figure 4.2):

MinGen0({1, 2, 3, 4, 5},Σ) =

{〈12345, {123, 14, 15, 25, 35}〉, 〈234, {23, 24, 34}〉, 〈45, {5}〉, 〈∅,∅〉}

In the second step of the algorithm, the operator Gather returns the fol-

lowing set of pairs of atomic attributes with their corresponding covers:

Φ = {〈1, {25, 35}〉, 〈2, {14, 15, 35, 34}〉, 〈3, {14, 15, 25, 24}〉,
〈4, {123, 15, 25, 35, 5, 23}〉, 〈5, {123, 14}〉}

Then, for each element of the above list, MinimalCovers picks up its min-

imal covers:

{〈1, {25, 35}〉, 〈2, {14, 34}〉, 〈3, {14, 24}〉, 〈4, {5, 23}〉, 〈5, {14, 123}〉}
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Figure 4.2: Applying MinGen0 to the implicational system from [3].
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Finally, at the last step, the algorithm turns these pairs into implications

and applies ordered composition resulting in the D-basis.

〈Σa,Σn〉 =

〈{5→ 4}, {23→ 4, 24→ 3, 34→ 2, 14→ 235, 25→ 1, 35→ 1, 123→ 5}〉

We emphasize again that, with this algorithm, we have solved an open

problem in the literature related to the computation of the D-basis: to

directly obtain it from any implicational system. The next challenge is to

approach the integration of the computation of the minimal generators and

minimal covers, exploiting the theoretical relationships studied between

them for searching a more efficient method.

4.3 FastD-basis Algorithm

In this section, we propose an improved algorithm to compute the D-basis

from an arbitrary set of implications Σ. This method has two features

inspired by Simplification Logic: it traverses the whole set of implications

in a uniform way regardless the cardinality of the premises and it does

not impose the use of the unitary implicational systems while the new

implications are generated.

The algorithm interweaves the selection of the minimal covers in each

step rather than in a final step. This idea improves the performance of the

method presented in the previous section in two ways: it avoids opening

some branches in the search space –by using a minimality test– and it

discards some minimal generators during the execution.

This interweaving would imply to check whether a minimal generator

does not constitute a minimal cover a lot of times, potentially compromising

the efficiency of this approach. In order to avoid this test producing a

repetitive computation of closures, we store each implication in a triplet

which is defined as follows.

Definition 4.3.1. Consider a non-empty set M , a subset of 2M×2M×2M ,

where 2M = 2M r {∅}, is said to be a triplet set on M .
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In addition, given a triplet set Γ on M , one triplet 〈A,B,C〉 ∈ Γ is said

to be minimal for Γ when X ⊆ A implies X = A for all 〈X,Y, Z〉 ∈ Γ.

The main goal in the introduction of the triplets is to compute and

collect, in a lazy way, all information needed in the algorithm related to

the closures in two separate components: (−)+
Σ and (−)∗Σ. Therefore, the

set of triplets Γ will be obtained from a given implicational system Σ and

all the changes applied to Γ will preserve the spirit of its relation with the

closures. Thus, we define:1

• Γc := {A→ BC | 〈A,B,C〉 ∈ Γ } and X+
Γ := X+

Γc
for all X ⊆M .

• Γa := {A → C | 〈A,B,C〉 ∈ Γ } and π∗Γ(X) := πΓa(X) for all

X ⊆M .

Although the properties of the set of triplets, at each stage of the algorithm,

will be described step by step, we now advance that the goal is to tend

(lazily) to accomplish the following:

• Γc ≡ Σ and, therefore, X+
Γ = X+

Γc
= X+

Σ for all X ⊆M .

• π∗Γ(X) = πΓa(X) = X∗Σ for all X ⊆M .

And, in a final stage, for all 〈A,B,C〉 ∈ Γ, if |A| = 1, C = A+
Σ = A∗Σ,

B = C rA and, otherwise, C = A∗Σ and B = A+
Σ r C.

Now, we describe the Algorithm FastD-basis, which can be divided

in the following stages:

• In the first stage of the algorithm, we transform the set Σ of implica-

tions into a set Γ of triplets, which constitutes the main input of all

further routines of our method (label S1 in the algorithm).

• In the second stage, it computes all the minimal covers for each el-

ement of M by means of a recursive function (label S2 in the algo-

rithm).

1The subscripts c and a come from complete and atomic respectively.
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Algorithm 4.2: FastD-basis

Data: A set of implications Σ

Result: The D-basis equivalent to Σ

begin

S1 Γ := {〈X,Y rX,X〉 | X → Y ∈ Σ with Y 6⊆ X}
S2 Φ := MinCovers(〈∅,∅,∅〉,Γ)

S3 Σa := {A→ B | 〈A,B,C〉 ∈ Φ with |A| = 1}
S4 Σn := {A→ B | 〈A,B,C〉 ∈ Φ with |A| 6= 1}

return 〈Σa,Σn〉

• Finally, it turns the set of triplets into a pair of implication sets

according to the cardinality of the first component of the triplet:

atomic and non-binary implications (labels S3, S4 in the algorithm).

As a preliminary remark, we emphasize that this split is due to the

induced order for the D-basis definition.

The following example illustrates the transformation of the input into

a set of triplets.

Example 4.3.2. Consider M = {1, 2, 3, 4, 5, 6} and Σ the following impli-

cational system on M :

Σ = {2→ 1, 3→ 6, 5→ 3, 13→ 24, 14→ 5,

34→ 12, 45→ 13, 125→ 34, 234→ 5, 235→ 1}

In the first stage, the algorithm returns:

Γ={〈2, 1, 2〉, 〈3, 6, 3〉, 〈5, 3, 5〉, 〈13, 24, 13〉, 〈14, 5, 14〉, 〈34, 12, 34〉,
〈45, 13, 45〉, 〈125, 34, 125〉, 〈234, 5, 234〉, 〈235, 1, 235〉}

The main routine in the algorithm is MinCovers. Firstly, we will outline

it at high level and, then, we will go into the details. Basically, the steps

of MinCovers are the following:

• In the first step (label M1), Fix returns a pair with a set of minimal

elements and Γ modified in the following way. On the one hand, the
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Function MinCovers(〈A,B,C〉,Γ)

input : A triplet 〈A,B,C〉, and a set of triplets Γ

output: A set of triplets 〈X,Y, Z〉 where X is minimal cover for all y ∈ Y with

respect to Γ

begin

M1 〈Mnl,Γ〉 := Fix(〈A,B,C〉,Γ)

Φ := ∅
foreach 〈X,Y, Z〉 ∈ Γ with X ∈ Mnl do

M2 Ψ := {〈X,Y, Z〉} ∪ MinCovers(〈X,Y, Z〉,Γ)

M3 Φ := Join(Φ,Ψ)

return Φ

first component of the triplets in Γ will contain A and no component

of the triplets in Γ will have elements of B. So, the closure operator

is defined in 2MrB. It is due to the fact that the algorithm builds

a tree (see Figure 4.5), so in each branch we work with less and less

attributes which guarantees that the algorithm ends. On the other

hand, it also returns the minimal elements of this output set.

• For each minimal triplet, MinCovers is recursively called (label M2)

up to Γ is empty, that is, when the branch of the tree has been

explored in depth.

• In the next step, Join (label M3) collects in the backtracking all

the covers computed in the branches of the tree, returning only the

minimal ones.

In the following, we provide the necessary results to prove the soundness

and completeness of the method and, in a parallel way, we introduce in more

detail the behavior of the rest of the used functions.

We begin with AddClosure because of the remarkable role that it plays

in the building of the closures. This function is called inside Fix, which will

be used in the recursive calls to MinCovers. The following Proposition 4.3.3

characterizes the set of triplets returned by AddClosure.
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Proposition 4.3.3. Let Γ and ∆ be triplet sets. If ∆ is the output of

AddClosure(A,Γ) and 〈A,B,C〉 is minimal for Γ, then Γc ≡ ∆c (therefore

A+
Γ = A+

∆) and the following conditions hold:

(i) If 〈X,Y, Z〉 ∈ Γ with A 6⊆ X, then 〈X,Y, Z〉 ∈ ∆.

(ii) If |A| = 1, then 〈A,B′, C ′〉 is minimal for ∆ where

B′ = A+
Γ rA and C ′ = A+

Γ = π∗∆(A) = π∗Γ(A).

(iii) If |A| > 1, then 〈A,B′, C ′〉 is minimal for ∆ where

B′ = A+
Γ r C

′ and C ′ = π∗Γ(A) = π∗∆(A).

(iv) If 〈X,Y, Z〉 ∈ Γ with A  X and Y 6⊆ A+
Γ , then 〈X ′, Y ′, Z ′〉 ∈ ∆

where

X ′ = (X rA+
Γ ) ∪A, Y ′ = Y rA+

Γ and Z ′ = Z ∪ π∗Γ(A).

(v) If 〈X,Y, Z〉 is minimal for ∆, then either 〈X,Y, Z〉 is minimal for Γ

and X 6= A, or it is one of those described in items (ii)–(iii).

Proof. The equivalence Γc ≡ ∆c, and therefore the equality A+
Γ = A+

∆,

is a consequence of the fact that AddClosure systematically applies the

following equivalences: (Co-Eq) in line Ac1, (rSi-Eq) in line Ac2, (Si-Eq)

in line Ac3 and (Fr-Eq) in line Ac5.

Those triplets 〈X,Y, Z〉 which are minimal for Γ, are only considered

in line Ac4. Therefore, these triplets are not modified. Thus, since A 6⊆ X,

item (i) holds.

Since 〈A,B,C〉 is minimal for Γ, AddClosure removes from Γ the triplets

〈X,Y, Z〉 such that X = A and also computes A+
Γ and π∗Γ(A) (in lines Ac1

and Ac2, respectively). Thus, after line Ac4, there is no triplet 〈X,Y, Z〉
with X ⊆ A in Γ.

On the one hand, if |A| = 1, this function appends 〈A,A+
Γ rA,A

+
Γ 〉 to

the output ∆ and the equality π∗∆(A) = A+
Γ holds. On the other hand, if
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Function AddClosure(A,Γ)

input : A set of triplets Γ and a set of elements A, associated with a minimal

triplet 〈A,B,C〉 ∈ Γ

output: A triplet set fulfilling the conditions of Proposition 4.3.3

begin

B := A; C := A

repeat

Bold := B; Γnew := ∅
foreach 〈X,Y, Z〉 ∈ Γ do

Ac1 if A = X then B := B ∪ Y ∪ Z ; C := C ∪ Z
else

Ac2 if X ⊆ B then B := B ∪ Y ∪ Z
Ac3 if A  X then

if Y 6⊆ B then add 〈X,Y rB,Z ∪ C〉 to Γnew

Ac4 else add 〈X,Y, Z〉 to Γnew

if |A| = 1 then C := B

Γ := Γnew
until Bold = B

Ac5 if |A| = 1 then add 〈A,B rA,B〉 to Γ else add 〈A,B r C,C〉 to Γ

return Γ

|A| > 1, the triplet 〈A,A+
Γ r π∗Γ(A), π∗Γ(A)〉 is added to ∆ and π∗∆(A) =

π∗Γ(A) (see line Ac5). Therefore, items (ii) and (iii) hold.

Finally, (iv) is a consequence of the fact that AddClosure function mod-

ifies only triplets 〈X,Y, Z〉 with A ⊆ X and (v) is straightforward.

As stated previously, AddClosure is used in Fix. The goal of Fix is to

determine only the minimal elements which are necessary to compute the

minimal covers needed for the D-basis (see MinCovers). In the same way

that the previous one, we introduce the theoretical foundations and explain

its behavior.

The following results describe the meaning of triplet sets that we use as

the data structure and how Fix works. By means of them, we characterize

the properties of its output, regarding minimality and closure.

Proposition 4.3.4. Let Γ be a triplet set on M , 〈A,B,C〉 ∈ Γ and 〈Mnl,∆〉
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Function Fix(〈A,B,C〉,Γ)

input : A triplet 〈A,B,C〉 and a set of triplets Γ

output: A triplet set fulfilling the conditions of Proposition 4.3.4

begin

Γnew := ∅
Minimals := ∅
foreach 〈X,Y, Z〉 ∈ Γ do

F1 X := A ∪ (X r (B ∪ C)); Y := Y r (B ∪ C); Z := C ∪ (Z rB)

if Y 6= ∅ then add 〈X,Y, Z〉 to Γnew

F2 if there is no W ∈ Minimals such that W ⊆ X then

remove from Minimals all V with X ⊆ V
add X to Minimals

foreach X ∈ Minimals do Γnew := AddClosure(X,Γnew)

return 〈Minimals,Γnew〉

be the output of Fix(〈A,B,C〉,Γ). Then X ∈ Mnl if and only if there exist

Y,Z ⊆M such that 〈X,Y, Z〉 is minimal for ∆.

Proof. Consider the following triplet set (see Line F1)

Θ = {〈A ∪ (X r Â), Y r Â, C ∪ (Z rB)〉 | 〈X,Y, Z〉 ∈ Γ, Y 6⊆ Â} (4.1)

where Â = B ∪C. Mnl –computed in Line F2– is the family of sets X ⊆M
such that there exist U, V ⊆M with 〈X,U, V 〉 being minimal for Θ. From

Proposition 4.3.3, this minimality for Θ holds if and only if there exist

Y,Z ⊆M such that 〈X,Y, Z〉 is minimal for ∆.

Now, we introduce a couple of definitions that are needed for charac-

terizing the triplet sets involved in FastD-basis.

Definition 4.3.5. A triplet set Γ is said to be in normal form (NF) if, for

all 〈U, V,W 〉 ∈ Γ, the following conditions hold:

(i) U ⊆W ⊆ π∗Γ(U).

(ii) If |U | > 1, then V ⊆ U+
Γ r π

∗
Γ(U).

(iii) If |U | = 1, then W = π∗Γ(U) and V = U+
Γ r U .
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(iv) If 〈U, V,W 〉 is minimal for Γ with |U | > 1, then W = π∗Γ(U) and

V = U+
Γ r π

∗
Γ(U).

Definition 4.3.6. Let Σ be an implicational system on M , Γ be a triplet

set on M and A ⊆ M . The triplet set Γ is said to be compatible with Σ

above A if Γ is in NF and the following conditions hold:

(i) For all 〈X,Y, Z〉 ∈ Γ, one has A  X and X ∩A+
Σ = A.

(ii) For all X ⊆ M with A  X, one has X+
Γ r A+

Σ = X+
Σ r A+

Σ and

π∗Γ(X)rA+
Σ = X∗Σ rA

+
Σ.

The following theorem ensures that the original call to Fix in the algo-

rithm preserves the previous definition.

Theorem 4.3.7. Let Σ be a complete implicational system on M and Γ =

{〈X,Y r X,X〉 | X → Y ∈ Σ with Y 6⊆ X}. If 〈Mnl,∆〉 is the output of

Fix(〈∅,∅,∅〉,Γ), then ∆ is compatible with Σ above ∅.

Proof. Proposition 4.3.3 ensures that ∆ is in NF. From completeness of Σ,

by (Fr-Eq), one has X+
Σ = X+

Γ for all X ⊆ M . Since the first component

in the input is 〈∅,∅,∅〉, line F1 does not modify any triplet in Γ and, by

Propositions 4.3.3 and 4.3.4, one has ∆c ≡ Γc ≡ Σ. Item (i) is consequence

of the equality ∅+
Σ = ∅ and (ii) is consequence of ∆c ≡ Σ.

Example 4.3.8. Consider the implicational system Σ in Example 4.3.2

and the set Γ of triples returned in the first step of the algorithm, a call to

Fix returns:

〈Mnl,∆〉 = Fix(〈∅,∅,∅〉),Γ)

= 〈{2, 3, 5, 14}, {〈2, 1, 12〉, 〈3, 6, 36〉, 〈5, 36, 356〉, 〈13, 24, 136〉,
〈14, 2356, 14〉, 〈25, 4, 12356〉, 〈34, 12, 346〉, 〈45, 1, 3456〉,
〈234, 5, 12346〉}〉

The triplet set ∆ produced by Fix(〈∅,∅,∅〉,Γ) is compatible with Σ above

∅, as we will show.
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On the one hand, we can ensure that ∆ is in NF (Definition 4.3.5). The

three first conditions are only a matter of contention. The last condition is

also fulfilled since the only minimal triplet with cardinality greater than 1

is 〈14, 2356, 14〉, and one has:

{1, 4} = π∗∆({1, 4}) and {2, 3, 5, 6} = {1, 4}+∆ r π
∗
∆({1, 4}) = M r {1, 4}.

On the other hand, ∆ is compatible with Σ above ∅ (Definition 4.3.6):

since ∅+
Σ = ∅, the first condition is trivial and, as an illustrative example,

we show how the second one holds for an specific subset. For instance, for

the subset X = {2, 5}:

• X+
∆ r∅

+
Σ = X+

Σ r∅
+
Σ because X+

∆ = X+
Σ = M .

• π∗Γ(X)r∅+
Σ = X∗Σ r∅

+
Σ because π∗∆({2, 5}) = X∗Σ = {1, 2, 3, 5, 6}.

These two conditions are also fulfilled by the rest of subsets X such that

∅ ( X, concluding that ∆ is compatible with Σ above ∅.

Taking recursion into account, we need to ensure a similar result in

every further call of Fix. The following theorem plays this role:

Theorem 4.3.9. Let Σ be an implicational system on M , S ⊆ M , Γ be

a triplet set compatible with Σ above S, and 〈A,B,C〉 be a minimal triplet

for Γ. If 〈Mnl,∆〉 is the output of Fix(〈A,B,C〉,Γ), then ∆ is compatible

with Σ above A.

Proof. To check that ∆ is in NF is just a matter of computation. Consider

the triplet set Θ (4.1) described in the proof of Proposition 4.3.4. Since

S  X for all 〈X,Y, Z〉 ∈ Γ and 〈A,B,C〉 is minimal for Γ, one has

S  A. In addition, A  X for all 〈X,Y, Z〉 ∈ Θ and, therefore, it is

true for all 〈X,Y, Z〉 ∈ ∆. Moreover, if we denote Â = B ∪ C, then

Â = A+
Γ ⊆ A

+
Σ ∪ S

+
Σ = A+

Σ because Γ is compatible with Σ above S. Thus,

for all 〈U, V,W 〉 ∈ Γ, one has A(U r Â) ∩A+
Σ = A.

Assume U+
Γ rS

+
Σ = U+

Σ rS
+
Σ for all U ! S, and consider a particular U

such that A  U . From Proposition 4.3.3, since U+
∆ = U+

Θ , we prove that

U+
Θ rA

+
Σ = U+

Σ rA
+
Σ :
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(i) On the one hand, by applying [Simp] and [Frag], every implication

X → Y Z ∈ Θc can be inferred from Γc. Therefore, U+
Θ ⊆ U+

Γ ⊆
U+

Σ ∪ S
+
Σ ⊆ U

+
Σ and U+

Θ rA
+
Σ ⊆ U

+
Σ rA

+
Σ .

(ii) On the other hand, first we prove U+
Γ ⊆ U+

Θ ∪ B, i.e. U ⊆ U+
Θ ∪ B

and U+
Θ ∪ B is closed with respect to Γc: for all 〈X,Y, Z〉 ∈ Γ, if

X ⊆ U+
Θ ∪B, then A∪ (Xr Â) ⊆ U+

Θ , (Y r Â)∪
(
C∪ (ZrB)

)
⊆ U+

Θ ,

and Y ∪ Z ⊆ U+
Θ ∪B.

Finally, U+
Σ ⊆ U+

Γ ∪ S
+
Σ ⊆ U+

Θ ∪ B ∪ S
+
Σ ⊆ U+

Θ ∪ A
+
Σ and, therefore,

U+
Σ rA

+
Σ ⊆ U

+
Θ rA

+
Σ .

Assume now π∗Γ(U)rS+
Σ = U∗ΣrS

+
Σ , for all U ! S, and consider a particular

U such that A  U . We distinguish two cases:

(i) If |A| = 1, then C = A+
Σ = A∗Σ and B = A∗Σ rA, because Γ is in NF.

Thus, Θ = {〈A ∪ (X r C), Y r C,C ∪ Z〉 | 〈X,Y, Z〉 ∈ Γ, Y 6⊆ C}.
Moreover, since S  A, one has S = ∅ and π∗Γ(U) = U∗Σ for all U 6= ∅.

Consider now an arbitrary U with A  U and we prove π∗Θ(U) = U∗Σ.

First, π∗Θ(U) ⊆ U∗Σ because, for all 〈X,Y, Z〉 ∈ Γ, if A(X r C) ⊆ U∗Σ,

then X r C ⊆ U∗Σ, X ⊆ U∗Σ ∪ A∗Σ = U∗Σ and Z = X∗Σ ⊆ (U∗Σ)∗Σ = U∗Σ.

Conversely, U∗Σ ⊆ π∗Θ(U) because U∗Σ = π∗Γ(U) and π∗Θ(U) is closed

with respect to Γa.

(ii) If |A| > 1, then C = π∗Γ(A), B = A+
Γ r π

∗
Γ(A) and Â = A+

Γ because Γ

is in NF. Consider U with S  A  U . Then,

• π∗Θ(U) ⊆ U∗Σ ∪ A
+
Σ because, for all 〈X,Y, Z〉 ∈ Γ, one has A ∪

(X r Â) ⊆ U implies C ∪ (Z rB) ⊆ C ∪ Z ⊆ π∗Γ(A) ∪ π∗Γ(X) ⊆
A∗Σ ∪X∗Σ ∪ S

+
Σ = A∗Σ ∪ (X∗Σ rB) ∪ (X ∩B)∗Σ ∪ S

+
Σ ⊆ U∗Σ ∪A

+
Σ .

• In order to prove U∗Σ ⊆ π∗Θ(U) ∪ A+
Σ , first, we prove π∗Γ(U) ⊆

π∗Θ(U)∪B. Indeed, for all 〈X,Y, Z〉 ∈ Γ, if X ⊆ U , then A∪(Xr
Â) ⊆ U and, by definition of π∗Θ(U), Z r B ⊆ C ∪ (Z r B) ⊆
π∗Θ(U) i.e. Z ⊆ π∗Θ(U) ∪ B. Finally, U∗Σ ⊆ π∗Γ(U) ∪ S+

Σ ⊆
π∗Θ(U) ∪B ∪ S+

Σ ⊆ π∗Θ(U) ∪A+
Σ .
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In summary, π∗Θ(U) r A+
Σ = U∗Σ r A+

Σ , for all U ! A, has been proved in

both cases. It is easy to check that this property is preserved in ∆.

Example 4.3.10. Consider the set ∆ of triplets in Example 4.3.8

∆ = {〈2, 1, 12〉, 〈3, 6, 36〉, 〈5, 36, 356〉, 〈13, 24, 136〉, 〈14, 2356, 14〉,
〈25, 4, 12356〉, 〈34, 12, 346〉, 〈45, 1, 3456〉, 〈234, 5, 12346〉}

and its minimal triplet 〈2, 1, 12〉. The output of Fix(〈2, 1, 12〉,Γ) is:

〈Mnl,∆′〉 := Fix(〈2, 1, 12〉),∆)

=
〈
{23, 24, 25}, {〈23, 45, 1236〉, 〈24, 356, 124〉, 〈25, 4, 12356〉}

〉
On the one hand, ∆′ is in NF. By contention, the two first conditions

in Definition 4.3.5 are fulfilled. Since all the triplets have a non-binary

first component, the third condition is trivially satisfied. Moreover, all the

triplets in ∆′ are minimal. Following the same scheme as in the previ-

ous example, we will just illustrate the procedure to check the last condi-

tion with one triplet. Considering the triplet 〈23, 45, 1236〉, one has that:

{1, 2, 3, 6} = π∗∆′({2, 3}) and {4, 5} = {2, 3}+∆′ r π
∗
∆′({2, 3}).

On the other hand, ∆′ fulfills the two conditions left to be compatible

with Σ above {2} (Definition 4.3.6). Since {2}+Σ = {1, 2}, the first one is

trivial because the first component of each triplet never has 1 as an element.

Now, note that for each subset X such that {2} ( X we have that X+
∆′ =

X+
Σ and π∗∆′(X) = X∗Σ, except for the subset {2, 6}. Thus, the second

condition is trivially satisfied for all the subsets, and then we will only

show the second condition for {2, 6}:

{2, 6}+∆′ r {2}
+
Σ ={2, 6}r {1, 2} = {6}

={1, 2, 6}r {1, 2} = {2, 6}+Σ r {2}
+
Σ

π∗∆′({2, 6})r {2}+Σ ={2, 6}r {1, 2} = {6}
={1, 2, 6}r {1, 2} = {2, 6}∗Σ r {2}+Σ

To sum up, this example illustrates that the triplet set of the output of

Fix(〈2, 1, 12〉,Γ) is compatible with Σ above {2}.
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The following definition introduces a strong notion of normal form that

will be used in further results.

Definition 4.3.11. A triplet set Γ is said to be in D-normal form if it is in

NF and, for all 〈U1, V1,W1〉, 〈U2, V2,W2〉 ∈ Γ with |U2| > 1, the following

conditions hold:

(i) If U1 ⊆ U2, then V2 ⊆ U2
+
Γ r U1

+
Γ .

(ii) If U2 6⊆ U1 ⊆W2, then V2 ⊆ U2
+
Γ r U1

+
Γ .

In the following example we show the idea underlying the previous def-

inition.

Example 4.3.12. The following set of triplets is in D-normal form

Γ1 = {〈2, 1, 12〉, 〈3, 6, 36〉, 〈13, 245, 136〉, 〈24, 356, 124〉, 〈34, 125, 346〉}

Checking that Γ1 is in NF is a matter of computation that we have already

illustrated in previous examples. Now, we only focus on the item (i) because

no two triplets satisfy the hypothesis of the item (ii).

• For 〈2, 1, 12〉 and 〈24, 356, 124〉, we have that

{3, 5, 6} ⊆ {2, 4}+Γ1
r {2}+Γ1

= M r {1, 2}.

• For 〈3, 6, 36〉 and 〈13, 245, 136〉, we have that

{2, 4, 5} ⊆ {1, 3}+Γ1
r {3}+Γ1

= M r {3, 6}.

• For 〈3, 6, 36〉 and 〈34, 125, 346〉, we have that

{1, 2, 5} ⊆ {3, 4}+Γ1
r {3}+Γ1

= M r {3, 6}.

At this point, we describe how Join and Shorten gather the set of

triplets in the backtracking process of the recursive calls to MinCovers, so

that they maintain the property of D-normal form and the compatibility

with the closure of the associated implicational system.

Join receives two triplet sets, Γ1 and Γ2, and calls Shorten, where the

(Si-Eq) equivalence is applied for every pair of triplets, one element of the

pair is a triplet of Γ1 and the other of Γ2.
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Function Join(Γ1,Γ2)

input : Two triplet sets in D-normal form

output: A triplet set fulfilling the conditions of Lemma 4.3.13

begin

Γ1 new := ∅; Γ2 new := ∅
foreach 〈X,Y, Z〉 ∈ Γ1 do Γ1 new := Γ1 new ∪ Shorten(〈X,Y, Z〉,Γ2)

foreach 〈X,Y, Z〉 ∈ Γ2 do Γ2 new := Γ2 new ∪ Shorten(〈X,Y, Z〉,Γ1 new)

return Γ1 new ∪ Γ2 new

Function Shorten(〈A,B,C〉,Γ)

input : A triplet 〈A,B,C〉 and a set of triplets Γ

output: A triplet if A is minimal cover of some attributes of B or ∅ otherwise

begin

if | A |6= 1 then

foreach 〈X,Y, Z〉 ∈ Γ do

if X ⊆ A then B := B r Y
else if A 6⊆ X and X ⊆ C then B := B r Y
if B = ∅ then return ∅

return {〈A,B,C〉}
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Lemma 4.3.13. Let Γ1 and Γ2 be triplet sets. If both Γ1 and Γ2 are in D-

normal form and ∆ is the output of Join(Γ1,Γ2), the following conditions

hold:

(i) ∆ is in D-normal form.

(ii) For all X ⊆M , X+
∆ = X+

Γ1∪Γ2
and π∗∆(X) = π∗Γ1∪Γ2

(X).

This lemma, whose proof is direct, is illustrated by the following exam-

ple.

Example 4.3.14. Consider the set of triplets Γ1 from Example 4.3.12 and

Γ2 = {〈5, 36, 356〉, 〈15, 24, 1356〉, 〈45, 12, 3456〉}.

Both are in D-normal form. The output of Join is the following:

Φ =Join(Γ1,Γ2)

={〈2, 1, 12〉, 〈3, 6, 36〉, 〈5, 36, 356〉,
〈13, 245, 136〉, 〈24, 356, 124〉, 〈34, 125, 346〉}

Notice that Φ = Γ1 ∪ {〈5, 36, 356〉}, which is in D-normal form. In order

to illustrate that the second condition of Lemma 4.3.13 is also satisfied, we

will show that it holds, for instance, for X = {2, 6} and Y = {4, 5}:

• X+
Φ = X+

Γ1∪Γ2
= {1, 2, 6} and π∗Φ(X) = π∗Γ1∪Γ2

(X) = {1, 2, 6}.

• Y +
Φ = Y +

Γ1∪Γ2
= M and π∗Φ(Y ) = π∗Γ1∪Γ2

(Y ) = {3, 4, 5, 6}.

The following lemma will be used in the proof of the correctness Theo-

rem 4.3.16.

Lemma 4.3.15. Let Σ be an implicational system on M , S ⊆M , and Γ be

a triplet set. If Γ is compatible with Σ above S and 〈A,B,C〉 is a minimal

triplet in Γ, then the output of MinCovers(〈A,B,C〉,Γ) is in D-normal

form and is compatible with Σ above A.

Proof. We will prove it by structural induction:
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• The base case is when the output of Fix(〈A,B,C〉,Γ) is 〈∅,∅〉. In

this case MinCovers(〈A,B,C〉,Γ) = ∅, which obviously is in D-

normal form and, by Theorem 4.3.9, is compatible with Σ above A.

• Let Γ be a triplet set that is compatible with Σ above S, 〈A,B,C〉 be a

minimal triplet in Γ, and Φ be the output of MinCovers(〈A,B,C〉,Γ).

Assume 〈Mnl,Ω〉 is the output of Fix(〈A,B,C〉,Γ) and

∆X = {〈X,Y, Z〉} ∪ MinCovers(〈X,Y, Z〉,Ω),

for all 〈X,Y, Z〉 ∈ Ω with X ∈ Mnl. Assume, by induction hypothesis,

that for all X ∈ Mnl, the output of MinCovers(〈X,Y, Z〉,Ω) is in D-

normal form and compatible with Σ above X. On the one hand, ∆X

is in D-normal form and, by Lemma 4.3.13, Φ is also in D-normal

form, U+
Φ = U+

∪∆X
and π∗Φ(U) = π∗∪∆X

(U) for all U ⊆ M . On the

other hand, we prove Φ is compatible with Σ above A. Finally, we

prove that U+
Φ rA

+
Σ = U+

Σ rA
+
Σ and π∗Φ(U)rA+

Σ = U∗ΣrA
+
Σ , for all

U ⊆M with A  U :

– If there is no X ∈ Mnl with X ⊆ U , then X ′ 6⊆ U for all

〈X ′, Y ′, Z ′〉 ∈ Φ and, since A ⊆ U , one has X ′′ 6⊆ U for all

〈X ′′, Y ′′, Z ′′〉 ∈ Γ (see F1 in the pseudocode). Therefore, U+
Φ =

U+
Γ = U and π∗Φ(U) = π∗Γ(U) = U . Finally, since Γ is compatible

with Σ above A, one has U+
Φ rA

+
Σ = U+

Σ rA
+
Σ and π∗Φ(U)rA+

Σ =

U∗Σ rA
+
Σ .

– If U ∈ Mnl, there exists 〈U, V,W 〉 ∈ Ω which is minimal. By

Theorem 4.3.9, Ω is compatible with Σ above A. Then W =

π∗Ω(U), V = U+
Ω r π∗Ω(U), U ∩ A+

Σ = ∅, U+
Ω r A+

Σ = U+
Σ r A+

Σ

and π∗Ω(U) r A+
Σ = U∗Σ r A+

Σ . Finally, since 〈U, V,W 〉 is also

minimal in ∪∆X , one has U+
Φ = U+

∪∆X
= U+

Ω = V ∪ W and

π∗Φ(U) = π∗∪∆X
(U) = π∗Ω(U) = W . Therefore, U+

Φ r A+
Σ =

U+
Σ rA

+
Σ and π∗Φ(U)rA+

Σ = U∗Σ rA
+
Σ .

– If there exists X ∈ Mnl with X  U , then, by induction hy-

pothesis, for all 〈X,Y, Z〉 minimal in Ω with X  U , one has
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U+
∆X

r A+
Σ = U+

Σ r A+
Σ and π∗∆X

(U) r A+
Σ = U∗Σ r A+

Σ . On

the other hand, U+
∆X

= π∗∆X
(U) = U for all X ∈ Mnl with

X 6⊆ U . Therefore, U+
Φ r A+

Σ = U+
∪∆X

r A+
Σ = U+

Σ r A+
Σ and

π∗Φ(U)rA+
Σ = π∗∪∆X

(U)rA+
Σ = U∗Σ rA

+
Σ .

The following theorem culminates in the statement that FastD-basis

Algorithm successfully computes the aggregated D-basis.

Theorem 4.3.16. Let Σ be a complete implicational system on M . Then,

FastD-basis terminates and returns the unique D-basis equivalent to Σ.

Proof. As mentioned, this work only refers to finite closure systems and,

consequently, to finite implicational systems and to finite triplet sets. There-

fore, MinCovers terminates because the cardinality of the triplet set strictly

decreases in each recursive call to the function. That is, FastD-basis al-

ways finishes.

Let Γ = { 〈X,Y rX,X〉 | X → Y ∈ Σ with Y 6⊆ X }. Then the initial

call Φ = MinCovers(〈∅,∅,∅〉,Γ) returns the unique aggregated D-basis

that is equivalent to Σ, and its proof obeys the following schema: First,

we prove that Φ is compatible with Σ above ∅ and it is in D-normal form.

Second, we prove that 〈d, d∗Σrd, d〉 ∈ Φ for all d ∈M such that d∗Σrd 6= ∅.

Third, we prove that, for all d ∈M and D ⊆M , if D is a minimal proper

cover for d, then there exists 〈U, V,W 〉 ∈ Φ such that U = D and d ∈ V .

We conclude the proof by showing that U is a minimal proper cover for v

for all 〈U, V,W 〉 ∈ Φ and v ∈ V . Now, we expand this schema:

As a first step, MinCovers(〈∅,∅,∅〉,Γ) calls to Fix(〈∅,∅,∅〉,Γ). If we

denote the output as 〈Mnl,∆〉, Theorem 4.3.7 ensures that ∆ is compatible

with Σ above ∅, and Proposition 4.3.4 ensures that

Mnl = {X ⊆M | 〈X,Y, Z〉 is minimal for ∆ for some Y,Z ⊆M }.

By Lemma 4.3.15, for any triplet 〈A,B,C〉 that is minimal in ∆, the output

of MinCovers(〈A,B,C〉,∆) is in D-normal form and is compatible with Σ
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above A. Finally, following the scheme of the last part of the proof in

Lemma 4.3.15, one can prove that the output of MinCovers(〈∅,∅,∅〉,Γ)

is in D-normal form and is compatible with Σ above ∅.

As a second stage of the schema, since Φ = MinCovers(〈∅,∅,∅〉,Γ) is

compatible with Σ above ∅, for all d ∈ M such that d∗Σ r d 6= ∅, one has

〈d, d∗Σ r d, d〉 ∈ Φ.

Third, for all d ∈ M , D ⊆ M , we prove that if D is a minimal proper

cover for d, there exist 〈X,Y, Z〉 ∈ ∆ and

〈U, V,W 〉 ∈ {〈X,Y, Z〉} ∪ MinCovers(〈X,Y, Z〉,∆)

such that X ∈ Mnl, U = D and d ∈ V . Indeed, we prove that, for every

triplet set Θ that is compatible with Σ above S ⊆ M , if D is a minimal

proper cover for d, S  D and d /∈ S+
Σ , the following conditions hold:

(i) There exists 〈A,B,C〉 ∈ Θ with A ⊆ D that is minimal for Θ.

(ii) If 〈A,B,C〉 is minimal for Θ and A ⊆ D, there exists 〈U, V,W 〉 ∈
{〈A,B,C〉} ∪ MinCovers(〈A,B,C〉,Θ) with U = D and d ∈ V .

Item (i) is a direct consequence of the compatibility of Θ with Σ above

S because d ∈ D+
Σ r S+

Σ = D+
Θ r S+

Σ , but d /∈ D. Item (ii) is proved by

structural induction:

• The base case is when the output of Fix(〈A,B,C〉,Θ) is 〈∅,∅〉.
In this case {〈A,B,C〉} ∪ MinCovers(〈A,B,C〉,Θ) = {〈A,B,C〉},
which is compatible with Σ above S. Therefore, since d ∈ D+

Σ rD∗Σ
and there is no X  D with d ∈ X+

Σ , one has D = A and d ∈ B.

• Consider 〈A,B,C〉 being minimal for Θ with A ⊆ D. Consider also

〈Mnl,Ω〉 being the output of Fix(〈A,B,C〉,Θ) and

∆X = {〈X,Y, Z〉} ∪ MinCovers(〈X,Y, Z〉,Ω)

for each 〈X,Y, Z〉 ∈ Ω with X ∈ Mnl. Assume, as induction hypothe-

sis, that for all X ∈ Mnl, if X ⊆ D, there exists 〈U, V,W 〉 ∈ ∆X such

that U = D and d ∈ V . Two cases are distinguished:
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– If d ∈ B, then, since D is minimal proper cover, one has A = D

and item (ii) is proved for Θ.

– If d /∈ B, we prove that there exists 〈X,Y, Z〉 ∈ Ω with X ∈ Mnl

and X ⊆ D: since 〈A,B,C〉 is minimal for Θ and it is in D-

normal form, one has C ⊆ A∗Σ ⊆ A∗Σ ∪ S
+
Σ ⊆ D∗Σ ∪ S

+
Σ and

d /∈ B ∪ C = Â = A+
Θ. Moreover, d ∈ D+

Θ r A+
Θ and it is only

possible when there exists 〈X ′, Y ′, Z ′〉 ∈ Θ with A 6= X ′ ⊆ D.

Thus, A ∪ (X ′ r B) ⊆ D and there exists 〈X,Y, Z〉 ∈ Ω where

X = A ∪ (X ′ rB), X ∈ Mnl and X ⊆ D.

Now, by induction hypothesis, there exists 〈U1, V1,W1〉 ∈ ∆X

such that U1 = D and d ∈ V1, and we prove, by reductio ad

absurdum, that there exists

〈U, V,W 〉 ∈ {〈A,B,C〉} ∪ MinCovers(〈A,B,C〉,Θ)

with U = D and d ∈ V . Assume that it is not true, i.e. that

Join removes d from V1. Therefore, there exists 〈U2, V2,W2〉 ∈
MinCovers(〈A,B,C〉,Θ) such that U1 6⊆ U2, U2 ⊆ W1 and d ∈
V2. Since MinCovers(〈A,B,C〉,Θ) is compatible with Σ above

A, one has d ∈ V2 ⊆ U2
+
Σ and U1 6⊆ U2 ⊆ W1 ⊆ U1

∗
Σ ∪ A

+
Σ .

In addition, since U2 ∩ A+
Σ = A, one has U2 ⊆ U1

∗
Σ, which

contradicts the fact that D is minimal proper cover for d.

We conclude the proof by showing that U is a minimal proper cover of v

for all 〈U, V,W 〉 ∈ Φ = MinCovers(〈∅,∅,∅〉,Γ) and v ∈ V . Since Φ is

compatible with Σ above ∅, one has V ⊆ U+
Φ r π∗Φ(U) = U+

Σ r U∗Σ and,

therefore, U is a proper cover for all v ∈ V . We have to prove that it is not

only a proper cover but also a minimal one. For that, suppose that there

exists a triplet 〈X,Y, Z〉 ∈ Φ such that X is a proper cover of v and X ⊆ U∗Σ.

By reductio ad absurdum, suppose that U 6⊆ X. By Lemma 4.3.13, Φ

is in D-normal form. Thus, Y ⊆ X+
Φ r U+

Φ = X+
Σ r U+

Σ = ∅ yields a

contradiction, because there is no triplet in Φ with an empty set as second

component.
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To conclude this section, in Figure 4.5 on page 123, an illustrative ex-

ample showing the in-depth trace of an execution of FastD-basis is intro-

duced. The input is the implicational system Σ from Example 4.3.2. After

the call of Fix(〈∅,∅,∅〉,Γ), returning the pair 〈Mnl,∆〉, the algorithm only

opens four branches, corresponding to the minimal triplets in ∆. In each of

these branches MinCovers is recursively called. For the sake of readability,

we detailed the branches associated with the three first minimal triplets

in Figures 4.6, 4.7 and 4.8 (on pages 124, 125 and 126, respectively). Fi-

nally, the figure shows how Join collects the necessary triplets to return

the D-basis.

4.4 The performance of FastD-basis

In this section, we compare the performance of the two methods to compute

the D-basis presented in this chapter: D-basis and FastD-basis. Both

methods have been implemented in R language. To make this comparison,

two empirical experiments have been developed: one considering synthetic

data and the other one over real data.

The synthetic data for the first experiment has been obtained by using

a random generator also implemented in R language. We have generated a

collection of 100 implicational systems with sizes of 1500. The experiment

was performed on a Mac OS X - Intel Core i5 (3,2 GHz) with 16 GB. We

measure, for each implicational set, the execution times in seconds for both

methods.

Figure 4.3 illustrates a plot of the cloud of execution times with respect

to the input size. It shows a clear improvement achieved with the new

method. As expected, the tendencies for both methods are exponential.

However, Fast D-basis Algorithm has a significantly smaller exponential

range than the D-basis one. For a better illustration of this situation, we

have also depicted in Figure 4.4 the execution times with respect to the

output size.

For the second experiment, we have used the Mushroom dataset of the

UCI repository [34]. We have extracted the implications using the Apriori
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Figure 4.3: Execution times (in seconds) with respect to input sizes of randomly generated

implicational systems. The empty squares represent the time of the execution of D-basis

and the dark dots represent the execution times of FastD-basis.

Algorithm by means of the Arules package (R language) considering a sup-

port equal or greater than 0.4. This limit is imposed by the Arules package:

without any extra-constraint in the support, the R package does not finish.

The cardinality of the set of implications is 637. Its corresponding D-basis

has 52 implications and its size is 159.

Execution time Recursive calls

D-basis 6 518.55 s 9 · 106

FastD-basis 1.65 s 1 889

Table 4.3: Comparison over Mushroom dataset

The execution time for FastD-basis Algorithm is 1.65 seconds whereas

D-basis Algorithm needs 6 518.55 seconds. Moreover, the number of re-

cursive calls of the method is 1889 whereas D-basis needed 9 millions.
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Figure 4.4: Execution times (in seconds) with respect to output sizes. The empty squares

represent the time of the execution of D-basis and the dark dots represent the execution

times of FastD-basis.
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Figure 4.5: Trace of the execution of FastD-basis to the implicational system from

Example 4.3.2.
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Figure 4.6: Branch of execution of FastD-basis applied to the implicational system

from Example 4.3.2 associated with the first minimal triplet.
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Figure 4.7: Branch of execution of FastD-basis applied to the implicational system

from Example 4.3.2 associated with the second minimal triplet.
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Figure 4.8: Branch of execution of FastD-basis applied to the implicational system

from Example 4.3.2 associated with the third minimal triplet.



Chapter 5

Dichotomous Direct Bases





D
espite the benefits of the different definitions of direct bases, their

main handicap is the inherent cost of their computation. New

algorithms for computing both, the direct-optimal basis and D-

basis, have been studied in previous chapters. A hot topic in this line is

the definition of new kinds of direct basis whose associated transformation

methods have a better performance. In this chapter, in order to deal with

this issue, we introduce a new definition of basis together with a method

to compute it.

The new basis called dichotomous direct basis, is strongly based on the

separated treatment of implications according to their behavior with re-

spect to the closure operator. Thus, we carry out a study of the set of

implications, returning a dichotomous partition of the whole set of implica-

tions according to their behavior. This dichotomy provides an improvement

in the building of the new direct basis by dividing the original problem into

two smaller, separated ones: one part will support the hard computation of

this construction, whereas the other is carried out almost instantaneously.

In addition, the cost of classification must be added, but we accompany the

method with a very efficient criterion to classify each implication.

The results presented in this chapter have been published in [50].

129
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5.1 Dichotomous implicational systems and direct-

ness

Before presenting the new kind of direct basis, we characterize the behavior

of each implication with respect to the execution of the closure operator

and provide an efficient criterion to classify them.

5.1.1 Quasi-key implications

The core of our criterion is the notion of quasi-key, which is based on the

concept of key [16,38].

Definition 5.1.1. Let Σ be an implicational system on M . A set A ⊆ M

is a key for Σ if A+
Σ = M . An implication A→ B ∈ LM is said to be a key

implication with respect to Σ if A is a key for Σ. Finally, a key implication

A→ B is said to be proper if B = M rA.

Notice that the definition of key implication only imposes conditions

to the premise, whereas the notion of proper key implications also con-

siders the conclusion. On the other hand, by [Frag], any key implication

is inferred, i.e. if A → B is a key implication with respect to Σ then

Σ ` A→ B.

From now on, when no confusion arises about the implicational system

Σ, we omit the reference to it and we only say that A → B is a key

implication.

Example 5.1.2. Consider M = {a, b, c, d} and

Σ = {a→ c, bc→ a, d→ c, acd→ b}.

The subset of attributes {b, d} is a key for Σ because Σ ` bd→ abcd, as the

following sequence proves:

σ1 : bd→ ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by applying [Ref].

σ2 : d→ c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .belongs to Σ.

σ3 : bd→ c . . . . . . . . . . . . . . . . by applying [Comp] to σ1 and σ2.
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σ4 : bc→ a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . belongs to Σ.

σ5 : bcd→ ac . . . . . . . . . . . . . . .by applying [Comp] to σ3 and σ4.

σ6 : bd→ a. . . . . . . . . . . . . . . . .by applying [Simp] to σ3 and σ5.

σ7 : bd→ ac. . . . . . . . . . . . . . . .by applying [Comp] to σ3 and σ6.

σ8 : bd→ bd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by applying [Ref].

σ9 : bd→ abcd . . . . . . . . . . . . . by applying [Comp] to σ7 and σ8.

Therefore, for instance, bd → abcd, bd → a and bd → ac are key implica-

tions with respect to Σ, but only the last one is a proper key implication.

In order to leap to the notion of quasi-key implication as a generalization

of the concept of key implication, we will use some definitions and results

provided in [40].

Definition 5.1.3. Given an implicational system Σ on M , the determinate

for Σ is the set of attributes Dte(Σ) =
⋃
X→Y ∈Σ Y , and the core of Σ is the

set core(Σ) = M r Dte(Σ).

One of the statements given in [40] ensures that the attributes not

appearing in any conclusion of the implicational set must belong to all the

keys, i.e. if A is a key for Σ then core(Σ) ⊆ A. Another interesting property

we will often use later is the following.

Proposition 5.1.4. Let Σ be an implicational system on M . For each

A ⊆M , one has A+
Σ ⊆ A ∪ Dte(Σ).

Proof. Consider a ∈ A+
Σ . If a ∈ A, trivially a ∈ A∪ Dte(Σ). If a ∈ A+

Σ rA,

we know that Σ ` A → a, so there is X → Y ∈ Σ such that a ∈ Y .

Therefore, a ∈ Dte(Σ).

The fact that every key with respect to Σ contains core(Σ) leads us to

generalize the notion of key as follows:

Definition 5.1.5. Let Σ be an implicational system on M . An implication

A → B ∈ LM is said to be a quasi-key implication with respect to Σ if

B ⊆ Dte(Σ) ⊆ A+
Σ. In addition, it is said to be proper quasi-key implication

if B = Dte(Σ)rA.
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Obviously, any key implication is a quasi-key implication. The following

assertions straightforwardly follow from Proposition 5.1.4.

Remark 5.1.6. Given an implicational system Σ, one has:

(i) A+
Σ = A ∪ Dte(Σ) for any quasi-key implication A→ B w.r.t. Σ.

(ii) A+
Σ = A ∪B for any proper quasi-key implication A→ B w.r.t. Σ.

The following example illustrates these notions.

Example 5.1.7. Let Σ = {a → c, bc → a, d → c, acd → b} be an implica-

tional system on M = {a, b, c, d, e}. The implication acde → b is a proper

key implication and a proper quasi-key implication for Σ. The implication

bc → a is a proper quasi-key implication, but not a key implication for Σ.

Finally, ad→ c is a non-proper quasi-key implication.

5.1.2 Dichotomous implicational system

Now, we justify that quasi-key implications have a different behavior with

respect to the closure computation. It allows us to give them a separated

treatment by splitting the implicational system into two well-defined sub-

sets. Thus, we introduce the notion of dichotomous implicational set and

a two-fold operator that computes faster the closure of the attribute sets.

Definition 5.1.8. Let Σ∗ and Σk be implicational systems on M and con-

sider Σ = Σ∗ ∪Σk. The pair 〈Σ∗,Σk〉 is said to be a dichotomous implica-

tional system if the following conditions hold:

(i) Σ is a compact implicational system.1

(ii) If A→ B ∈ Σ is a quasi-key implication w.r.t. Σ, then A→ B ∈ Σk.

(iii) If A→ B ∈ Σk then it is a proper quasi-key implication w.r.t. Σ.

In addition, we define the operator σ〈Σ∗,Σk〉 : 2M → 2M as the composition

σ〈Σ∗,Σk〉 = πΣk ◦ πΣ∗ where π is defined as in (2.1).

1See Definition 3.1.2.
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The underlying idea is that we split implicational systems into two well-

defined subsets, Σ∗ and Σk: implications in Σ∗ are not quasi-key implica-

tions, whereas every implication in Σk is a proper quasi-key implication.

Example 5.1.9. Let M = {a, b, c, d, e, g} be a set of attributes. The pair

〈Σ∗,Σk〉 = 〈{b → d, d → c, e → b}, {a → bcdeg, cg → bde}〉 is a dichoto-

mous implicational system. Notice that cg → bde is a proper quasi-key

implication with respect to Σ∗ ∪Σk whereas a→ bcdeg is also a proper key

implication. We illustrate the application of the new operator σ〈Σ∗,Σk〉 as

follows:

• σ〈Σ∗,Σk〉({b, d}) = πΣk ◦ πΣ∗({b, d}) = πΣk({b, c, d}) = {b, c, d}

• σ〈Σ∗,Σk〉({d, g}) = πΣk ◦ πΣ∗({d, g}) = πΣk({d, c, g}) = {b, c, d, e, g}

Hereafter, we abuse the notation and extend the usual definitions for

implicational systems to dichotomous implicational systems. Thus, for in-

stance, we will say that two dichotomous implicational systems, 〈Σ∗1,Σk
1〉

and 〈Σ∗2,Σk
2〉, are equivalent, denoted by 〈Σ∗1,Σk

1〉 ≡ 〈Σ∗2,Σk
2〉, if the equiv-

alence (Σ∗1 ∪ Σk
1) ≡ (Σ∗2 ∪ Σk

2) holds.

From the definition of dichotomous implicational system, it is obvious

that πΣ∗(X) ⊆ X ∪ Dte(Σ∗ ∪ Σk) and πΣk(X) ⊆ X ∪ Dte(Σ∗ ∪ Σk), for all

X ⊆ M . Moreover, this last inclusion is then an equality in those cases in

which the attribute set is not a fixpoint with respect to the closure of Σk.

That is,

πΣk(X) =

{
X ∪ Dte(Σ∗ ∪ Σk) if A ⊆ X for some A→ B ∈ Σk

X otherwise
(5.1)

Thus, πΣk is idempotent and, therefore, a closure operator.

Regarding the relationship between this operator and those that were

introduced in Chapter 2, Equations (2.1) and (2.2), we have that σ〈Σ∗,Σk〉 is

also isotone and extensive, it has the same computational cost than πΣ∗∪Σk

and ρΣ∗∪Σk , and it defines increasing sequences of sets that converge to the

closure as well, as the following lemma and theorem ensure.
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Lemma 5.1.10. Let 〈Σ∗,Σk〉 be a dichotomous implicational system. For

all n > 0 we have that σn〈Σ∗,Σk〉 = πΣk ◦ πnΣ∗.

Proof. The result is straightforwardly obtained by induction from the equal-

ity πΣk ◦ πΣ∗ ◦ πΣk = πΣk ◦ πΣ∗ , which is proved by distinguishing two

separated situations depending on the value of πΣk(X):

In the case of πΣk(X) = X, trivially, πΣk ◦πΣ∗ ◦πΣk(X) = πΣk ◦πΣ∗(X).

Otherwise, by (5.1), one has that πΣk(X) = X ∪ Dte(Σ∗ ∪ Σk) and

πΣk ◦πΣ∗ ◦πΣk(X) = πΣk ◦πΣ∗(X ∪ Dte(Σ∗ ∪Σk)) = X ∪ Dte(Σ∗ ∪Σk). On

the other hand, by extensiveness of πΣ∗ , we have that X ⊆ πΣ∗(X) and the

isotony of πΣk leads to πΣk(X) ⊆ πΣk ◦ πΣ∗(X). Finally, due to πΣk(X) =

X ∪ Dte(Σ∗ ∪ Σk), we obtain that πΣk ◦ πΣ∗(X) = X ∪ Dte(Σ∗ ∪ Σk).

Example 5.1.11. For the dichotomous implicational system introduced in

Example 5.1.9, 〈Σ∗,Σk〉 = 〈{b→ d, d→ c, e→ b}, {a→ bcdeg, cg → bde}〉,
we have that

σ2
〈Σ∗,Σk〉({b, g}) =πΣk ◦ πΣ∗ ◦ πΣk ◦ πΣ∗({b, g})

=πΣk ◦ πΣ∗ ◦ πΣk({b, d, g}) = πΣk ◦ πΣ∗({b, d, g})
=πΣk({b, c, d, g}) = {b, c, d, e, g}

πΣk ◦ π2
Σ∗({b, g}) =πΣk ◦ πΣ∗ ◦ πΣ∗({b, g}) = πΣk ◦ πΣ∗({b, d, g})

=πΣk({b, c, d, g}) = {b, c, d, e, g}

The following theorem states that the iteration of this operator reaches

the closure after finitely many steps.

Theorem 5.1.12. Let 〈Σ∗,Σk〉 be a dichotomous implicational system,

Σ = Σ∗ ∪ Σk and X ⊆ M . The sequence σn〈Σ∗,Σk〉(X) with n > 0 is an

increasing sequence and there exists 0 < r ≤ min{|Σ∗|, |Dte(Σ∗)|} such that

σr〈Σ∗,Σk〉(X) = X+
Σ .

Proof. The convergence of σn〈Σ∗,Σk〉(X) is straightforwardly obtained from

the convergence of πnΣ(X) because πΣ(X) ⊆ σ〈Σ∗,Σk〉(X), and both se-

quences are increasing and upper-bounded by X+
Σ , which is the fixpoint for
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πnΣ(X). That is, for all n > 0,

πnΣ(X) ⊆ σn〈Σ∗,Σk〉(X) = πΣk ◦ πnΣ∗(X) ⊆ X+
Σ ⊆ X ∪ Dte(Σ)

The second part of this proof shows that the fixpoint is achieved after

finitely many steps and provides the upper bound.

Consider now X0 = X, Xn = σn〈Σ∗,Σk〉(X) for each n > 0 and r being

the smaller integer with Xr = Xr+1 = X+
Σ . It is easy to see that for

each 0 ≤ n < r there exists a different implication A → B ∈ Σ∗ such

that A ⊆ Xn, B 6⊆ Xn and B ⊆ Xn+1. Therefore, r ≤ |Σ∗|. Moreover,

r ≤ |Dte(Σ∗)| because, in each Xn, at least a new element from Dte(Σ∗) is

added.

To conclude this section, we consider directness in our dichotomous

approach by means of the idempotence property, following the same scheme

as previous direct approaches (see Chapter 2).

Definition 5.1.13. A dichotomous implicational system 〈Σ∗,Σk〉 is said

to be direct if σ〈Σ∗,Σk〉 is idempotent.

Notice that, since σ〈Σ∗,Σk〉 is always extensive and isotone, when the

dichotomous implicational system is direct, σ〈Σ∗,Σk〉 is a closure operator.

Moreover, if Σ = Σ∗ ∪ Σk then σ〈Σ∗,Σk〉(X) = X+
Σ for all X ⊆M .

Theorem 5.1.14. Let 〈Σ∗,Σk〉 be a dichotomous implicational system.

(i) If Σ∗ is a direct implicational system then 〈Σ∗,Σk〉 is direct.

(ii) If 〈Σ∗,Σk〉 is direct then Σ∗ ∪ Σk is ordered-direct.2

Proof. Item (i) is a direct consequence of σ2
〈Σ∗,Σk〉 = πΣk ◦ π2

Σ∗ , which is

ensured by Lemma 5.1.10. Item (ii) is due to σ〈Σ∗,Σk〉(X) ⊆ ρΣ∗∪Σk(X) ⊆
X+

Σ∗∪Σk for all X ⊆M .

The previous theorem establishes sufficient conditions and the following

example shows that these conditions are not necessary.

2Where any order can be considered, whenever the implications from Σ∗ appear before

the implications from Σk.
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Example 5.1.15. The dichotomous implicational system

〈Σ∗,Σk〉 = 〈{a→ bc, b→ ac, ce→ d}, {ae→ bcd}〉

is direct, but Σ∗ is not direct because e.g. πΣ∗({b, e}) = {a, b, c, e} and

π2
Σ∗({b, e}) = {a, b, c, d, e}.

On the other hand, for Σ∗ = {a → b, b → c} and Σk = {cd → abe},
the implicational system Σ∗ ∪Σk is ordered-direct whereas the dichotomous

implicational system 〈Σ∗,Σk〉 is not direct because

σ〈Σ∗,Σk〉({a, d}) = {a, b, d}  ρΣ∗∪Σk({a, d}) = {a, b, c, d, e} = {a, d}+
Σ∗∪Σk .

5.2 Dichotomous direct basis, DD-basis.

As usual, the term “basis” is preserved to implicational systems that satisfy

some minimality criteria. In this framework, we call dichotomous direct

basis to any dichotomous direct implicational system whose first component

is right-simplified. Recall that the dichotomous implicational systems are

compact (Definition 5.1.8).

Definition 5.2.1. A dichotomous implicational system 〈Σ∗,Σk〉 is said to

be a dichotomous direct basis, briefly DD-basis, if the following conditions

hold:

(i) σ〈Σ∗,Σk〉 is idempotent (i.e. it is a closure operator).

(ii) For all A→ B,C → D ∈ Σ∗, if A  C then B ∩D = ∅.

Example 5.2.2. Let M = {a, b, c, d, e, g} be a set of attributes and consider

the following implicational system on M :

Σ = {a→ d, ce→ g, cg → e, de→ g, bg → ace, cd→ ab, ab→ ce, aeg → b}

Among its equivalent implicational systems, the following ones are the direct-

optimal basis, the D-basis and a DD-basis, respectively.
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Σdo = {a→ d, ab→ ceg, ac→ beg, ae→ bcg, bg → acde,

cd→ abeg, ce→ g, cg → e, de→ g, bce→ ad, bde→ ac}

ΣD =
〈
{a→ d}, {ab→ ceg, ae→ bc, bg → acde, cd→ abeg,

ce→ g, cg → e, de→ g, bce→ ad, bde→ ac}
〉

ΣDD =
〈
{a→ d, ce→ g, cg → e, de→ g},
{bg → acde, cd→ abeg, ab→ cdeg, ae→ bcdg}

〉
Notice that, in the previous example, the direct-optimal basis has a

greater cardinality than the D-basis and this one also has a greater cardi-

nality than the DD-basis. However, what matters is not the cardinality of

the bases but, as we shall see in the next section, the cost of its computation.

In the following, we will provide a result that illustrates the connection

between the direct-optimal basis and our DD-basis. Before presenting it,

we highlight one result from [26] that will be used in the proof. This result

gives a declarative characterization of direct-optimal bases, but it is not

suitable to be used in its computation.

Definition 5.2.3. Let Σ be a set of implications on M . A set A ⊆ M is

said to be a proper premise with respect to Σ if A]Σ 6= ∅ where

A]Σ = A+
Σ r

(
A ∪

⋃
x∈A

(
Ar {x}

)+
Σ

)
.

Proposition 5.2.4 (Ryssel et al. [55]). Let Σ be an implicational system.

The unique equivalent direct-optimal basis is

Σdo = {A→ A]Σ | A is a proper premise with respect to Σ}

Now, we present the mentioned theorem in whose proof we will need

the previous proposition.

Theorem 5.2.5. Let 〈Σ∗,Σk〉 be a dichotomous implicational system and

Σdo be the unique direct-optimal basis that is equivalent to Σ = Σ∗ ∪ Σk.

The pair 〈Σ∗,Σk〉 is a DD-basis if and only if

Σ∗ = {A→ B ∈ Σdo | A→ B is not a quasi-key implication w.r.t. Σdo}



138 CHAPTER 5. DICHOTOMOUS DIRECT BASES

Proof. It is straightforward from the definition, Lemma 5.1.10 and The-

orem 2.2.6, that, if Σ∗ is the set of non-quasi-key implications from Σdo,

then 〈Σ∗,Σk〉 is a DD-basis.

The proof of the converse result is based on Proposition 5.2.4. Assume

that 〈Σ∗,Σk〉 is a DD-basis and consider A → B ∈ Σ∗. From Defini-

tion 5.1.8, we have that A→ B is not a quasi-key implication, A ∩B = ∅
and ∅ 6= B ⊆ σ〈Σ∗,Σk〉(A) = πΣk ◦ πΣ∗(A) = πΣ∗(A) = A+

Σ .

Moreover, if z ∈ (A r {x})+
Σ for some x ∈ A, since 〈Σ∗,Σk〉 is direct,

there exists A′ → B′ ∈ Σ∗ with A′ ⊆ A r {x}  A such that z ∈ B′.

Therefore, by Condition (ii) in the definition of DD-basis, z 6∈ B. Since

this reasoning is valid for all z ∈ (Ar {x})+
Σ , one has (Ar {x})+

Σ ∩B = ∅.

So far, we have proved that ∅ 6= B ⊆ A]Σ. That is, A is a proper premise

with respect to Σ. Now, we prove that A]Σ ⊆ B. By definition of A]Σ and

the directness of 〈Σ∗,Σk〉, for each x ∈ A]Σ there exists A → Bx ∈ Σ∗

such that x ∈ Bx. Now, since Σ is a compact implicational system, for all

x, y ∈ A]Σ, we have that Bx = By = B. Therefore A]Σ = B.

The previous theorem leads to a set of straightforward corollaries that

justify to use the name “basis” for this kind of dichotomous implicational

system.

Corollary 5.2.6. Let 〈Σ∗1,Σk
1〉 and 〈Σ∗2,Σk

2〉 be two equivalent direct di-

chotomous implicational systems.

(i) If 〈Σ∗1,Σk
1〉 is a DD-basis then |Σ∗1| ≤ |Σ∗2| and ‖Σ∗1‖ ≤ ‖Σ∗2‖.

(ii) If 〈Σ∗1,Σk
1〉 and 〈Σ∗2,Σk

2〉 are DD-bases then Σ∗1 = Σ∗2.

The following corollary not only ensures the existence of an equiva-

lent DD-basis for any implicational system, but also provides a method to

transform any direct-optimal basis into a DD-basis with quadratic cost.

Corollary 5.2.7. Let Σ be an implicational system and Σdo be its equiva-

lent direct-optimal basis. Consider the following sets:

Σ∗do = {A→ B ∈ Σdo | Dte(Σdo) 6⊆ πΣdo
(A)}

Σk
do = {A→ Dte(Σdo)-A | A→ B ∈ Σdo with Dte(Σdo) ⊆ πΣdo

(A)}
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Then 〈Σ∗do,Σk
do〉 is a DD-basis equivalent to Σ.

Corollary 5.2.7 shows the way to build a DD-basis from an arbitrary

direct-optimal basis. However, Corollary 5.2.6 proves that there may be

several equivalent DD-bases. The following example illustrates the exis-

tence and the non-unicity of the DD-bases.

Example 5.2.8. Consider Σ = Σ∗ ∪ Σk where

Σ∗ = {a→ bcd, b→ acd, ce→ f} and Σk = {abcde→ fg}.

The dichotomous implicational system 〈Σ∗,Σk〉 is a DD-basis. Notice that

Σ∗ itself is not direct. The direct-optimal basis equivalent to Σ is

Σdo = {a→ bcd, b→ acd, ce→ f, ae→ fg, be→ fg}

and the DD-basis obtained from Σdo by using Corollary 5.2.7 is〈
{a→ bcd, b→ acd, ce→ f}, {ae→ bcdfg, be→ acdfg}

〉
,

which is equivalent to the initial one.

5.3 Computing the DD-basis

As previously mentioned, the algorithms that transform any implicational

system into a direct basis have non-polynomial cost with respect to the

size of the original implicational system. The definition of DD-basis and

the following theorem allow a reduction in the size of the input and this

fact has a huge repercussion on the cost of the transformation.

This is the main advantage of the proposed DD-basis with respect to the

alternatives given in previous chapters: direct-optimal basis and D-basis.

The new approach reduces the size of the subset of implications withstand-

ing the exponential cost of the basis construction process. This reduction

comes from the removal of the quasi-key implications in the exponential

task. The following theorem justifies this assertion.
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Theorem 5.3.1. Let 〈Σ∗,Σk〉 be a dichotomous implicational system and

Σ = Σ∗ ∪ Σk. If Σdo is the direct-optimal basis such that Σdo ≡ Σ∗ and

Σ∗do = {A→ B ∈ Σdo | Dte(Σ) 6⊆ πΣk ◦ πΣdo
(A)}

Σk
do = {A→ Dte(Σ)-A | A→ B ∈ Σdo with Dte(Σ) ⊆ πΣk ◦ πΣdo

(A)}

then 〈Σ∗do,Σk
do ∪ Σk〉 is a DD-basis that is equivalent to 〈Σ∗,Σk〉.3

Proof. It is straightforward that 〈Σ∗do,Σk
do ∪ Σk〉 is a dichotomous impli-

cational system. By Theorem 2.2.6, optimality of Σdo implies that Con-

dition (ii) in definition of DD-basis is also ensured. Then, we prove that

σ〈Σ∗do,Σ
k
do∪Σk〉 is idempotent. By Lemma 5.1.10, σ2

〈Σ∗do,Σ
k
do∪Σk〉 = πΣk

do∪Σk ◦
π2

Σ∗do
. Moreover, since every element in Σk

do ∪ Σk is a quasi-key implica-

tion with respect to Σ, one has πΣk
do∪Σk = πΣk ◦ πΣk

do
. On the other hand,

by Corollary 5.2.7, 〈Σ∗do,Σk
do〉 is a DD-basis and σ2

〈Σ∗do,Σ
k
do〉

= σ〈Σ∗do,Σ
k
do〉

.

Therefore,

σ2
〈Σ∗do,Σ

k
do∪Σk〉 =πΣk∪Σk

do
◦ π2

Σ∗do
= πΣk ◦ πΣk

do
◦ π2

Σ∗do

=πΣk ◦ σ2
〈Σ∗do,Σ

k
do〉

= πΣk ◦ σ〈Σ∗do,Σk
do〉

=πΣk ◦ πΣk
do
◦ πΣ∗do

= πΣk∪Σk
do
◦ πΣ∗do

= σ〈Σ∗do,Σ
k
do∪Σk〉

Based on the previous theorem, Algorithm 5.1 structures the transfor-

mation into three consecutive stages: First, there is an splitting process,

with quadratic cost, in which it filters what implications are quasi-keys and

reduces Σ∗. Second, Σ∗ is transformed into an equivalent direct-optimal ba-

sis Σdo by using any of the proposed methods. Finally, in a third stage, the

method reorganizes Σdo and Σk to obtain a DD-basis with quadratic cost.

The following example illustrates the execution of Algorithm 5.1.

Example 5.3.2. Let Σ = {a → d, ce → g, cg → e, de → g, bg → ace, cd →
ag, ab→ ce} be an implicational system. In the first stage, we pick up all the

3Notice that Σdo is equivalent to Σ∗ but not necessarily equivalent to Σ∗ ∪Σk, unlike

Theorem 5.2.5.
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Algorithm 5.1: DD-basis
input : An implicational system Σ

output: An equivalent DD-basis ΣDD

begin
Dte(Σ) := ∅
foreach A → B ∈ Σ do Dte(Σ) = Dte(Σ) ∪ (B rA)

- - Stage 1: Generation of Σ∗ and Σk by disjoining of Σ

Σ∗ = ∅,Σk = ∅
foreach A → B ∈ Σ do

if Dte(Σ) ⊆ A+
Σ then add A→ Dte(Σ)-A to Σk

else add A→ B-A to Σ∗

- - Stage 2: Generation of Σdo from Σ∗

Σdo := DObasis(Σ∗)

- - Stage 3: Generation of ΣDD from Σdo and Σk

Σ∗ := ∅
foreach A → B ∈ Σdo do

if Dte(Σ) ⊆ πΣk ◦ πΣdo(A) then add A→ Dte(Σ)-A to Σk

else add A→ B-A to Σ∗

return ΣDD = 〈Σ∗,Σk〉

quasi-key implications, returning the following dichotomous implicational

system:

〈Σ∗,Σk〉 = 〈{a→ d, ce→ g, cg → e, de→ g},
{bg → acde, cd→ aeg, ab→ cdeg}〉

In the second stage, we get the direct-optimal basis that is equivalent to Σ∗:

Σdo = {a→ d, ae→ g, ce→ g, cg → e, de→ g}

Finally, we consider Σdo and Σk to build the output, a DD-basis:

ΣDD = 〈{a→ d, ae→ g, ce→ g, cg → e, de→ g},
{bg → acde, cd→ aeg, ab→ cdeg}〉

In this example, the third stage boils down to the union of both components,

since Σdo does not contain quasi-key implications.
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We have shown the advantages of the splitting process of the original

implicational system with the goal of obtaining a DD-basis in a efficient

way. Going beyond, the next section considers specific criteria to achieve a

unique canonical DD-basis.

5.4 Canonical DD-basis

As stated in Corollary 5.2.6, there are different equivalent DD-bases and all

of them share the same first component of the dichotomous implicational

system. In the following example, three equivalent DD-bases are presented

to illustrate this situation:

Example 5.4.1. The following DD-bases are equivalent:

〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d}, {abcdeg → h}〉.
〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d}, {aeg → bcdh, aceg → bdh}〉.
〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d}, {abeg → cdh, aceg → bdh}〉.

The aim of this section is to define a canonical DD-basis considering

minimality in the second component of dichotomous implicational systems.

Definition 5.4.2. Let 〈Σ∗,Σk〉 be a DD-basis. It is said to be canonical if

the following conditions hold:

(i) For each A→ B ∈ Σk, πΣ∗(A) = A.

(ii) For each A→ B,C → D ∈ Σk, if A ⊆ C, then A = C and B = D.

Example 5.4.3. The first DD-basis introduced in Example 5.4.1,

〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d}, {abcdeg → h}〉,

is a canonical DD-basis.

In order to establish the properties of the canonical DD-basis and its

unicity, first we introduce several lemmas as basic results to prove the the-

orem that ensures the existence and the unicity of an equivalent canonical

DD-basis for each implicational system (see Theorem 5.4.8 below).
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Lemma 5.4.4. Let 〈Σ∗,Σk〉 be a canonical DD-basis and A → B ∈ Σk.

For any quasi-key implication C → D with respect to Σ∗ ∪ Σk, if C ⊆ A

then πΣ∗(C) = A.

Proof. If C → D is a quasi-key implication with respect to Σ∗ ∪ Σk, since

〈Σ∗,Σk〉 is direct, we have that πΣk ◦πΣ∗(C) = C∪Dte(Σ∗∪Σk). Therefore,

there exists A′ → B′ ∈ Σk with A′ ⊆ πΣ∗(C). On the other hand, as

C ⊆ A and πΣ∗ is isotone, we have πΣ∗(C) ⊆ πΣ∗(A) = A. Finally,

by Condition (ii) in the definition of canonical DD-basis, A = A′ and

πΣ∗(C) = A.

Lemma 5.4.5. Let 〈Σ∗,Σk〉 be a canonical DD-basis, Σ = Σ∗ ∪ Σk, and

A→ B be a quasi-key implication with respect to Σ. If A is a quasi-closed

set with respect to Σ, there exists C → D ∈ Σk such that C ⊆ A.

Proof. First, since A is a quasi-closed set with respect to Σ, for each E →
F ∈ Σ∗ with E ⊆ A, we have F ⊆ A because E → F is not a quasi-

key implication. Then, πΣ∗(A) = A. Finally, since A → B is a quasi-key

implication with respect to Σ, we have πΣk(A) = πΣk ◦πΣ∗(A) = A∪Dte(Σ)

and, therefore, there exists C → D ∈ Σk such that C ⊆ A.

Lemma 5.4.6. Let 〈Σ∗,Σk〉 be a canonical DD-basis and Σ = Σ∗ ∪ Σk.

For each A→ B ∈ Σk, one has A is a pseudo-closed set with respect to Σ.

Proof. First, if C ⊆ A, two scenarios are possible. On the one hand, when

Dte(Σ) 6⊆ C+
Σ , by Equation (5.1), isotony of πΣ∗ and the first condition in

definition of canonical DD-basis, C+
Σ = πΣ∗(C) ⊆ πΣ∗(A) = A. On the

other hand, if Dte(Σ) ⊆ C+
Σ , by Lemma 5.4.4, πΣ∗(C) = A and C+

Σ =

πΣk ◦ πΣ∗(C) = πΣk(A) = A ∪ B = A+
Σ . Therefore, A is a quasi-closed set

with respect to Σ.

In addition, because of B 6= ∅ = A ∩ B (the implicational system is

compact) and A→ B is a proper quasi-key implication, A+
Σ = A ∪B 6= A.

To conclude the proof it is only needed to see that, if C  A is a quasi-

closed set, then C → C is not a quasi-key implication because, in this case,

C+
Σ = πΣ∗(C)  πΣ∗(A) = A.
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If C  A is a quasi-closed set, then C → C is not a quasi-key implication

with respect to Σ because, in the opposite case, by Lemma 5.4.5, there exists

E → F ∈ Σk such that E ⊆ C  A in contradiction to Condition (ii) in

the definition of the canonical DD-basis.

The following theorem characterizes those implications belonging to the

second component of the canonical DD-basis.

Theorem 5.4.7. Let 〈Σ∗,Σk〉 be a canonical DD-basis and Σ = Σ∗ ∪ Σk.

Then A→ B ∈ Σk if and only if A→ B is a proper quasi-key implication

with respect to Σ and A is a pseudo-closed set with respect to Σ.

Proof. The direct implication is ensured by Lemma 5.4.6. Conversely, if

A → B is a proper quasi-key implication with respect to Σ and A is a

pseudo-closed set with respect to Σ, by Proposition 2.1.8, there exists C →
D ∈ Σ such that C ⊆ A and C+

Σ = A+
Σ . Since C → D is also a quasi-key

implication, C → D ∈ Σk and, by Lemma 5.4.6, C is a pseudo-closed set.

Finally, by definition of pseudo-closed sets, due to C ⊆ A and C+
Σ = A+

Σ ,

we have C = A and, therefore, A→ B ∈ Σk.

In the following theorem, we state several properties of the canonical

DD-basis.

Theorem 5.4.8. For any implicational system there exists a unique equiv-

alent canonical DD-basis. In addition, if 〈Σ∗1,Σk
1〉 is a canonical DD-

basis and 〈Σ∗2,Σk
2〉 is an equivalent dichotomous implicational system, then

|Σk
1| ≤ |Σk

2|, and ‖Σk
1‖ ≤ ‖Σk

2‖.

Proof. Given an implicational system Σ, if Σdo is its unique equivalent

direct-optimal basis and ΣDG is its unique equivalent Duquenne-Guigues

basis, by Theorems 5.2.5 and 5.4.7, the pair 〈Σ∗,Σk〉 where

Σ∗ = {A→ B ∈ Σdo | A→ B is not a quasi-key implication w.r.t. Σ}
Σk = {A→ B ∈ ΣDG | A→ B is a quasi-key implication w.r.t. Σ}

is the unique canonical DD-basis that is equivalent to Σ.
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On the other hand, assume that 〈Σ∗1,Σk
1〉 is a canonical DD-basis and

〈Σ∗2,Σk
2〉 is an equivalent dichotomous implicational system. Let Σ =

Σ∗1 ∪ Σk
1 ≡ Σ∗2 ∪ Σk

2. For each A1 → B1 ∈ Σk
1, by Theorem 5.4.7 and

Proposition 2.1.8, there exists A2 → B2 ∈ Σk
2 such that A2 ⊆ A1 and

A1
+
Σ = A2

+
Σ . Since both A1 → B1 and A2 → B2 are proper quasi-key

implications, we have that A1
+
Σ = A1 ∪ B1 = A2

+
Σ = A2 ∪ B2 (see Re-

mark 5.1.6) and, therefore, ‖A1 → B1‖ = ‖A2 → B2‖. Finally, since this

reasoning is valid for each implication in Σk
1, we conclude that |Σk

1| ≤ |Σk
2|,

and ‖Σk
1‖ ≤ ‖Σk

2‖.

The previous theorem, together with Theorem 5.2.5 and Corollary 5.2.6,

ensures that the canonical DD-basis (which exists and is unique) is the

direct dichotomous implicational system with the lowest cardinality and

the lowest size among all the equivalent dichotomous implicational systems.

Algorithm 5.2: Canonical DD-basis

input : A DD-basis 〈Σ∗,Σk〉
output: The equivalent canonical DD-basis

begin

F := Dte(Σ∗ ∪ Σk)

Σk
c := ∅

foreach A→ B ∈ Σk do

E := πΣ∗(A)

Condition :=true

foreach C → D ∈ Σk
c do

if C ⊆ E then Condition :=false and break the loop

else if E ⊆ C then Remove C → D from Σk
c

if Condition then Add E → F -E to Σk
c

return 〈Σ∗,Σk
c 〉

Notice that, although a canonical DD-basis can be computed via the

direct-optimal basis and the Duquenne-Guigues basis, it is an inefficient

solution because the algorithms that compute both are exponential. In

the previous section, we provide an algorithm for computing DD-bases.

We conclude this section with a quadratic algorithm (Algorithm 5.2) that
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transforms any DD-basis into its equivalent canonical DD-basis.

Now, we will show an illustrative example of how to obtain the canonical

DD-basis equivalent to a given DD-basis.

Example 5.4.9. Considering the second DD-basis from Example 5.4.1, the

execution of the algorithm would be the following:

〈Σ∗,Σk〉 = 〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d},
{aeg → bcdh, aceg → bdh}〉

The algorithm computes Dte(Σ∗ ∪ Σk) = {b, c, d, h} and traverses Σk:

• For aeg → bcdh ∈ Σk, πΣ∗(aeg) = {a, b, c, d, e, g}. So, Σ∗c = {abcdeg →
h}.

• For aceg → bdh ∈ Σk, πΣ∗(aceg) = {a, b, c, d, e, g} and the loop is

broken.

There are no more implications in Σk, so the algorithm returns the canon-

ical DD-basis:

ΣDD = 〈{a→ bc, b→ c, ae→ d, ce→ d, be→ d}, {abcdeg → h}〉

Since the canonical DD-basis is unique, the output of this example is

the same basis as the one in Example 5.4.3.

5.5 The performance of DD-basis and Canonical

DD-basis

The proposed methods to calculate both, the DD-basis and the canonical

DD-basis, allow for the improvement of the efficiency of any method of

calculating direct-optimal bases. In this section we support this statement

with an empirical study of how they improve the doSimp method, which

has been presented in Chapter 3. Thus, we compare three methods: do-

basis method (doSimp), DD-basis method (Algorithm 5.1) and canonical

DD-basis method (Algorithm 5.1 + Algorithm 5.2).
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The experiment was performed on a Mac OS X Yosemite 64 bits - Intel

Core i7 (2,93 GHz) with 8 GB. By using a random generator for implica-

tional systems, we have obtained a collection of 700 synthetic implicational

systems where the number of implications varies from 5 to 35 and the num-

ber of attributes varies from 5 to 25. We measure, for each implicational

system, the execution times (in seconds) of the methods mentioned above.

First, we study how the three methods behave with respect to the size

of the direct-optimal basis. Thus, Figure 5.1 illustrates a plot of the cloud

of execution times of the three methods. Due to the huge execution times

of do-basis method, we only show the data with execution time lower than

10 seconds. If all the tested implicational systems were plotted, all the

relevant points would be clustered in a line that is almost coincident.

The following table completes the study by summarizing the behavior

of the cases we have excerpted from in the graphical representation.

Measure Size do-basis DD-basis canonical DD-b.

Min. 238.0 10.90 0.03 0.03

1st Qu. 426.8 35.12 0.18 0.19

Median 603.0 136.73 0.35 0.38

3rd Qu. 854.5 71.45 3.30 3.34

Max. 1170.0 9 561.85 681.29 681.34

Mean 643.5 1 112.27 33.71 33.73

In addition, we also provide the tendency lines of the execution time

for direct-optimal basis and the canonical DD-basis (the tendency lines use

the whole set of time values). We have not included the DD-basis tendency

line because it is very similar (in this chart) to the canonical one.

A clear difference seems to appear between the do-basis method and the

two dichotomous methods (having both of them a similar performance).

In the previous figure, the comparison between the DD-basis and the

canonical DD-basis is hardly distinguished. In the following figure we will

show such a difference by zooming in the execution times of the two dichoto-

mous methods. Figure 5.2 shows that the execution time of the canonical

DD-basis is greater than the one of the DD-basis. The extra time is due to
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Figure 5.1: Execution times of doSimpand both methods of dichotomous direct bases pre-

sented in Algorithms 5.1 and 5.2, all of them applied to randomly generated implicational

systems.

Algorithm 5.2, which has a quadratic cost, as depicted in Figure 5.3. We

remark that the quadratic coefficient of the difference tendency line is very

small (nanoseconds).

To sum up, we emphasize that these results are very promising. On

the one hand, the theoretical results in the study of DD-basis for direct-

optimal basis could be applied to other direct bases directly improving its

computation process. On the other hand, the computation of these new

kinds of bases are more efficient than previous ones in the literature.
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Figure 5.2: Execution times for the computation of a DD-basis (Algorithm 5.1) and its

equivalent canonical one (Algorithm 5.2).

Figure 5.3: Execution time differences between the DD-basis method (Algorithm 5.1)

and the canonical one (Algorithm 5.2).





Part II

Triadic Concept Analysis





Chapter 6

Triadic concept analysis and

implications





A
s stated in the introduction, Lehmann and Wille [33,58] introduced

Triadic Concept Analysis (TCA) as a natural extension of Formal

Concept Analysis (FCA). In this chapter, we summarize the basic

notions of TCA for a better understanding of the results proposed in the

following chapter.

6.1 Triadic context

A triadic formal context is built from a ternary relation and, hence, we

need three sets, objects and attributes (as in the previous case) and also a

set of conditions. Formally, we have the following:

Definition 6.1.1. A triadic context is a quadruple K = 〈G,M,B, I〉 con-

sisting of three sets G (objects), M (attributes) and B (conditions) together

with a ternary relation I ⊆ G×M×B. A triple (g,m, b) ∈ I means that

object g possesses attribute m under condition b.

The natural way to represent the triadic context is as a three dimen-

sional cross table [13] where objects, attributes and conditions are repre-

sented in each of the dimensions. It is easy to notice that it is formed by all

the dyadic contexts associated with each condition, i.e. the triadic context

can be visualized by placing the dyadic contexts one after the other (see

155
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Figure 6.1). Such a representation is similar to the representation of data

cubes in the framework of Data Warehousing.

In this section we provide a background on triadic concept analysis by

recalling key notions and illustrating them through the following example.

The triadic context presented in Figure 6.3 appears in [37]. It was

borrowed from [25] but its meaning was adapted to represent a data cube

of three dimensions: Customer, Supplier, and Product.

Example 6.1.2. It concerns a group G of customers (1 to 5) that purchase

from suppliers in M ( Peter, Nelson, Rick, Kevin and Simon) products

found in B ( accessories, books, digital music and electronics). Thus, we

consider the triadic context K = 〈G,M,B, I〉, where G = {1, 2, 3, 4, 5} is the

set of customers, M = {P,N,R,K,S} is the set of suppliers, B = {a, b,d, e}
is the set of products and the ternary relation I is depicted in the three-

dimensional table of Figure 6.1.

This three-dimensional representation is uncomfortable to handle. For

this reason, different authors use some form of flattening. One possibility is

to select one of the sets and relate it to the Cartesian product of the other

two sets in a binary context. Thus, from a triadic context K = 〈G,M,B, I〉
we obtain three flat representations:

• K(1) = 〈G,M ×B, I(1)〉 where (g, (m, b)) ∈ I(1) iff (g,m, b) ∈ I.

• K(2) = 〈M,G×B, I(2)〉 where (m, (g, b)) ∈ I(2) iff (g,m, b) ∈ I.

• K(3) = 〈B,G×M, I(3)〉 where (b, (g,m)) ∈ I(3) iff (g,m, b) ∈ I.

Example 6.1.3. In Figure 6.2 we can view the three flat representations

of the triadic context introduced in Example 6.1.2.

There is another alternative flat representation, which is used by Ganter

and Obiedkov in [25]. It consists in a table of the mapping I : G×M → 2B

where I(g,m) = {b ∈ B | (g,m, b) ∈ I}. This is the representation that we

will use in this work.
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Figure 6.1: The construction of the triadic context from [37] as a three dimensional table.
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Figure 6.2: The three flat representations of the triadic context K from [37].

Example 6.1.4. In Figure 6.3, the triadic context introduced in Exam-

ple 6.1.2 is represented in the style of Ganter and Obiedkov.

Thus, for instance, the value ad at the cross of Row 1 and Column

R means that Customer 1 orders accesories and digital music from Rick;

namely, (1,R, a) and (1,R, d) belongs to I.

After this brief introduction to triadic contexts, we summarize several

important notions needed to introduce later the semantic notion of implica-

tion. This definition will lead us to develop a logic to manage these triadic

implications.

6.2 Triadic Concepts

In this section we extend the notion of formal concept by defining the tri-

adic concept. Since concepts are seen as units of thought, they tend to

be homogeneous and closed [13, 33]. The homogeneity property refers to
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K P N R K S

1 abe abe ad ab a

2 ae bde abe ae e

3 abe e ab ab a

4 abe be ab ab e

5 ae ae abe abd a

Figure 6.3: Ganter and Obiedkov representation of the triadic context from Exam-

ple 6.1.2.

the fact that all the objects share all the attributes under all the condi-

tions within the concept. The closure property ensures that the concept is

maximal with respect to homogeneity.

Definition 6.2.1. Given a triadic context K = 〈G,M,B, I〉, a cuboid in

K is a triplet (X1, X2, X3) such that X1 ×X2 ×X3 ⊆ I.

The relation v among cuboids is defined as follows:

(X1, X2, X3) v (Y1, Y2, Y3) if and only if X1 ⊆ Y1, X2 ⊆ Y2 and X3 ⊆ Y3

for any pair of cuboids (X1, X2, X3) and (Y1, Y2, Y3).

Due to the property of being closed, a triadic concept (A1, A2, A3) rep-

resents a maximal cuboid of ones (or crosses) within a triadic context. Let

us introduce this new notion formally.

Definition 6.2.2. A triadic concept (also called closed tri-set or 3-set for

short) of a triadic context K is a cuboid (A1, A2, A3) that is maximal w.r.t.

the relation v. The subsets A1, A2 and A3 are called the extent, the intent

and the modus of the triadic concept (A1, A2, A3), respectively.

Thus, a triadic concept is a cuboid (A1, A2, A3) such that, for any other

cuboid (X1, X2, X3), if (A1, A2, A3) v (X1, X2, X3), then (A1, A2, A3) =

(X1, X2, X3).
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As in the dyadic case, all the knowledge extracted from a triadic context

K can be represented by means of the set I(K) of all triadic concepts of

the triadic context K.

The following example illustrates the difference between a maximal

cuboid and another cuboid which is not maximal.

Example 6.2.3. Consider the triadic context given in Figure 6.3.

K(1) P N R K S

a b d e a b d e a b d e a b d e a b d e

1 × × × × × × × × × × ×
2 × × × × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × × × ×

In this context, (135,PN, e) is a cuboid which is not maximal with re-

spect to v. However, the tri-set (12345,PN, e) represents a cuboid which is

maximal with respect to v.

K(1) P N R K S

a b d e a b d e a b d e a b d e a b d e

1 × × × × × × × × × × ×
2 × × × × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × × × ×

Example 6.2.4. From Figure 6.3, we can extract, for example, the triadic

concepts (as maximal cuboids) depicted in Figures 6.4, 6.5 and 6.6.

The tri-set (135,PN, e) is not closed since its extent can be augmented

without violating the ternary relation to get (12345,PN, e), as shown in

Example 6.2.3.

Once triadic concepts have been introduced, we focus on the derivation

operators and the obtention of triadic concepts by means of them.
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Figure 6.4: The triadic concept (12345,PRK, a) from the triadic context of Figure 6.3 as

a maximal cuboid.

Figure 6.5: The triadic concept (14,PN,be) from the triadic context of Figure 6.3 as a

maximal cuboid.

The derivation operators in triadic concept analysis were defined in [33]

as a useful tool for the characterization of triadic concepts. First of all, we

will define the (i)-derivation operators and the (j, k)-derivation operators

which yield the derivation operators of the dyadic context K(i) associated

with the triadic context (see Figure 6.2).

Definition 6.2.5. Let K = 〈G,M,B, I〉 be a triadic context and X1 ⊆ G,

X2 ⊆M , X3 ⊆ B.

i) The (i)-derivation operators are defined by:

X ′1 ={(m, b) ∈M×B | (g,m, b) ∈ I for all g ∈ X1}.
X ′2 ={(g, b) ∈ G×B | (g,m, b) ∈ I for all m ∈ X2}.
X ′3 ={(g,m) ∈ G×M | (g,m, b) ∈ I for all b ∈ X3}.
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Figure 6.6: The triadic concept (34,PRK, ab) from the triadic context of Figure 6.3 as a

maximal cuboid.

ii) the (j, k)-derivation operators are defined by:

(X1, X2)′ ={b ∈ B | (g,m, b) ∈ I for all (g,m) ∈ X1×X2}.
(X1, X3)′ ={m ∈M | (g,m, b) ∈ I for all (g, b) ∈ X1×X3}.
(X2, X3)′ ={g ∈ G | (g,m, b) ∈ I for all (m, b) ∈ X2×X3}.

Let us see an example to illustrate these derivation operators.

Example 6.2.6. Consider the formal context from Figure 6.3. Firstly, we

will show the behavior of the (i)-derivation operators.

(1)-derivation operator: {2, 3}′ = {(P, a), (P, e), (N, e), (R, a), (R,b), (K, a)}.

(2)-derivation operator: {N,K,S}′ = {(1, a), (2, e), (5, a)}.

(3)-derivation operator: {d}′ = {(1,R), (2,N), (5,K)}.

Now, let us see the behavior of the (j, k)-derivation operators.

(1, 2)-derivation operator:
(
{1, 2, 3, 4, 5}, {P,N}

)′
= {e}.

(2, 3)-derivation operator:
(
{P,N}, {b, e}

)′
= {1, 4}.

(1, 3)-derivation operator:
(
{2, 5}, {a}

)′
= {P,R,K}.

The following theorem, presented in [8], will lead to a new definition of

triadic concepts in terms of the (j, k)-derivation operators.
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Theorem 6.2.7. Let K be a triadic context. A triple (A1, A2, A3) is a

triadic concept of K if and only if A1 = (A2, A3)′, A2 = (A1, A3)′ and

A3 = (A1, A2)′.

Proof. ⇒: Consider a triadic context (A1, A2, A3) and X1 ⊆ G such that

X1 = (A2, A3)′. From A1 × A2 × A3 ⊆ I, one has that A1 ⊆ X1 and

X1 × A2 × A3 ⊆ I. By Definition 6.2.2, since the triadic concept is a

maximal cuboid, we have that X1 = A1. For A2 and A3, the proof is

analogous.

⇐: Consider A1 ⊆ X1, A2 ⊆ X2, and A3 ⊆ X3. From the chain

of inclusions X1 ⊆ (X2, X3)′ ⊆ (X2, A3)′ ⊆ (A2, A3)′ = A1, we conclude

X1 ⊆ A1 and consequently, A1 = X1. In a similar way, we obtain A2 = X2

and A3 = X3 and, thus, (A1, A2, A3) is a triadic concept.

As shown in [58], the family of (j, k)-derivation operators, by setting a

subset of objects, attributes or conditions (respectively) yields a family of

Galois connections and leads us to the generation of triadic concepts.

After defining the derivation operators we can introduce the notion

of implication in the triadic framework. The following section surveys the

different notions of triadic implications in the literature and formally defines

the kind of implications we are interested in.

6.3 Triadic Implications

As far as we know, the first definition of triadic implication is due to Bieder-

mann [13]. He considers that a triadic implication has the form (X → Y )C

and holds if “whenever X occurs under all conditions in C, then Y also

occurs under the same conditions”. Its definition is formally introduced as

follows.

Definition 6.3.1. Let K = 〈G,M,B, I〉 be a triadic context, X,Y ⊆ M

and C ⊆ B. The implication (X → Y )C holds in the context K when

(X, C)′ ⊆ (Y, C)′.
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Later on, Ganter and Obiedkov [25] extended Biedermann’s work and

defined three types of implications:

Attribute×condition implications (AxCIs)

An attribute×condition implication (AxCI) has the form X → Y , where

X and Y are subsets of M×B. Such implications are extracted from the

dyadic context K(1) = 〈G,M ×B, I(1)〉, being classical dyadic implications

(see Definition 1.3.3). For example, the AxCI

(R,d) → (P,a) (P,b) (P,e) (N,a) (N,b) (N,e) (R,a) (K,a) (K,b) (S,a)

holds in the dyadic context K(1) from Figure 6.2.

Attributional condition implications (ACIs).

An attributional condition implication (ACI) can be considered a proper

extension of the classical notion of implication, being an expression of the

form X
A−→ Y , where X,Y ⊆ B and A ⊆M . For instance, the ACI b

PN−−→ e

holds in K from Figure 6.3 since whenever books are supplied by both Peter

and N elson, then electronics are also provided by all these two suppliers.

Conditional attribute implications (CAI s)

In a dual way, a conditional attribute implication CAI takes the form:

X
C−→ Y , where X and Y are subsets of M , and C is a subset of B. It

means that X implies Y under each condition in C and, therefore, for any

subset in C. Using our context in Figure 6.3, the CAI N
ae−→ P states that

whenever N elson supplies accessories and electronics (or any one of these

two products), then Peter does so.

As Biedermann says in [13], the implications that he presents “might

have seemed a little artificial but they are suitable for an introduction

of triadic implications”. In addition, the AxCIs are exactly the dyadic

implications we know and the other ones have a dual structure. So, we

focus on CAI s following [25]. Moreover, if we construct an implication

logic for CAI s, analogously we would obtain an implication logic for ACIs.
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First of all, we will give the formal definition of CAI s based on the

derivation operators.

Definition 6.3.2. Let K = 〈G,M,B, I〉 be a triadic context, X,Y ⊆
M and C ⊆ B. The implication X

C−→ Y holds in the context K when

(X, {c})′ ⊆ (Y, {c})′ for all c ∈ C.

So, a CAI holds in a context if it is valid under each single condition.

Let us see an example to clarify this notion.

Example 6.3.3. Let K = 〈G,M,B, I〉 be the triadic context depicted in

Figure 6.3. The implication PN
abd−−→ K is satisfied in the triadic context K

because (PN, {c})′ ⊆ (K, {c})′ for all c ∈ {a,b,d}:

• (PN, {a})′ = {1, 5} ⊆ (K, {a})′ = G

• (PN, {b})′ = {1, 4} ⊆ (K, {b})′ = {1, 3, 4, 5}

• (PN, {d})′ = ∅ ⊆ (K, {d})′ = {5}

Certainly, the previous implication can be linked to Biedermann’s defi-

nition of triadic implication. The following proposition relates both notions

of implications and also shows that Biedermann’s approach is weaker than

the other one.

Proposition 6.3.4 (Ganter et al. [25]). Let K = 〈G,M,B, I〉 be a triadic

context, X,Y ⊆ M and C ⊆ B. Then X
C−→ Y holds in K if and only if

(X → Y )N also holds in K for all N ⊆ C.

From Theorem 6.3.4 and Definitions 6.3.1 and 6.3.2, the following corol-

lary is straightforward.

Corollary 6.3.5. Let K = 〈G,M,B, I〉 be a triadic context, X,Y ⊆ M

and C ⊆ B. Then X
C−→ Y holds in K if and only if (X → Y )c also holds

in K for all c ∈ C.

This chapter concludes with an example that illustrates the difference

between Biedermann’s triadic implications and CAI s.



166 CHAPTER 6. TRIADIC CONCEPT ANALYSIS AND IMPLICATIONS

Example 6.3.6. Considering the context K depicted in Figure 6.3, N
ae−→ P

holds since (N → P)C is satisfied for any C ⊆ {a, e}. On the other hand,

although (N → P)abe holds, N
abe−−→ P does not, since (N → P)C does not

hold for any C ⊆ {a,b, e}. For instance, (N→ P)be does not hold.



Chapter 7

Conditional Attribute

Implications: CAIs





T
he notion of triadic implication is a natural extension of the at-

tribute implications in Formal Concept Analysis. Our interest re-

sides on the study of these triadic implications to develop logics to

manage them. As stated in the previous chapter, Biedermann [13] was the

first who investigated implications in triadic contexts and, later, Ganter

and Obiedkov [25] explored other variants of triadic implications. Among

their definitions of triadic implications, we focus especially on the so-called

conditional attribute implications.

In this chapter, we introduce a logic for reasoning with conditional at-

tribute implications. Specifically, we present the three pillars of the logic:

the language, the semantics, and a syntactic proof system. In fact, we

present three equivalent syntactic proof systems, all of which are sound

and complete. Soundness ensures that implications derived by using the

axiomatic system hold in the formal context and completeness guarantees

that all implications which are satisfied can be derived from the implica-

tional system. As far as we know, no such axiomatic system has been

introduced so far in triadic concept analysis.

The results described in this chapter are the culmination of a collabo-

ration with Rokia Missaoui and have been published in [51,52].

169
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7.1 CAIL: Conditional Attribute Implication Logic

In this section, we introduce a logic for reasoning on conditional attribute

implications in the framework of triadic formal concept analysis. This logic

is presented in a classical style by considering its three pillars: the language,

the semantics and the inference system.

7.1.1 Language

First, we consider a two-sorted alphabet: we assume the existence of a

logical alphabet that consists of a finite set Ω of attribute symbols and a

finite set Γ of conditions.

The set of well formed formulas (hereinafter, they will be called formu-

las, implications or CAI s) is

LΩ,Γ = {X C−→ Y | X,Y ⊆ Ω, C ⊆ Γ}.

Following the same scheme than in the previous chapters, we use capital

letters X,Y, Z,W, . . . , possibly with subscripts, to denote subsets of at-

tributes (X,Y, Z,W ⊆ Ω) and calligraphic capital letters C, C1, C2, . . . to

denote subsets of conditions (C, C1, C2 ⊆ Γ).

For the sake of readability, inside the formulas, we omit the brackets

and commas (e.g. abc denotes the set {a, b, c}) and, as usual, the union is

denoted by juxtaposition (e.g. XY denotes X ∪ Y ) and the set difference

by the symbol “-” (e.g. X-Y denotes X r Y ).

Example 7.1.1. Let Ω = {a, b, c, d} and Γ = {c1, c2, c3} and consider

X = {a, b}, Y = {b, c}, Z = {c, d}, C1 = {c1, c2} and C2 = {c2, c3}.

• X
C1−→ Y is written as ab

c1c2−−→ bc instead of {a, b} {c1,c2}−−−−→ {b, c}.

• XY
C1-C2−−−→ Z-Y denotes abc

c1−→ d.

7.1.2 Semantics

Based on Definition 6.3.2, the semantics is introduced by means of the

notions of interpretation and model.
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Definition 7.1.2. An interpretation for the language LΩ,Γ is a triplet

〈K, h1, h2〉 where K is a triadic context 〈G,M,B, I〉, and h1 : Ω → M and

h2 : Γ→ B are injective mappings.

The following example illustrates the above definition.

K Peter Nelson Rick Kevin Simon

1 abe abe ad ab a

2 ae bde abe ae e

3 abe e ab ab a

4 abe be ab ab e

5 ae ae abe abd a

Figure 7.1: The triadic context borrowed from [37] presented in Figure 6.3.

Example 7.1.3. Consider Ω = {P,N,R,K, S} and Γ = {a,b,d, e}. Con-

sider also the triadic context K = 〈G,M,B, I〉, about Customers, Suppliers,

and Products where

G ={1, 2, 3, 4, 5}
M ={Peter, Nelson, Rick, Kevin, Simon}
B ={accessories, books, digital music, electronics}

and I is the relation depicted in Figure 7.1. The triple 〈K, h1, h2〉 is an

interpretation for LΩ,Γ where h1 : Ω→M and h2 : Γ→ B are the mappings:

x P N R K S

h1(x) Peter Nelson Rick Kevin Simon

x a b d e

h2(x) accessories books digital music electronics

Hereafter, for simplicity and without loss of generality we identify inter-

pretations for implications in LΩ,Γ with triadic contexts K = 〈G,M,B, I〉
such that Ω ⊆ M , Γ ⊆ B, and the mappings h1 and h2 are the respective

embeddings.
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Definition 7.1.4. An interpretation K is said to be a model for a given

formula X
C−→ Y ∈ LΩ,Γ if the following condition holds:

(X, {c})′ ⊆ (Y, {c})′ for all c ∈ C. (7.1)

In addition, the interpretation is model for a set Σ ⊆ LΩ,Γ if it is a model

for all σ ∈ Σ.

As usual, K |= X
C−→ Y and K |= Σ denote that K is a model for X

C−→ Y

and K is model for Σ respectively.

Example 7.1.5. The interpretation presented in Example 7.1.3 is a model

for the formula PN
abd−−→ K because

• ({P,N}, {a})′ = {1, 5} ⊆ ({K}, {a})′ = G

• ({P,N}, {b})′ = {1, 4} ⊆ ({K}, {b})′ = {1, 3, 4, 5}

• ({P,N}, {d})′ = ∅ ⊆ ({K}, {d})′ = {5}

In addition, K is a model for the following set of conditional attribute im-

plications, i.e., K |= Σ.

Σ = { P
de−→ N, R

ae−→ P, S
bde−−→ P,

P
ad−→ R, R

a−→ K, S
ab−→ RK,

P
d−→ S, R

e−→ N, PK
ade−−→ R,

P
bd−→ K, K

e−→ NS, NK
abde−−−→ P,

N
ae−→ P, K

ae−→ R, RS
abde−−−→ K,

N
a−→ RS, S

b−→ N}

Notice that Equation (7.1) implies (X, C)′ ⊆ (Y, C)′, but they are not

equivalent, as the following example shows.

Example 7.1.6. Considering the context K depicted in Figure 7.1, we have

that ({N}, {abe})′ ⊆ ({P}, {abe})′ holds. However, K 6|= N
abe−−→ P because,

for instance, ({N}, {b})′ ⊆ ({P}, {b})′ does not hold.
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As usual, the notions of interpretation and model leads to the notion of

semantic derivation.

Definition 7.1.7. Consider Σ,Σ1,Σ2 ⊆ LΩ,Γ and σ ∈ LΩ,Γ.

• σ is semantically derived from Σ if K |= Σ implies K |= σ, for all

interpretations K. It is denoted by Σ |= σ.

• Σ1 and Σ2 are said to be (semantically) equivalent if they have the

same models, i.e. K |= Σ1 if and only if K |= Σ2 for any interpreta-

tion K.

Finally, the following proposition is trivially obtained from the previous

definitions.

Proposition 7.1.8. For all X,Y ⊆ Ω and C ⊆ Γ, the following equiva-

lences hold:

{X C−→ Y } ≡ {X C1−→ Y | C1 ⊆ C} ≡ {X
c−→ Y | c ∈ C}.

7.1.3 Syntactic inference

As we have already stated, one of the main aims of this chapter is to

introduce a sound and complete axiomatic system for CAI s that represents

the counterparts of the well-known Armstrong’s axioms [27]. Now, we

present this novel axiomatic system and, then, in the following sections, we

will prove its soundness and completeness.

Definition 7.1.9. The CAIL axiomatic system has two axiom schemes:

Non-constraint [Nc]:
∅ ∅−→ Ω

Inclusion [Inc]:
X

Γ−→ Y
, where Y ⊆ X

Together with the following four primitive inference rules:
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Augmentation [Aug]:
X
C−→ Y

XZ
C−→ Y Z

Transitivity [Tran]:
X
C1−→ Y, Y

C2−→ Z

X
C1∩C2−−−−→ Z

Conditional Decomposition [ConDec]:
X
C1C2−−−→ Y

X
C1−→ Y

Conditional Composition [ConCom]:
X
C1−→ Y,Z

C2−→W

XZ
C1C2−−−→ Y ∩W

The notion of syntactic derivation is introduced as usual:

Definition 7.1.10. Consider Σ ⊆ LΩ,Γ and σ ∈ LΩ,Γ. The formula σ

is said to be syntactically derived, or inferred, from Σ by using CAIL,

denoted Σ `C σ, if there exists a chain of formulas σ1, . . . , σn ∈ LΩ,Γ such

that σn = σ and, for all 1 ≤ i ≤ n, one of the following conditions holds:

(i) σi is an axiom.

(ii) σi ∈ Σ.

(iii) σi is obtained by applying the inference rules in CAIL to formulas in

{σj | 1 ≤ j < i}.

In this case, we say that the sequence σ1, . . . , σn is a proof for Σ `C σ.

The following example shows how CAIL axiomatic system is used to

derive new formulas.

Example 7.1.11. Consider the set Σ introduced in Example 7.1.5. The

following sequence is a proof for Σ `C PN
abd−−→ K.

σ1 : P
bd−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .belongs to Σ.

σ2 : PN
bd−→ KN . . . . . . . . . . . . . .by applying [Aug] to σ1 with N.

σ3 : KN
bd−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ4 : PN
bd−→ K . . . . . . . . . . . . . . by applying [Tran] to σ2 and σ3.
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σ5 : N
a−→ RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . belongs to Σ.

σ6 : RS
a−→ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Inc].

σ7 : N
a−→ R . . . . . . . . . . . . . . . . . by applying [Tran] to σ5 and σ6.

σ8 : R
a−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .belongs to Σ.

σ9 : N
a−→ K . . . . . . . . . . . . . . . . . by applying [Tran] to σ7 and σ8.

σ10 : PN
a−→ PK . . . . . . . . . . . . . . by applying [Aug] to σ9 with P.

σ11 : PK
a−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ12 : PN
a−→ K . . . . . . . . . . . . .by applying [Tran] to σ10 and σ11.

σ13 : PN
abd−−→ K . . . . . . . . . by applying [ConCom] to σ4 and σ12.

Derived inference rules

Before examining the soundness and completeness of this axiomatic system,

we introduce a set of derived inference rules which will be used to shorten

the proofs. We name the new derived rules, and provide their schemas and

proofs.

Decomposition [Dec]: {X C−→ Y Z} `C X
C−→ Y .

σ1 : X
C−→ Y Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2 : Y Z
Γ−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Inc].

σ3 : X
C−→ Y . . . . . . . . . . . . . . . . . . . by [Tran] from σ1 and σ2.

Pseudotransitivity [PsTr]: {X C1−→ Y, Y Z
C2−→W} `C XZ

C1∩C2−−−−→W

σ1 : X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2 : Y Z
C2−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ3 : XZ
C1−→ Y Z . . . . . . . . . . . . . . . . by [Aug] from σ1 with Z.

σ4 : XZ
C1∩C2−−−−→W . . . . . . . . . . . . . by [Tran] from σ3 and σ2.

Additivity [Add]: {X C1−→ Y,X
C2−→ Z} `C X

C1∩C2−−−−→ Y Z
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σ1 : X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2 : X
C2−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ3 : XY
C2−→ Y Z . . . . . . . . . . . . . . . .by [Aug] from σ2 with Y .

σ4 : X
C1∩C2−−−−→ Y Z . . . . . . . . . . . . . .by [PsTr] from σ1 and σ3.

Accumulation [Acc]: {X C1−→ Y Z,Z
C2−→W} `C X

C1∩C2−−−−→ Y ZW

σ1 : X
C1−→ Y Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2 : Z
C2−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by hypothesis.

σ3 : X
C1−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] from σ1.

σ4 : X
C1∩C2−−−−→W . . . . . . . . . . . . . . .by [Tran] from σ3 and σ2.

σ5 : X
C1∩C2−−−−→ Y ZW . . . . . . . . . . . . by [Add] from σ1 and σ4.

Hereafter, we can use these derived inference rules within a derivation

chain on CAIL.

The following proposition also introduces an initial set of formal the-

orems (in logic a formal theorem is a formula which can be derived from

axioms by using inference rules).

Proposition 7.1.12. For any X,Y ⊆ Ω, the implication X
∅−→ Y is a

theorem, that is

`C X
∅−→ Y

Proof.

σ1: ∅ ∅−→ Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Nc].

σ2: X
∅−→ Ω . . . . . . . . . . . . . . . . . . . . . . . by [Aug] from σ1 with X.

σ3: X
∅−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] from σ2.



7.1. CAIL: CONDITIONAL ATTRIBUTE IMPLICATION LOGIC 177

Syntactic closure operator

Now, we extend the definition of classical syntactic closure to triadic con-

cept analysis. For a set of attributes X, its syntactic closure with respect

to a set of CAIs Σ under the conditions in C, denoted by X+
Σ,C , will be the

maximum set of attributes Y satisfying Σ `C X
C−→ Y .

Definition 7.1.13. Consider Σ ⊆ LΩ,Γ and C ⊆ Γ. The syntactic closure

operator with respect to Σ under the conditions in C is defined as follows:

(−)+
Σ,C : 2Ω → 2Ω where X+

Σ,C = {m ∈ Ω | Σ `C X
C−→ m}

The following lemma is crucial to prove that this operator is really a

closure operator.

Lemma 7.1.14. Consider Σ ⊆ LΩ,Γ and C ⊆ Γ. For all X ⊆ Ω one has

Σ `C X
C−→ X+

Σ,C

Proof. Since Ω is finite, we have that X+
Σ,C is also finite.

Assume X+
Σ,C = {mi | 1 ≤ i ≤ k}. For each 1 ≤ i ≤ k there exists

a sequence σi1, . . . , σiji that proves Σ `C X
C−→ mi. Then, a proof for

Σ `C X
C−→ X+

Σ,C is the sequence σ11, . . . , σ1j1 , . . . , σk1, . . . , σkjk , σ2, . . . , σk

where σh = (X
C−→ m1 . . .mh) for each 2 ≤ h ≤ k, the formula σ2 is obtained

by applying [Add] to σ1j1 and σ2j2 , and σh is obtained by applying [Add]

to σ(h−1) and σhjh for each 2 < h ≤ k.

Theorem 7.1.15. Consider Σ ⊆ LΩ,Γ and C ⊆ Γ. The operator (−)+
Σ,C is

a closure operator.

Proof. • (−)+
Σ,C is isotone: we assume X1 ⊆ X2 ⊆ Ω and prove the

inclusion (X1)+
Σ,C ⊆ (X2)+

Σ,C . Consider m ∈ (X1)+
Σ,C . By definition,

there exists a sequence σ1, . . . , σn that proves Σ `C X1
C−→ m. Thus, a

sequence proving Σ `C X2
C−→ m is obtained by adding the following

formulas:
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σn+1: X2
C−→ mX2 . . . . . . by applying [Aug] to σn with X2.

σn+2: mX2
Γ−→ m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Inc].

σn+3: mX2
C−→ m . . . . . . . . . .by applying [ConDec] to σn+2.

σn+4: X2
C−→ m . . . . by applying [Tran] to σn+1 and σn+3.

Therefore, m ∈ (X2)+
Σ,C .

• (−)+
Σ,C is inflationary, i.e. X ⊆ (X)+

Σ,C : The following sequence proves

Σ `C X
C−→ m for all m ∈ X.

σ1: X
Γ−→ m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ2: X
C−→ m . . . . . . . . . . . . . . . . . by applying [ConDec] to σ1.

• (−)+
Σ,C is idempotent: First, since the operator is inflationary, one has

X ⊆ X+
Σ,C and, since it is also isotone, X+

Σ,C ⊆ (X+
Σ,C)

+
Σ,C .

Conversely, we prove (X+
Σ,C)

+
Σ,C ⊆ X+

Σ,C . Consider m ∈ (X+
Σ,C)

+
Σ,C ,

that is, Σ `C X+
Σ,C

C−→ m. By Lemma 7.1.14, Σ `C X
C−→ X+

Σ,C and,

by [Tran], Σ `C X
C−→ m. Therefore, m ∈ X+

Σ,C .

The following theorem establishes the relationship between the syntactic

derivation of a formula and the syntactic closure operator introduced above.

Theorem 7.1.16. Consider Σ ⊆ LΩ,Γ, C ⊆ Γ and X,Y ⊆ Ω. Then

Σ `C X
C−→ Y if and only if Y ⊆ X+

Σ,C .

Proof. • Assume Σ `C X
C−→ Y and m ∈ Y . The following sequence

proves Σ `C X
C−→ m, i.e. m ∈ X+

Σ,C :

σ1: Y
Γ−→ m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ2: Y
C−→ m . . . . . . . . . . . . . . . . . . . . . . . by applying [ConDec].

σ3: X
C−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ4: X
C−→ m . . . . . . . . . . . . by applying [Tran] to σ3 and σ2.



7.1. CAIL: CONDITIONAL ATTRIBUTE IMPLICATION LOGIC 179

• Conversely, assume Y ⊆ X+
Σ,C . By Lemma 7.1.14, there exists a

sequence σ1, . . . , σn that proves Σ `C X
C−→ X+

Σ,C . Thus, a sequence

proving Σ `C X
C−→ Y is obtained by adding the following formulas:

σn+1: X
+
Σ,C

Γ−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σn+2: X
+
Σ,C

C−→ Y . . . . . . . . . . by applying [ConDec] to σn+1.

σn+3: X
C−→ Y . . . . . . . by applying [Tran] to σn and σn+2.

The previous theorem allows the use of the closure operator as a key-

stone for the definition of an automated reasoning method, as it is usual

in dyadic FCA. The syntactic closure becomes the main actor in the au-

tomatization of the implication problem. The method presented below is

strongly inspired by the classical closure method due to Maier [36] and the

following result.

Proposition 7.1.17. Consider Σ ⊆ LΩ,Γ and C ⊆ Γ. Then, for all X ⊆ Ω,

X+
Σ,C =

⋂
c∈C

X+
Σ,{c}

Proof. It is a direct consequence of [ConCom] and [ConDec].

The algorithm to compute the operatorX+
Σ,C is shown in Function CAIL-

Closure. Essentially, this function works as follows: for each atomic condi-

tion c ∈ C (label 1 in the pseudocode) Function CAIL-Closure goes through

the set of CAI s (label 3) computing the closure of X w.r.t. Σ under c. Fi-

nally, (label 4) the intersection of such closures is computed iteratively.

We illustrate this algorithm with an example.

Example 7.1.18. Let us compute PN+
Σ,abd considering the implicational
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Function CAIL-Closure(X,C,Σ)

input : A subset of attributes X ⊆ Ω, a subset of conditions C ⊆ Γ and a

triadic implicational system Σ on LΩ,Γ

output: The closure of X under C for Σ

begin
Closed:=Ω

1 foreach c ∈ C do
OldAtomicClosed:=∅
AtomicClosed:=X

while AtomicClosed 6= OldAtomicClosed do

2 OldAtomicClosed:=AtomicClosed

3 foreach V
Z−→W ∈ Σ do

if c ∈ Z and AtomicClosed⊇ V then
AtomicClosed:=AtomicClosed ∪W

4 Closed:=Closed∩AtomicClosed

return Closed

system from Example 7.1.5:

Σ = { P
de−→ N, R

ae−→ P, S
bde−−→ P,

P
ad−→ R, R

a−→ K, S
ab−→ RK,

P
d−→ S, R

e−→ N, PK
ade−−→ R,

P
bd−→ K, K

e−→ NS, NK
abde−−−→ P,

N
ae−→ P, K

ae−→ R, RS
abde−−−→ K,

N
a−→ RS, S

b−→ N}

First, the algorithm computes the closure of the set of attributes X = PN

under each single condition c (label 1) and the partial results are accumu-

lated in the variable AtomicClosed:

Closed=Ω

Step 1. c = a,

Step 1.1 AtomicClosed= PNRKS

Step 1.2 Closed= Ω∩ AtomicClosed= PNRKS
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Step 2. c = b,

Step 2.1 AtomicClosed= PNK

Step 2.2 Closed= PNRKS∩ AtomicClosed= PNK

Step 3. c = d,

Step 3.1 AtomicClosed= PNRKS

Step 3.2 Closed= PNK∩ AtomicClosed = PNK

Then, the Function CAIL-Closure returns the intersection of the partial

closures for each condition c ∈ {a,b, d}, which coincides with the closure,

that is, CAIL-Closure(PN, abc,Σ) = PNK.

This algorithm is the most straightforward approach which arises when

the computation of the closure is required. In Section 7.2, we will introduce

an equivalent logic system that allows us to design more efficient algorithms,

avoiding the use of transitivity rule.

7.1.4 Soundness and completeness of CAIL

To begin with, we introduce the following theorem, which plays a central

role in the proof of the soundness.

Theorem 7.1.19. Let K = 〈G,M,B, I〉 be a triadic context and C ⊆ B

a subset of conditions. The pair 〈(−, C)′, (−, C)′〉 is a Galois connection

between the lattices (2G,⊆) and (2M ,⊆), i.e. for all X ⊆ G and Y ⊆M

X ⊆ (Y, C)′ if and only if Y ⊆ (X, C)′.

Proof. By Theorem 1.1.6, it is sufficient to prove that these mappings are

antitone and both compositions are inflationary.

(i) Consider X1 ⊆ X2 ⊆ G. Then

(X2, C)′ ={m ∈M | (g,m, b) ∈ I for all (g, b) ∈ X2×C}
⊆{m ∈M | (g,m, b) ∈ I for all (g, b) ∈ X1×C} = (X1, C)′

Analogously it is proved that Y1 ⊆ Y2 ⊆M , implies (Y2, C)′ ⊆ (Y1, C)′.
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(ii) Now, we prove X ⊆ ((X, C)′, C)′ for all X ⊆ G: Consider g0 ∈ X. By

the definition of the derivation operators, m ∈ (X, C)′ if and only if

(g,m, b) ∈ I for all (g, b) ∈ X×C and, then

g0 ∈ ((X, C)′, C)′ = {g ∈ G | (g,m, b) ∈ I for all (m, b) ∈ (X, C)′×C}.

Therefore, X ⊆ ((X, C)′, C)′.

In a similar way, Y ⊆ ((Y, C)′, C)′ is proved, for all Y ⊆M .

The following corollary is a direct consequence of the previous theorem

and Theorem 1.1.8.

Corollary 7.1.20. Let K = 〈G,M,B, I〉 be a triadic context. For any

C ⊆ B and {Xi | i ∈ I} ⊆ 2M , the following equality holds:(⋃
i∈I

Xi, C
)′

=
⋂
i∈I

(Xi, C)′.

This corollary will be often used throughout the proof of the soundness

and completeness theorem.

Theorem 7.1.21. For any Σ ⊆ LΩ,Γ and σ ∈ LΩ,Γ, we have that

Σ `C σ if and only if Σ |= σ.

Proof. First, we prove the soundness of the axiomatic system, i.e.

Σ `C σ implies Σ |= σ (7.2)

It is sufficient to prove that any interpretation is a model for the axioms

and that the primitive inference rules are sound.

• Non-constraint : K |= ∅ ∅−→ Ω for any interpretation K because the

assertion “ c ∈ ∅ implies (∅, {c})′ ⊆ (Ω, {c})′ ” is trivially true.

• Inclusion: Consider Y ⊆ X ⊆ Ω. For each interpretation K, one has

K |= X
Γ−→ Y because, for all c ∈ Γ, by Theorem 7.1.19, the mapping

(−, {c})′ is antitone and (X, {c})′ ⊆ (Y, {c})′.



7.1. CAIL: CONDITIONAL ATTRIBUTE IMPLICATION LOGIC 183

• Augmentation: We have to prove that, for each X,Y, Z ⊆ Ω and each

C ⊆ Γ, one has that {X C−→ Y } |= XZ
C−→ Y Z holds. Consider an

interpretation such that K |= X
C−→ Y , i.e. (X, {c})′ ⊆ (Y, {c})′, for

all c ∈ C. Then, by Corollary 7.1.20,

(X ∪ Z, {c})′ =(X, {c})′ ∩ (Z, {c})′

⊆(Y, {c})′ ∩ (Z, {c})′ = (Y ∪ Z, {c})′

Therefore, K |= XZ
C−→ Y Z.

• Transitivity : In order to prove {X C1−→ Y, Y
C2−→ Z} |= X

C1∩C2−−−−→ Z for

any X,Y, Z ⊆ Ω and C1, C2 ⊆ Γ, consider an interpretation K such

that K |= X
C1−→ Y and K |= Y

C2−→ Z. Then, (X, {c})′ ⊆ (Y, {c})′,
for all c ∈ C1 and (Y, {c})′ ⊆ (Z, {c})′, for all c ∈ C2. Thus, for all

c ∈ C1 ∩ C2, one has (X, {c})′ ⊆ (Y, {c})′ ⊆ (Z, {c})′ and, therefore,

K |= X
C1∩C2−−−−→ Z.

• Conditional Decomposition: For any X,Y ⊆ Ω, any C, C1 ⊆ Γ and

any interpretation K, if K |= X
C−→ Y and C1 ⊆ C, then K |= X

C1−→ Y

is straightforwardly obtained because (X, {c})′ ⊆ (Y, {c})′, for all

c ∈ C1 ⊆ C.

• Conditional Composition: Consider an interpretation K such that

K |= X
C1−→ Y and K |= Z

C2−→ W . Then, (X, {c})′ ⊆ (Y, {c})′, for all

c ∈ C1 and (Z, {c})′ ⊆ (W, {c})′, for all c ∈ C2. In order to prove that

K |= XZ
C1C2−−−→ Y ∩W , for c ∈ C1 ∪ C2, three cases are distinguished:

(i) If c ∈ C1 ∩ C2 then

(X ∪ Z, {c})′ = (X, {c})′ ∩ (Z, {c})′

⊆ (Y, {c})′ ∩ (W, {c})′ = (Y ∪W, {c})′

⊆ (Y ∩W, {c})′
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(ii) If c ∈ C1 r C2 then

(X ∪ Z, {c})′ = (X, {c})′ ∩ (Z, {c})′

⊆ (Y, {c})′ ∩ (Z, {c})′ = (Y ∪ Z, {c})′

⊆ (Y, {c})′ ⊆ (Y ∩W, {c})′

(iii) If c ∈ C2 r C1 then

(X ∪ Z, {c})′ = (X, {c})′ ∩ (Z, {c})′

⊆ (X, {c})′ ∩ (W, {c})′ = (X ∪W, {c})′

⊆ (W, {c})′ ⊆ (Y ∩W, {c})′

Therefore, K |= XZ
C1C2−−−→ Y ∩W .

Conversely, we prove now the completeness of the axiomatic system, i.e.

Σ |= σ implies Σ `C σ (7.3)

Specifically, for a CAI system Σ and a formula X
C−→ Y , we assume

Σ 6`C X
C−→ Y and prove Σ 6|= X

C−→ Y.

By Proposition 7.1.12, one has C 6= ∅. Now we build an interpretation K
that is a model for Σ but not for X

C−→ Y . This interpretation is K =

〈G,M,B, I〉, where G = {1, 2}, M = Ω, Y = Γ and I is the ternary

relation such that:

i. (1,m, c) ∈ I if and only if one of the following conditions holds:

a) c ∈ C and m ∈ X+
Σ,{c}, or

b) c 6∈ C and m ∈ ∅+
Σ,{c}.

ii. (2,m, c) ∈ I for all m ∈M and c ∈ B.

As a first step, we show that K |= Σ, i.e. K is a model for every implication

in Σ. Given U
C1−→ V ∈ Σ, we prove that (U, {c})′ ⊆ (V, {c})′ for all c ∈ C1,

by distinguishing the following cases:
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(i) When U = ∅, by conditional decomposition, V ⊆ ∅+
Σ,{c} and (U, {c})′ =

{1, 2}.

If c 6∈ C, then (V, {c})′ = {1, 2}.

Otherwise, if c ∈ C, since (−)+
Σ,{c} is isotone (Proposition 7.1.17), one

has V ⊆ ∅+
Σ,{c} ⊆ X

+
Σ,{c} and, therefore, (V, {c})′ = {1, 2}.

(ii) In the case of U 6= ∅ and c 6∈ C then (U, {c})′ = {2} ⊆ (V, {c})′.

(iii) Finally, when U 6= ∅ and c ∈ C, if U 6⊆ X+
Σ,{c} is straightforward.

On the other hand, if U ⊆ X+
Σ,{c}, by isotonicity and idempotency, one

has U+
Σ,{c} ⊆ X

+
Σ,{c}. Since V ⊆ U+

Σ,{c}, one has straightforwardly that

V ⊆ X+
Σ,{c} and, therefore, (V, {c})′ = {1, 2} and (U, {c})′ ⊆ (V, {c})′.

We conclude the proof showing that K is not a model for X
C−→ Y by

reductio ad absurdum. Assume that K |= X
C−→ Y , i.e. (X, {c})′ ⊆ (Y, {c})′

for all c ∈ C. From item i.a) in the definition of K, by Proposition 7.1.17,

one has Y ⊆ X+
Σ,C =

⋂
c∈C

X+
Σ,{c} which contradicts Σ 6`C X

C−→ Y (see

Theorem 7.1.16).

7.1.5 B axiomatic system

Here, we provide an equivalent system to CAIL inference system, named

B, which is strongly inspired in the B-Axioms proposed by Maier [36].

Definition 7.1.22. The B axiomatic system has the same axiom schemes:

[Nc] and [Inc],

and the following inference rules already introduced:

[Acc], [Dec], [ConDec] and [ConCom].

The following theorem guarantees that axiomatic systems B and CAIL

are equivalent.
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Theorem 7.1.23. For any Σ ⊆ LΩ,Γ and X
C−→ Y ∈ LΩ,Γ, one has

Σ `B X
C−→ Y if and only if Σ `C X

C−→ Y

Proof. We have shown in Section 7.1.3 that B rules of inference can be

derived from CAIL. So, to prove the equivalence of both systems, we only

have to derive [Aug] and [Tran] from B.

The following derivation chain derives [Aug] from B.

σ1: X
C−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: XZ
C−→ XZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ3: XZ
C−→ XY Z . . . . . . . . . . . .by applying [Acc] to σ2 and σ1.

σ4: XZ
C−→ Y Z . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ3.

Finally, we prove that [Tran] is also derived from B:

σ1: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: Y
C2−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ3: X
C1∩C2−−−−→ Y Z . . . . . . . . . . . .by applying [Acc] to σ1 and σ2.

σ4: X
C1∩C2−−−−→ Z . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ3.

Once the equivalence between both axiomatic systems has been proved,

any CAI which could be derived from CAIL could be derived from B

axiomatic system too, and vice versa. Thus, we have the following corollary.

Corollary 7.1.24. The B axiomatic system is sound and complete.

The following example shows the chain needed to obtain the same CAI

than in Example 7.1.11 from the new axiomatic system.

Example 7.1.25. Let us show how to derive the same implication from Σ

by using B, i.e. Σ `B PN
abd−−→ K.

σ1: P
bd−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . belongs to Σ.
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σ2: PN
bd−→ PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ3: PN
bd−→ KPN . . . . . . . . . . . . .by applying [Acc] to σ2 and σ1.

σ4: PN
bd−→ K . . . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ3.

σ5: N
a−→ RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . belongs to Σ.

σ6: N
a−→ R . . . . . . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ5.

σ7: R
a−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . belongs to Σ.

σ8: N
a−→ RK . . . . . . . . . . . . . . . . . by applying [Acc] to σ6 and σ7.

σ9: N
a−→ K . . . . . . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ8.

σ10: PN
a−→ PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ11: PN
a−→ K . . . . . . . . . . . . . . . by applying [Acc] to σ10 and σ9.

σ12: PN
abd−−→ K . . . . . . . . . . by applying [ConCom] to σ4 and σ11.

7.2 CAISL: Simplification Logic for CAI s

We now present yet another axiomatic system which is more suitable for

automated reasoning. We use the same language and semantics provided in

the previous section but giving a novel equivalent axiomatic system based

on simplification paradigm [20]. For this axiomatic system, the symbol `S

denotes the syntactic derivation.

Definition 7.2.1. The CAISL axiomatic system has two axiom schemes:

Non-constraint [Nc]:
∅ ∅−→ Ω

.

Reflexivity [Ref]:
X

Γ−→ X
.

and four inference rules:
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Decomposition [Dec]:
X
C1C2−−−→ Y Z

X
C1−→ Y

.

Composition [Com]:
X
C1−→ Y, Z

C2−→W

XZ
C1∩C2−−−−→ YW

.

Conditional Composition [ConCom]:
X
C1−→ Y, Z

C2−→W

XZ
C1C2−−−→ Y ∩W

.

Simplification [Simp]:
X
C1−→ Y, XZ

C2−→W

XZ-Y
C1∩C2−−−−→W -Y

if X ∩ Y = ∅.

The following theorem proves the equivalence between CAIL and CAISL

inference systems, which implies the soundness and completeness of CAISL.

Theorem 7.2.2. For any Σ ⊆ LΩ,Γ and X
C−→ Y ∈ LΩ,Γ, one has

Σ `S X
C−→ Y if and only if Σ `C X

C−→ Y

Proof. To prove the equivalence between both logics, we will show that the

inference rules of CAISL can be derived from those in CAIL and vice versa.

i) First, we prove that the axiom schemes and the primitive inference

rules in CAISL are derived from CAIL.

[Ref] Reflexivity:

σ1: X
Γ−→ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

[Dec] Decomposition:

σ1: X
C1C2−−−→ Y Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by hypothesis.

σ2: Y Z
Γ−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ3: X
C1C2−−−→ Y . . . . . . . . . . . . . . . . . . . . . . . by [Tran] to σ1 and σ2.

σ4: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [ConDec] to σ3.

[Comp] Composition:

σ1: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: Z
C2−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.
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σ3: XZ
C1−→ Y Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Aug] to σ1.

σ4: Y Z
C2−→ YW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Aug] to σ2.

σ5: XZ
C1∩C2−−−−→ YW . . . . . . . . . . . . . . . . . . .by [Tran] to σ3 and σ4.

[Simp] Simplification:

σ1: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: XZ
C2−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ3: XZ-Y
Γ−→ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ4: W
Γ−→W -Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Inc].

σ5: XZ
C2−→W -Y . . . . . . . . . . . . . . . . . . . . by [Tran] to σ2 and σ4.

σ6: XZ-Y
C1−→ Y . . . . . . . . . . . . . . . . . . . . . by [Tran] to σ3 and σ1.

σ7: XZ-Y
C1−→ XY Z . . . . . . . . . . . . . . . . . . . . . . . . . . by [Aug] to σ6.

σ8: XY Z
C2−→WY . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Aug] to σ5.

σ9: XZ-Y
C1∩C2−−−−→WY . . . . . . . . . . . . . . . by [Tran] to σ7 and σ8.

σ10: XZ-Y
C1∩C2−−−−→W -Y . . . . . . . . . . . . . . . . . . . . . . by [Dec] to σ9.

ii) Conversely, we prove that the axiom schemes and the primitive infer-

ence rules in CAIL are derived from CAISL.

[Inc] Inclusion:

σ1: XY
Γ−→ XY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref].

σ2: XY
Γ−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by [Dec] to σ1.

[Aug] Augmentation:

σ1: X
C−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: Z
Γ−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref].

σ3: XZ
C−→ Y Z . . . . . . . . . . . . . . . . . . . . . . . .by [Com] to σ1 and σ2.

[Tran] Transitivity:

σ1: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ2: Y
C2−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ3: X
C1−→ Y -X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] to σ1.

σ4: Y
C2−→ Z-Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] to σ2.
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σ5: X
Γ−→ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref].

σ6: X
Γ−→ ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] to σ5.

σ7: XY
C2−→ Z-Y . . . . . . . . . . . . . . . . . . . . . . by [Com] to σ4 and σ6.

σ8: Y -X
Γ−→ Y -X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref] .

σ9: X
C1∩C2−−−−→ Z-Y . . . . . . . . . . . . . . . . . . . . by [Simp] to σ3 and σ7.

σ10: X
C1∩C2−−−−→ Y Z . . . . . . . . . . . . . . . . . . . . . by [Com] to σ1 and σ9.

σ11: X
C1∩C2−−−−→ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Dec] to σ10.

Since all of the presented axiomatic systems are equivalent, in the sequel

we will omit the subscript in the syntactic derivation symbol using simply `.

7.2.1 CAISL Equivalences

In this subsection, we introduce several results which constitute the basis

of the automated reasoning method that will be introduced in the next

section. These results illustrate how we can use CAISL as a framework to

syntactically transform and simplify a set of CAI s while entirely preserving

their semantics. This is the common feature of the family of Simplification

Logics.

The notion of equivalence is introduced as usual (see Definition 7.1.7):

two sets of CAI s, Σ1 and Σ2, are equivalent, denoted by Σ1 ≡ Σ2, when

their models are the same. Since the axiomatic system is sound and com-

plete, the equivalence between sets of CAI s can be checked as follows:

Σ1 ≡ Σ2 if and only if the following two conditions hold:

(i) Σ1 ` ϕ for all ϕ ∈ Σ2, and

(ii) Σ2 ` ϕ for all ϕ ∈ Σ1.

In the following, we present a set of equivalences that justify de name of

the logic, Simplification Logic for CAI s, and play a central role in the

automated reasoning method.
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Lemma 7.2.3. The following equivalences hold:

{X C1−→ Y,X
C2−→W}≡{X C1∩C2−−−−→ YW,X

C1-C2−−−→ Y,X
C2-C1−−−→W} (7.4)

{X C1−→ Y,XV
C2−→W}≡{X C1−→ Y,XV

C2-C1−−−→W,X(V -Y )
C1∩C2−−−−→W -Y }

(7.5)

Proof. For Equivalence (7.4), first, we prove that the formulas

X
C1∩C2−−−−→ YW, X

C1-C2−−−→ Y, and X
C2-C1−−−→W

can be inferred from {X C1−→ Y,X
C2−→W}:

• X
C1∩C2−−−−→ YW is inferred from X

C1−→ Y and X
C2−→W , by [Com].

• X
C1-C2−−−→ Y and X

C2-C1−−−→W are obtained by [Dec].

Conversely, by applying [ConComp], X
C1−→ Y and X

C2−→ W are inferred

from {X C1∩C2−−−−→ YW,X
C1-C2−−−→ Y,X

C2-C1−−−→W} .

For Equivalence (7.5), on the one hand, XV
C2-C1−−−→ W is inferred from

{X C1−→ Y,XV
C2−→W} by applying [Dec] and the following sequence proves

{X C1−→ Y,XV
C2−→W} ` X(V -Y )

C1∩C2−−−−→W -Y .

σ1: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by hypothesis.

σ2: X
C1−→ Y -X . . . . . . . . . . . . . . . . . . . . . by applying [Dec] to σ1.

σ3: XV
C2−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ4: X(V -Y )
C1∩C2−−−−→W -(Y -X) by applying [Simp] to σ2 and σ3

and taking into account that XV r (Y rX) = X(V r Y ).

σ5: X(V -Y )
C1∩C2−−−−→W -Y . . . . . . . . . . . .by applying [Dec] to σ4.

On the other hand, we prove

{X C1−→ Y,XV
C2-C1−−−→W,XV -Y

C1∩C2−−−−→W -Y } ` XV C2−→W

with the following sequence:

σ1: XV
C1∩C2−−−−→ XV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by [Ref].
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σ2: XV
C1∩C2−−−−→ XV -Y . . . . . . . . . . . . . . by applying [Dec] to σ1.

σ3: XV -Y
C1∩C2−−−−→W -Y . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.

σ4: XV
C1∩C2−−−−→W -Y . . . . . . . by applying [Tran] to σ2 and σ3.

σ5: X
C1−→ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by hypothesis.

σ6: XV
C1∩C2−−−−→WY . . . . . . . . . by applying [Com] to σ4 and σ5.

σ7: XV
C1∩C2−−−−→W . . . . . . . . . . . . . . . . . . by applying [Dec] to σ6.

σ8: XV
C2-C1−−−→W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by hypothesis.

σ9: XV
C2−→W . . . . . . . . . . by applying [ConCom] to σ7 and σ8.

The following theorem highlights a common feature of Simplification

Logics, which shows that inference rules can be read as equivalences that

allow redundancy removal, when they are applied from left to right.

Theorem 7.2.4. The following equivalences hold:

{X ∅−→ Y } ≡{X C−→ ∅} ≡ ∅ (Ax-Eq)

{X C−→ Y } ≡{X C−→ Y -X} (Dec-Eq)

{X C−→ Y,X
C−→W} ≡{X C−→ YW} (Com-Eq)

{X C1−→ Y,X
C2−→ Y } ≡{X C1C2−−−→ Y } (ConCom-Eq)

If X ∩ Y = ∅, then

{X C1C2−−−→ Y,XV
C2−→W} ≡{X C1C2−−−→ Y,XV -Y

C2−→W -Y } (Simp-Eq)

Proof. (Ax-Eq) is straightforward because both implications are axioms.

For the rest of equivalences, the left-to-right inference is directly obtained

by applying the homonymous inference rule. Thus, we prove the right-to-

left inference:

(Dec-Eq) X
C−→ XY is inferred by [Comp] of X

C−→ Y -X and X
C−→ X

obtained by [Ref]. Then, by applying [Dec], one has X
C−→ Y .
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(Com-Eq) X
C−→ Y and X

C−→ W are inferred from X
C−→ YW by apply-

ing [Dec].

(ConCom-Eq) X
C1−→ Y and X

C2−→ Y are inferred from X
C1C2−−−→ Y by apply-

ing [Dec].

(Simp-Eq) It is a consequence of (Ax-Eq) and (7.5) in Lemma 7.2.3.

7.2.2 Automated reasoning in CAISL

Based on the previous equivalences, we will introduce some others where

the empty set plays a main role. The Deduction Theorem presented below

gives such a role to the empty set. This theorem establishes the necessary

and sufficient condition to ensure the derivability of a CAI from a set of

CAI s. Moreover, we present a method that checks whether a CAI is derived

from a set of CAI s. The next theorem is the core of our approach.

Theorem 7.2.5 (Deduction). For any Σ ⊆ LΩ,Γ and X
C−→ Y ∈ LΩ,Γ, one

has

Σ ` X C−→ Y if and only if Σ ∪ {∅ C−→ X} ` ∅ C−→ Y

Proof. Straightforwardly, we have that

Σ ` X C−→ Y implies Σ ∪ {∅ C−→ X} ` ∅ C−→ Y.

Conversely, assuming Σ ∪ {∅ C−→ X} ` ∅ C−→ Y and, due to soundness and

completeness, we prove that K |= Σ implies K |= X
C−→ Y for each model

K.

Consider a model K = 〈G,M,B, I〉 for Σ. We will prove (X, {c})′ ⊆
(Y, {c})′ for all c ∈ C in K. Considering Gc = (X, {c})′, we build the context

Kc = 〈Gc,M,B, Ic〉 where Ic = I ∩ (Gc ×M ×B).

Since K |= Σ, we have Kc |= Σ ∪ {∅ {c}−−→ X} and therefore, by hypoth-

esis, Kc |= {∅
{c}−−→ Y }. That is, (Y, {c})′ ⊇ (∅, {c})′ = Gc = (X, {c})′.
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If we go back to the original triadic context K, (X, {c})′ remains un-

changed whereas (Y, {c})′ could grow up. Therefore, (X, {c})′ ⊆ (Y, {c})′

in K, for all c ∈ C.

Theorem 7.2.5 guides the design of the automated prover. To check

that the formula X
C−→ Y is inferred from the set Σ, we iteratively apply the

family of simplification equivalences, whenever possible, to the set Σ∪{∅ C−→
X} searching for ∅ C−→ Y .

The following proposition revisits Theorem 7.2.4 and Lemma 7.2.3 by

instantiating the particular case of having the empty premise.

Proposition 7.2.6. The following equivalences hold:

{∅ C1−→ X,U
C2−→ V }≡{∅ C1−→ X,U -X

C1∩C2−−−−→ V -X,U
C2-C1−−−→ V }. (7.6)

If U ⊆ X then

{∅ C1−→ X,U
C2−→ V }≡{∅ C1∩C2−−−−→ XV,∅ C1-C2−−−→ X,U

C2-C1−−−→ V }. (7.7)

If V ⊆ X then

{∅ C1−→ X,U
C2−→ V }≡{∅ C1−→ X,U

C2-C1−−−→ V }. (7.8)

Proof. Equivalence (7.6) is a particular case of Equivalence (7.5). In par-

ticular, when U ⊆ X, Equivalence (7.7) is obtained from (7.6) by apply-

ing (ConCom-Eq) and (Com-Eq):

{∅ C1−→ X,U
C2−→ V } ≡ {∅ C1−→ X,∅ C1∩C2−−−−→ V -X,U

C2-C1−−−→ V }

≡ {∅ C1-C2−−−→ X,∅ C1∩C2−−−−→ X,∅ C1∩C2−−−−→ V -X,U
C2-C1−−−→ V }

≡ {∅ C1-C2−−−→ X,∅ C1∩C2−−−−→ XV,U
C2-C1−−−→ V }

Analogously, Equivalence (7.8) holds as a consequence of Equivalence (7.6)

and (Ax-Eq): if V ⊆ X,

{∅ C1−→ X,U
C2−→ V } ≡ {∅ C1−→ X,U -X

C1∩C2−−−−→ ∅, U C2-C1−−−→ V }

≡ {∅ C1−→ X,U
C2-C1−−−→ V }
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Function CAISL-Prover(Σ,X
C−→ Y )

input : A set of implications Σ, and a CAI X
C−→ Y

output: A boolean answer

begin

∆X := X × C

∆Y := (Y × C)r (X × C)

repeat

flag:=false

foreach U
C1−→ V ∈ Σ with C1 ∩ C 6= ∅ do

∆C := {c ∈ C1 ∩ C | U × {c} ⊆ ∆X}

if ∆C 6= ∅ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Equivalence (7.7)

∆X := ∆X ∪ (V ×∆C)

∆Y := ∆Y r (V ×∆C)

Σ := Σr {U C1−→ V }

C1 := C1 r∆C

if C1 6= ∅ then Σ := Σ ∪ {U C1−→ V }

flag:=true

∆C := {c ∈ C1 ∩ C | V × {c} ⊆ ∆X}

if ∆C 6= ∅ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Equivalence (7.8)

if ∆C = C1 then Σ := Σr {U C1−→ V }

else Σ :=(Σr {U C1−→ V }) ∪ {U C1-∆C−−−−→ V }

until (∆Y = ∅) or (flag=false)

return the boolean value (∆Y = ∅)
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The equivalences introduced in Proposition 7.2.6 constitute the core of

the function called CAISL-Prover, which acts as an automated reasoning

method for CAISL. This method works by splitting the original formula

into its left and right hand sides (see Theorem 7.2.6) and, by applying

Equivalences (7.7) and (7.8), check whether its right hand side can be

reduced to the empty set. The derivability is proved if and only if such a

reduction is fulfilled, as the following theorem shows.

Theorem 7.2.7. The algorithm CAISL-Prover is sound and complete.

Proof. First, we prove that the algorithm always terminates. Let ∆i and

Σi respectively denote the state in which ∆X and Σ are in the i-th step of

the execution of the ‘repeat’ sentence, for all 0 ≤ i.
Tarski’s fixed-point theorem ensures that the algorithm finishes after

finitely many steps because the chain {∆i | 0 ≤ i} is strictly increasing in

2M×B that is finite, i.e. |∆0| < |∆1| < · · · ≤ |M × B|. In addition, the

sequence Σi never increases.

Now, the soundness and completeness will be proved. Let n be the step

in which the algorithm finishes. For each 0 ≤ i ≤ n, we define:

Xi,c ={x ∈M | (x, c) ∈ ∆i} for each c ∈ C
Γi ={∅ c−→ Xi,c | c ∈ C}

By (7.7) and (7.8), we can ensure that Σi∪Γi ≡ Σj ∪Γj for all 0 ≤ i, j ≤ n.

Moreover, Theorem 7.2.5 ensures that, for all ∅ c−→ Xn,c ∈ Γn, one has

Σ ` X c−→ Xn,c (7.9)

The algorithm returns ‘true’ when Y ×C ⊆ ∆n, which is equivalent to Y ⊆
Xn,c for all c ∈ C. In this case, by Definition 7.1.13 and Theorem 7.1.16,

we have Σ ` X C−→ Y .

On the other hand, we prove that the fact that the algorithm returns

‘false’ means that Σ 6` X C−→ Y . Specifically, we prove that Σ ` X C−→ Y

implies Y ⊆ Xn,c for all c ∈ C.
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Assume Σ ` X C−→ Y and consider any c ∈ C. By [Dec] we have that

Σ ` X c−→ Y and, by [Com] and (7.9), we can ensure that Σ ` X c−→ Xn,cY .

Now, by Theorem 7.2.5, Σ0∪Γ0 ` ∅
c−→ Xn,cY and, since Σ0∪Γ0 ≡ Σn∪Γn,

we have that Σn ∪ Γn ` ∅
c−→ Xn,cY . When the algorithm finishes, [Dec]

is the unique inference rule that can be applied to Σn ∪Γn in order to infer

∅ c−→ Xn,cY . Thus, Xn,cY ⊆ Xn,c, i.e. Y ⊆ Xn,c.

Finally, we conclude this section with an illustrative example of how

the CAISL-Prover algorithm works.

Step State

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d)}

0 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q de−−→ M, M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d)}

1 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q 6de−−→M,M
a−→ T,Q

bd−−→ L, ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a)}

2 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q e−→ M,���
M

a−→ T,Q
bd−−→ L, ML

bde−−−→ Q, T
ab−−→ RL,R

ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a)}

3 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q e−→ M,����
Q

bd−−→ L,ML
bde−−−→ Q, T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d)}

4 ∆Y = {(Q, a)}

Σ = {Q e−→ M,ML
6b6de−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d), (R, a)}

5 ∆Y = {(Q, a)}

Σ = {Q e−→ M,ML
e−→ Q,T

6ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d), (R, a), (Q, a)}

6 ∆Y = ∅

Σ = {Q e−→ M,ML
e−→ Q,T

b−→ R,R
6ae−−→ Q}

Output Return TRUE

Table 7.1: Execution of the derivability of ML
abd−−→ Q

Example 7.2.8. Consider Ω = {L,M,P,Q,R,T}, Γ = {a,b,d, e} and the
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set of CAIs

Σ = {Q de−→ M,M
a−→ T,Q

bd−→ L,ML
bde−−→ Q,T

ab−→ RL,R
ae−→ Q}

Table 7.1 shows the trace of CAISL-Prover on the implication ML
abd−−→ Q

and the premises Σ

Σ ` ML
abd−−→ Q

and Table 7.2 shows how CAISL-Prover checks that T
ab−→ Q cannot be

inferred

Σ 6` T
ab−→ Q

7.3 Complete CAI systems

We have introduced two equivalent logics for reasoning about conditional

attribute implications in TCA. The first one, CAIL, is closer to the classical

Armstrong’s axioms, whereas the second one, CAISL, follows the Simpli-

fication paradigm. This paradigm leads to introduce a set of equivalences

that allows us to remove redundant information in the set of CAIs, i.e. sim-

plifying it. In addition, these equivalences together with the so-called De-

duction Theorem provide an efficient automated reasoning method whose

advantages will be explored in the near future.

A different issue is to find a set of CAIs that characterizes all the CAIs

that are true in a given triadic context. The following definition captures

this idea.

Definition 7.3.1. Consider Σ ⊆ LΩ,Γ and let K be an interpretation for

LΩ,Γ. The set Σ is said to be a complete CAI system for K if, for all

X
C−→ Y ∈ LΩ,Γ, the following equivalence holds:

K |= X
C−→ Y if and only if Σ ` X C−→ Y

As a consequence of Theorems 7.1.16, 7.1.19 and 7.1.21, we have the

following theorem that relates syntactic and semantic closures.
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Step State

∆X = {(T, a), (T, b)}

0 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M, M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

Loop 1

∆X = {(T, a), (T, b)}

1 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→M,M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(T, a), (T, b)}

2 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,���
M

a−→ T,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b)}

3 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b)}

4 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b)}

5 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−→ L, ML

bde−−−→ Q,����
T

ab−−→ RL,R
ae−−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}

6 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
bd−−→ L, ML

bde−−−→ Q,R
6ae−−→ Q}

Loop 2

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}

7 ∆Y = {(Q, b))}

Σ = {Q de−−→M,Q
bd−−→ L,ML

bde−−−→ Q,R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}

8 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
6bd−−→ L,ML

bde−−−→ Q,R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}

9 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
d−→ L,ML

bde−−−→ Q, R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}

10 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
d−→ L, ML

bde−−−→ Q,R
e−→ Q}

Output Return FALSE

Table 7.2: Execution of the non derivability of T
ab−→ Q
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Theorem 7.3.2. Consider Σ ⊆ LΩ,Γ and let K = 〈G,M,B, I〉 be an in-

terpretation for LΩ,Γ where Ω = M and Γ = B. If Σ is a complete CAI

system for K, then, for all X ⊆M and C ⊆ B, one has

X+
Σ,C =

⋂
c∈C

((X, {c})′, {c})′ ⊆ ((X, C)′, C)′

Obviously, given a triadic context, there is a big number of complete

CAI systems, which are equivalent among them. There are several inter-

esting problems related with this notion that we leave as a further problem

to be studied:

(i) Designing an efficient algorithm for computing a complete CAI system

from a given triadic context.

(ii) Studying the suitable notion of base aiming at minimality properties

among the equivalent CAI systems.

(iii) Studying the directness property in this more general framework.



Chapter 8

Conclusions and future

works





In this thesis, we have focused on Formal Concept Analysis, specifically the

goal has been to establish a formal framework for implications in this area.

Nowadays, the representation and management of this kind of knowledge

is probably one of most active topics in FCA.

Providing a well founded logic-algebraic theory promotes the develop-

ment of efficient and automated methods which can be used in practical

applications. Moving from theory to practice and vice versa is a major

challenge to achieve that Formal Concept Analysis becomes a fruitful tool

for the representation, management and analysis of knowledge in real situ-

ations.

As shown, the set of implications retrieved from a formal context has a

lot of redundancy and the search for a canonical form from an initial set is

one of the main challenges. In this direction, the research presented in this

work moves towards the study of the foundations of the most interesting

canonical form, the basis of implications.

Duquenne-Guigues basis is the most cited basis but it is not suitable for

all applications. Thus, other kinds of bases have been introduced fulfilling

different properties depending on their further use. One of the main aims

of this work is to design algorithms to compute direct bases, which are very

helpful for applications because they lead to a fast computation of closures

and ease automated management.

203
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We have focussed on directness because it is strongly related to the

closure problem. In Formal Concept Analysis, the computation of the clo-

sure of a set of attributes is an important topic. For this reason, Bertet

et al. propose a type of basis called direct-optimal basis [9, 11, 12], which

combines directness and a condensed shape: it lets you compute closures of

attribute sets in just one traversal and it fulfills a minimality criteria too.

In Chapter 3, we have proposed two new methods to compute the direct-

optimal basis from an arbitrary non-unitary implicational system. To this

aim, we have introduced a new inference rule, the strong Simplification rule,

to add new implications avoiding redundancy. This rule is derived from the

SLFD axiomatic system as proved in Lemma 3.2.1.

The first method, doSimp, is divided in three separated stages while the

second one, SLgetdo, integrates these stages to improve its performance.

The improvement of this last method is due to the fact that it maintains the

intermediate implicational systems simplified all the time. Theorems 3.2.3

and 3.3.3 ensure that both of them are sound and complete.

Finally, we carry out two empirical studies. One of them is a compar-

ison among doSimp and the previous direct-optimal basis methods in the

literature to show the efficiency of our method (see Table 3.2). The second

study compares the two methods proposed in this chapter and illustrate

the benefits of SLgetdo with respect to doSimp in practice (see Table 3.5).

With the same goal of computing efficiently closures and with the di-

rectness property in mind, Adaricheva et al. proposed the D-basis [3].

This basis is subsumed in the direct-optimal basis, so it has smaller size.

Obviously, a basis which computes the closure in just one traversal and

which has less size than the direct-optimal basis will allow to improve the

applications which demand the execution of a huge number of closures.

In Chapter 4, we present a theoretical study regarding the relationships

between covers and generators. As minimal covers is the main concept

to compute the D-basis and the well-founded connection between minimal

generators and minimal covers presented in Proposition 4.1.7 has allowed

to develop new transformation algorithms.

Despite considerable achievements in understanding the connection be-
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tween direct-optimal basis and D-basis, no algorithm was previously devel-

oped to directly produce the D-basis from an arbitrary set of implications.

Thus, it was an open problem and it makes our methods the first in the

literature.

Specifically, we propose two methods. The first one, Algorithm 4.1 is

a three-stage method based on the direct relationship between minimal

generators and minimal covers. The second method is completely based

on a theoretical study to interleave the computation of the minimal cov-

ers whereas just the necessary minimal generators are computed. As this

second method is not a direct consequence of the above mentioned rela-

tionship, Theorem 4.3.16 proves its soundness and completeness.

Finally, an empirical study between both methods is done to prove the

benefits of the second approach (see Figure 4.3).

The generation of direct bases is a problem that has an exponential

complexity. This fact led us to think about other alternative definitions

of direct bases, with the intention to avoid the exponential complexity

throughout the execution of all the stages of the transformation method.

That’s how it appears the notion of dichotomous direct basis with the aim

of reducing the cost in its computation and maintaining directness property.

In Chapter 5, we introduce a new kind of direct basis: dichotomous

direct basis or DD-basis for short. First of all, we carry out a theoretical

study about the behavior of some kinds of implications with respect to the

closure operator: (proper) key implications and (proper) quasi-key implica-

tions. In this way, we divide the set of implications in a pair and introduce

a two-fold closure operator.

The definition of DD-basis requires the idempotence of the closure op-

erator in order to make it direct. Once this new notion is introduced, we

present a method to compute it. This method consists of three stages where

the only one having exponential complexity is the second one. In this spe-

cific stage we compute the direct-optimal basis but the input has smaller

cardinality because previously the input set has been split.

Being used to dealing with unique basis, we present the notion of canon-

ical DD-basis. The existence and the uniqueness of this basis in ensured in
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Theorem 5.4.8. To compute it, we only need to add to the previous algo-

rithm a stage with cuadratic cost to reach the canonical DD-basis equiva-

lent.

Finally, we compare the computation of the direct-optimal basis with

the computation of the canonical DD-basis. The conclusion showed in

Figure 5.1 is that the new method is more efficient than the one computing

the direct-optimal basis.

In the second part of this work, the one devoted to Triadic Concept

Analysis, we have firstly summarized some results about the main notions

of this framework: triadic context, triadic concept and triadic implications.

The major contribution to this area is located in Chapter 7. Here, we

develop the first axiomatic system to manage conditional attribute implica-

tions, CAI s. We present CAIL as an extension of Armstrong’s Axioms and

prove its soundness and completeness (Theorem 7.1.21). Since this logic is

not suitable for automated reasoning, we also extend Simplification Logic

calling it CAISL. The axiomatic system associated with this logic is proved

to be equivalent to the one of CAIL in Theorem 7.2.2. As a consequence,

CAISL is also sound and complete.

Finally, we design an automated prover which is able to ensure whether

a CAI could be derived from a set of CAI s or not. This automated prover

is directly related to closure computation as said in Theorem 7.1.16.

Future works

To conclude, we outline some tasks we have in mind to continue the work

presented in this PhD Thesis.

Following the order of the contributions, the first topic we are consider-

ing to go beyond is the issue of the direct-optimal basis. We have proposed

new methods, more efficient than the previous ones in the literature, but

we keep studying the way to improve our algorithms. With the aim of

applying reductions in the set of attributes, we plan a collaboration with

Dr. Bertet who has already begun working on reductions. Because of the

connection points of this idea and our simplification paradigm, we consider
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to integrate both works to provide more efficient methods, which could be

applied not only to direct-optimal bases but also to bases in general.

Regarding the D-basis, we intend to work with Dr. Adaricheva in the

application of FastD-basis in real environments as described in [2]. These

applications are related to optimization problems in data base theory, ar-

tificial intelligence and game theory. In particular, one of its applications

is devoted to the analysis of gene expression data related to a particular

phenotypic variable with data provided by the University of Hawaii Cancer

Center.

The previous work will motivate the study of further improvements of

the performance of FastD-basis to get even a more efficient method to

get the D-basis.

In addition, the creation of an algorithm to mining the D-basis from

a formal context can be interesting to compare it with the only method

available by now [2]. That method was solved using the hypergraph dual-

ization algorithm, which can be considered as an indirect technique. The

results obtained in this work lead us to think about promising results for

this problem, approached with a direct technique.

The progress we have achieved with the definition and the methods

proposed for dichotomous direct bases makes us believe that it is possible

the integration of any direct basis in the new formalism of dichotomous

bases. Particularly, instead of computing the direct-optimal basis as a

second step, we can substitute it by the D-basis, which is smaller. In this

case, to maintain the directness property the closure operator has to be

changed by the composition of ρΣ∗ and πΣk .

Finally as a medium and long term work, the generalization of all our

work to Triadic Concept Analysis is a challenge. We intend to define a

triadic basis based on some criteria of minimality and, later on, extend this

definition to direct bases. In this way, we plan to carry out a theoretical

study about what properties are needed to compute the closure in one

traversal. In addition, it would be a interesting goal to achieve an axiomatic

system for Biedermann’s implications and introduce the notion of basis for

this kind of implications.
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Moreover, this generalization can be also made in the fuzzy framework.

The progress obtained for members of our group in fuzzy logic makes us

consider this task as feasible. To conclude, we emphasize we have the

tool to achieve this challenge, the Simplification Logic proposed for fuzzy

implications [7].
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