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Abstract—In Smart buildings, electric loads are affected by an 
important distortion in the current and voltage waveforms, 
caused by the increasing proliferation of non linear electronic 
devices. This paper presents an approach on non sinusoidal 
power theory based on Geometric Algebra that clearly improves 
traditional methods in the optimization of apparent power and 
power factor compensation. An example is included that 
demonstrates the superiority of this approach compared with 
traditional methods. 

Keywords— building loads; geometric algebra (GA); 
multivector; resistive loads.  

I. INTRODUCTION  
Majority of harmonic problems affecting smart and 

industrial constructions are generated within the construction.  
This is due in part to a proliferation of non-linear loads 
connected to the circuits in the building. Air conditioning 
equipment, computers, fax and copying equipment, printers, 
TVs, adjustable speed drive (ASD), and other power electronic 
equipment, are the main sources of such problems. The result 
of using such highly non-linear load is that the current 
waveform is distorted, causing excessive harmonic of current 
and voltage. Also, the close proximity of many of these 
commercial buildings (hotels, offices, departmental stores, 
shopping centers, and hospitals) will definitely contribute to the 
distortion of the electric power quality of feeder, which 
supplies these buildings.  These harmonics can cause serious 
problems in power systems, excessive heat of appliances, 
components aging and capacity decrease, fault of protection 
and measurement devices, lower power factor and 
consequently reducing power system efficiency due to 
increasing losses are some main effects of harmonics in power 
distribution systems. Harmonic distortion can cause significant 
costs in distribution networks. Harmonic cost consists of 
harmonic energy losses, premature aging and de-rating of 
electrical equipment. The difference between the known 
generation and the estimated consumption is considered as the 
energy loss. The harmful and cost effects of harmonics have 
been discussed extensively and spurred stringent requirements 
by international institutions regarding the allowed levels of 
harmonics at the point of connection to the power supply [1, 2].   

 In this sense, two compensator devices to power factor 
improvement are available in the case of smart buildings: 

•  Passive circuits with energy storing components. 

• Active filters. 

This work focuses mainly on passive circuits with energy 
storage elements. In this way, the objective function to 
minimize is a component of the apparent power named reactive 
power in different classical approaches. 

At the end of 19th century Steinmetz introduced the well-
known concept of Complex Power in a single-phase sinusoidal 
ac operation [3]. In the 1930’s, Budeanu [4] proposed a certain 
decomposition of the Apparent Power in n-sinusoidal situations 
and Fryze [5] addressed the problem of the difference between 
the Apparent Power S and the Active Power  P  in the time 
domain. Both approaches were criticized much later by 
Czarnecki [6], who suggested reject the Budeanu reactive 
power component [7]. Triggered by these papers many 
investigations appeared consequently [8-13], each shedding 
more light on power factor improvement.  In [7] a “reactive 
power” was defined that permits the derivation of the value of 
passive linear devices to achieve a relative optimum power 
factor. However, as Sharon pointed out [10], this reactive 
power is not minimized in general by this compensation. 

Significant progress in the analysis of power equations has 
been made recently through the use of vector spaces [12].   
Reference [14] introduces a new mathematical structure for a 
clear definition of vector-space applied to the power 
multivector concept. This quantity compound is thereby 
obtained involving complex scalar and complex bivector in the 
frequency domain.  

In this paper, the power multivector concept defined in GA 
framework is used to probe that PF is improved if and only if 
the electric circuit is dissipative. The dissipasitivity condition 
[17] is understood in terms of the available stored energy in the 
system. Consequently, the maximum power is consumed when 
the load is equivalent to a linear resistance.  



II. REPRESENTATION ON PERIODIC SIGNALS 

Let us consider by considering a periodic waveform,  x(t) , 
that can be expressed as an element of a function space  

   
L2 0,T⎡⎣ ) := x t( ) :{ 0,T⎡⎣ )→ !n : x(t) = 1

T
x2(t)dt

0

T

∫         (1) 

 

where the norm is defined as the rms value 
  

x(t) . The 

function space is mapped to a vector space   CGn  [16] by 
representing the periodic waveforms as a linear combination of 
n orthonormal basis vectors 

  
σ 1 ,σ 2 ,σ 3...σ n{ }  [20]. The 

waveform   x(t)  can be expressed as a linear combination of n 
orthonormal basis functions 

  
ϕ p (t) ∀p = 1...n . 

 
  
x(t) = xpϕ p (t)

p=1

n

∑   (2)  

and represented by a complex-vector (geometric phasor) in 

  CGn vector space  

 
   
!X = xpσ p

p=1

n

∑   (3) 

 Due to the orthonormal character of the basis functions (2) 
may be written  

 
   

x(t) = xp
2

p=1

n

∑ = !X  (4) 

Note that in (4), the magnitude
  
!X of the geometric phasor 

coincides with 
  
x(t)  rms value. 

III. POWER DECOMPOSITION 
In order to better understand the differences of classical 

power approaches respect to the power multivector on power 
factor compensation, it is briefly illustrated on Budeanu’s 
power [4] versus power multivector [16]. This original quantity 
condenses all the information needed to solve future problems 
on power theory and plays a similar role to the Steinmetz 
model in the sinusoidal case. 

A. Classical Approach  

Budeanu suggested that the apparent power consists of 
three components, active power P, reactive power Q and 
distortion power D. Budeanu’s power equation is given by 

 
 
SB

2 = PB
2 + QB

2 + DB
2   (5) 

where, 

  
PB = U p

P
! I p cos" p , 

 
QB = U pI psinϕ p

p
∑  and 

 DB = S 2 - P2 - Q2  

  

B. Multivectorial Approach 

For clarity of presentation and without loss of generality, 
the phase angles of the harmonic voltages are

 
α p = 0  and the 

load is linear. In this case, the power multivector   !S  entering 
the one-port in Fig. 1, is given by the following set  

 
  

!S = !U ⊙ !I ! = !U " !I !

!# •
# $ !U %!I !

!# %

$%&
&
'
(

)(

*
+
(

,(
 (6) 

which fits the energy conservation law [18].  

In Fig. 1, the voltage and current of the ideal source are 
time functions and are denoted by    u(t),i(t)∈!n  and 

   
u(t),i(t)∈V n ∈L2

n 0,T⎡⎣ ⎤⎦ . It is assumed that both quantities 

admit a geometric phasor representation,   !U and   !I  
respectively.  Moreover, the set   V

n  may be equal to 
  
L2

n 0,T!" #$, 
a periodic signal or a set of sinusoids with limited content 
harmonic. The load is described by a linear/nonlinear circuit, 
Fig. 1. This figure shows the circuit of a diode rectifier with a 
capacitive output filter, which is an example of a nonlinear load 
with harmonic voltage source behaviour. This kind of circuit is 
present in almost all loads in smart buildings, such as new 
electronic devices, AC/DC converters, electronic lamp ballasts, 
etc. 

  
Fig. 1. Linear/Non-linear Load. 

In this case, the presence of distorted current   i(t) has the 
deleterious effect of reducing the power transmission 
efficiency. The expression of voltage and current geometric 
phasors may be written as 

 
   

!U = !U p ej 0! p
p" N
#  (7) 

 
  

!I = I q e
jϕqσ q

q∈N
∑  (8) 

The harmonic current geometric phasor 
  
!I q  can be splitted 

as follows  

 
   
!I q = I qe

− jϕqσ q = I q cosϕqσ q − jI qsinϕqσ q = !I q" − j !I q⊥  (9) 

where the subscripts    "! "  and  "⊥ "  indicate “in phase” 
and “in quadrature” respectively. Linear conjugate harmonic 
current

  
!Iq
∗ is given by 



 
  
!I q

! = !I q"
! + j !I q"

!  (10) 

where !( )  is the standard “conjugate complex” operation.  

In the expanded form of (6), the two components  !Ω•  
(scalar complex) and  !! " (bivector complex) can be expressed 
as 

 
   

!! ¥ = (U p
P
" I p cos# p + jU pI p sin# p)$ 0   

   

!! " = {
p<q
p,q#N

$ U p Iq e j%q &Uq I pe
j%p( )' pq }   (11) 

IV. A MULTIVECTORIAL CHARACTERIZATION OF POWER 
FACTOR IMPROVEMENT 

It is addressed how the superiority of multivectorial 
representation of the reactive current and power components 
can be particularly useful compared to any classical definition. 

Consequently, the PF is improved if and only if the 
compensated electric circuit is resistive. Thus, the maximum 
power is consumed when the load is equivalent to a linear 
resistance. The power factor compensation architecture is 
represented in Fig.2, where 

 
   
Bc ( jω ), Yl ( jω ) :V n → L2

n 0,T⎡⎣ ⎤⎦  (12) 

are the susceptances of the compensator  and the 
admitances of load, respectively.  

 
Fig. 2. Linear/Non-linear load with n-sinusoidal waveforms represented by 
its susceptances 

 
Bc , is placed in shunt. 

Therefore, the power factor is improved if the following 
condition is fulfilled 

 
    

ξ
0

T

∫ !u, !′i( )dt > 0 ∀ !u, !′i( )∈V n × L2
n 0,T⎡⎣ ⎤⎦  (13) 

where 
    !u = ΓF ( !U ) ,     !′i = ΓF ( !′I ) ,  ΓF is the Clifford-Fourier 

transform [19] and  Appendix E in [16], and   !U and   ! !I  are the 
geometric phasor of voltage and current.  On the other hand, 
the function 

  
ξ !u, !′i( )  in (13) is given by 

 

    

! !u,!"i( ) = ! !U p e
j p# t+$ p( )%p , !"Iq e

j q# t+&q( )%q
q
'

p
'

(

)*
+

,-
=

= Yl oad
!u + !"i./ 01

T
Yload
!u 2 !"i./ 01 (14)

 

Consequently, 

 
   
Bc : !U ! !I c  

   
Yload : !U → !I load  (15) 

where,   
!Ic , !Il  denote the geometric phasor of compensator and 

load currents respectively. 

From Kirchhoff’s node law in Fig.2,
  
!i = !iC + !iL

load
, where   !!i  

is the instantaneous current after compensation, and the 
following equation  

 
  
!iC = BC

!u  (16) 

it follows that  

 
   
! !u,BC

!u" = 0  (17) 

resulting  

 
   
! !u, !"i #= ! !u, !iload # (18) 

 

Thus, the power factor PF is given by 

 
   
PF =

! !u,!i load "
!u !#i

=

!U p
!I pload

cos$ p
p

%
!u !#i

 (19) 

 

Therefore, 
 
BC improves the PF for a 

 
Yload  given if and only 

if 
 
BC  satisfies  

 
    
2!Yload

!u,Bc
!u" + Bc

!u
2

< 0 # !u $ Vn  (20) 

Equation (20) implies that  

 
   
!!i

2
< Yload

!u
2

= !iload

2
 (21) 

Clearly on can express the equation (16) as 

 

   

Yload
!u+ !!i"# $%

T
Yload

!u&!!i"# $%dt =
0

T

'
= Yload

!u
2
& !!i

2{ } dt
0

T

' > 0
 (22) 

Equation (13) is equivalent to (22) and the susceptances 
 
BC  

improves the PF if and only if 
 
BC  satisfies (20). Then, the 

current multivector   !I in Fig. 1 is modified into   ! !I  in Fig. 2. 

Hence, the reactive current multivector 
  

!iq!
q
" is modified into 



  

!!iq"
q
# and the “reactive power” multivector    Im

!! ¥ = !Q  is 

modified into 
   
Im !! ¥( )" = ! "Q  multivector and power bivector 

 !!
"  is modified into 

 
!! "( )#. In this sense, (21) is also given by 

 
   

!!iq"
q
#

2

$ Yload
!u

2
 (23) 

where 
  

!!iq"
q
# is a component term of  !!i . 

V. A HIPOTHETICAL CASE STUDY 
The main contribution of this paper is the identification of 

the role played by the GA to interpret the resistive behaviour 
for power factor compensation. To illustrate this, a theoretical 
case study is developed where the limitations of any reactive 
power component by itself are manifest. Units of physical 
quantities are those standards for the MKSA system and thus 
can be omitted.  

Consider an elementary building circuit, constituted by a 
linear load supplied from a non-sinusoidal source.  

 
  
u(t)= 2 200sin! t + 200sin(3! t) "# $% (24) 

 with   ! =1rad / s.   

The load impedance at fundamental frequency is 

  
Z1 =1! 3j . For the third harmonic they become

  
Z3 =1+ j . The 

voltage for the source and the current geometric phasor in 
connection with (7) and (8) are 

 
   
!U = 200! 1 + 200! 3 " !U = 282.84 (25) 

   
!I = (20+ j60)! 1 + (100" j100)! 3 # !I =154.9 (26) 

 

From (9), the corresponding “in quadrature” current is 

   
j !I ! = j(60" 1 #100" 3)  

From (5) and (11), the apparent power multivector and the 
apparent power Budeanu’s are respectively  

 

   

!S= 24+ j8( )! 0 + 16+ j32( )! 13
"# $%103

SB = !S = 43.82&103 ' PF = 0.55
 (27) 

 

  

!P= Re ! ¥{ } = 24x103" 0

PB = !P = 24x103
 (28) 

  

!Q= Im ! ¥{ } = j8"103# 0

QB = !Q = 8"103
 (29) 

and  

 
   

!! " = 16+ j32( )# 13

DB = !! " = 35.78
 (30) 

TABLE I.  POWER BEFORE TO COMPENSANTION 

Multivectorial Approach Classical Approach Power factor 

  
!P= 24!103" 0  

  
PB =24 !103  

  

PF =
!P

!S
= 0.55 

   
!Q= j 8!103" 0  

  
QB= 8!103  

    
!! ! = 16+ j32( )"103#13  

  
DB =35.78 

  

!S=
24+ j8( )! 0 +

16+ j32( )! 13

"

#

$
$

%

&

'
'
103  

 
SB = 43.82!103  

 

With regard to the power factor improvement, let consider 
that a capacitive susceptance 

 
BC  is connected to the load 

terminals of the elementary building circuit in Fig. 3. The 
current geometric phasor through the capacitor is given by 

 
   
j !IC = j 200C! 1 +600C! 3( )  (31) 

The quadrature current geometric phasor after 
compensation in circuit a is now 

 

   

! !I " = !I " + !IC =
60+ 200C( )#$ %&' 1 +

( 100+600C( )#$ %&' 3

)
*
+

,+

-
.
+

/+
 (32) 

in which 
  

!I C
!  is minimized when   C = 0.12F . Then, the 

power factor is now
  
PF = 0.63. The results after capacitive 

compensation are summarized in Table II. 

TABLE II.  POWER AFTER CAPACITIVE COMPENSATION 

Multivectorial  
approach Classical approach Power factor 

   
!P= 24 !103" 0  

  
PB = 24 !103  

  

PF =
!P

!S
= 0.63 

   
!Q= ! j11.2"103# 0  

  
QB= 11.2!103  

   
!! " = 16+ j22.4( )#103$13  

  
DB = 27.53!103  

   

!S=
24! j11.2( )" 0 +

+ 16+ j22.4( )" 13

#

$

%
%
%

&

'

(
(
(
)103  

 
SB = 38.2!103  

 

VI. CONCLUDING REMARKS AND FUTURE RESEARCH 
This paper advances an analysis and compensator design 

for power factor improvement based on dissipativity condition 
derived from the geometric algebra framework. The more 
relevant comments resulting from a comparative analysis of 
these results and the classical approach are: 



• Classical apparent power (5) is only a secondary result 
of the suggested multivector (6). The apparent power 

 
SB  is derived as the magnitude of the multivector   !S
and not as the formal product of the rms values of 
voltage and current waveforms. 

• It is clear in Section III that 

 
   
!!i

2
= !ic

2
+ !iload

2
+ 2 !ic, !iload  (33) 

is a necessary and sufficient condition for minimizing 

  

!iq!
q
" , as in (20), which is equivalent to power factor 

improvement as shown in (15). 

• The numerical example is analysed using information 
exclusively contained in the power multivector.  

• Although 
  
SB = !S , the superiority of the power 

multivector is prominent compared to the clasical 
Budeanu’s power equation. The power multivector can 
be compensated in various directions denoted by the 
basis bivectors. The case study compares   !S to   ! !S  and 
  !! !  to   ! !! " . This does not seem possible in the 
classical approaches, where power S (squared) is the 
sum of the magnitudes (squared) of the individual 
components of power multivector   !S . 

• Finally, the most general method of power factor 
compensation for linear and non-linear loads in smart 
buildings is to add load compensating devices in order 
that the resultant load has a resistive behaviour 
(dissipasitivity condition). The application of these 
new concepts to the compensation theory should make 
significant improvements that deserve further research. 

VII. CONCLUSIONS 
This work provides the power quality problems that exist in 

smart buildings. The consequence of electrical disturbance has 
become more serious considering the present economic 
situation. The massive application of compact fluorescent and 
led lamps in smart buildings could be worse than the computers 
as they produce harmonic pollution causing network voltage 
and current distortion. It was proved that power consumption 
figures would be significantly less at lower power factor, but 
more investigations into residential, commercial and industrial 
loads are needed to establish this. This paper advances a 
compensator design for power factor improvement based on 
dissipasitivity condition, from GA. The main contribution of 
this work is the proof that GA is a powerful tool to represent 
power and to handle the problem of direction and sense of 
different compensated components. This incorporates in a 
single expression all the required information for the 
minimization of each reactive power term by means of possible 
compensating devices, new optimization algorithms and 
effective power quality indices in smart buildings loads.  
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