
Proceedings of the 12th INDIACom; INDIACom-2018

5th 2018 International Conference on “Computing for Sustainable Global Development”, 16th – 18th March, 2018

Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Recognizing Complex Gestures via Natural

Interfaces

Houda Ben Abdelmoumen

ETSI Telecomunicación, Universidad de Málaga

Málaga, España

Email Id: houda_benab@hotmail.com

Dr. Javier Poncela
ETSI Telecomunicación, Universidad de Málaga

Málaga, España

Email Id: jponcela@uma.es

Abstract – Natural interfaces have revolutionized the way we

interact with computers. They have provided in many fields a

comfortable and efficient mechanism that requires no

computer knowledge, nor artificial controlling devices, but

allow as to interoperate via natural gestures. Diverse fields

such as entertainment, remote control, medicine, fitness

exercise are finding improvements with the introduction of

this technology. However, most of these sensorial interfaces

only provide support for basic gestures. In this work we show

how it is possible to construct your own complex gestures

using the underlying capabilities of these sensor devices.

Keywords – Gesture recognition, complex gestures, natural

interface, Kinect sensor.

I. INTRODUCTION

The popularity of natural interfaces has experienced an

overwhelming growth due to the fact that the best human-

machine interaction is becoming more and more imperative

through an adequate interface that provides both comfort and

efficiency.

A natural user interface provides a way to interact with a

system or application much more instinctive, in which the user

uses body movements and voice commands to interact with the

system, instead of peripherals such as the mouse or the

keyboard. Thanks to these characteristics, people without

computer knowledge are able to handle all kinds of

applications.

The Kinect sensor is a device that allows you to track the user

and the position of its body while providing other

functionalities. Kinect is able to recognize the position and

movement of certain points of reference in the body, but the set

of gestures that recognizes is limited.

The objective of this work is to describe how it is possible to

recognize complex gestures made by the user making use at all

times of a natural user interface. For the development we have

used the Kinect Development Kit for Windows [1] provided by

Microsoft on .NET technology, using Windows Presentation

Foundation (WPF) [2], and Visual Studio.

This paper is structured as follows. Section II describes the

Kinect sensor. Section III shows how complex gestures can be

designed. Section IV describes the code implementation for

the recognition of gestures.

II. NATURAL INTERFACES

Several companies, among them Sony and Nintendo, have

developed devices that provide natural interfaces, such as

PlayStation Move motion controller [3] or Nintendo Wii

controller [4]. They are commercial and closed devices that do

not legally allow the development of applications or tools that

make use of these devices so that they can be of some type of

utility for the scientific community.

The Kinect sensor [5], developed by Microsoft, was born as a

new controller for the Xbox 360 [6] video game console under

the slogan "You are the controller". It was created by Alex

Kipman and its innovation lies in that it allows you to operate

the video game console without the need for a traditional

controller or remote control. You can control it only with your

body movements and voice commands.

The technology used in Kinect is based on software created by

Rare [7], a company belonging to Microsoft, and on a camera

capable of measuring distances created by PrimeSense [8], a

company specialized in the creation of natural user interfaces.

Kinect consists of three different sensors that work together to

create the experience of a natural user interface. The Kinect

sensor today has become a very useful tool in multiple fields

such as advertising, entertainment and also in health. Its

creators and teams of developers have created applications

that are of great value when it comes to treating patients. Thus,

the sensor has positioned itself as an ideal device to join

rehabilitation and play in research and specialized centers.

A. Kinect Sensor

The Kinect sensor is a horizontal bar about 23 cm (9 inches)

connected to a small circular base with a ball-and-socket joint

shaft, and it is designed to be placed longitudinally above or

below the display screen.

The Microsoft Kinect sensor allows you to capture audio data,

depth (depth) and color RGB images. Processing these last

Proceedings of the 12th INDIACom; INDIACom-2018

5th 2018 International Conference on “Computing for Sustainable Global Development”, 16th – 18th March, 2018

two data flows, depth and color, is able to generate more

complex data about the users that are located in front of the

sensor:

• Skeleton: The skeleton represents a user identifying the

position of a set of joints and joints between them (bones).

See Fig. 1. Its coordinates are stored as 3D.

• FaceTracking: The facial mask, identifying and positioning

several important points of the face, allowing to follow tilt

and rotation of the head.

• Interactions: information about user interaction with the

hands, including events that notify if a user opens or closes

the hands.

Fig. 1. Joint types. [9]

III. DESIGN OF GESTURES

A gesture is made up of partial gestures executed in a certain

order. Each partial gesture is a specific movement that, when

combined with other partial gestures, constitutes the whole

gesture.

A partial gesture or also called segment is a concrete position

that the body has at a given moment. It is defined as a set of

conditions based on relative positions of the body parts, which

are the euclidean coordinates (x, y, z) of the joints that the

Kinect sensor provides us with.

For this work, we have opted for the implementation of

stretching gestures that must be done before proceeding to

exercise:

1. Move both hands up and down (Hands_UpDown).

2. Move both hands from right to left (Hands_RightLeft).

3. Throw a ball with the right foot and with raised hands

(Kick_Ball).

Gesture

Partial
Gesture

Partial
Gesture

Partial
Gesture

Partial
Gesture

Partial
Gesture

Constraint 1
(x,y,z)

Constraint 2
(x,y,z)

Constraint 3
(x,y,z)

Constraint 4
(x,y,z)

Constraint n
(x,y,z)

Fig. 2. Definition of gestures.

A. Gesture ‘Move both hands up and down’ (Hands_UpDown)

This movement consists of a vertical displacement of the two

hands in the hip head range, the initial position of the two

hands is above the head, and the final position below the

waist.

This gesture will be composed of three partial gestures. The

mathematical definition is shown in Table I:

G1a. The two hands are raised vertically upwards above the

head.

Position criteria: The vertical position of both hands must

be above the head.

G1b. The two hands extended forward and with slight opening

towards the sides.

Position criteria: The vertical position of the two hands

must be between the shoulder and the hip. The depth of

the two hands has to be smaller (closer) than the depth of

the elbow. The depth of the elbow must be less (closer)

than that of the shoulder. The horizontal position of the

right hand must be greater than that of the elbow to make

sure it is stretched. The horizontal position of the left

hand must be less than that of the elbow to ensure it is

stretched.

G1c. Both hands are below the hip.

Position criteria: The vertical position of both hands must

be below the hip.

TABLE I. MATHEMATICAL CONSTRAINTS FOR GESTURE HANDS_UPDOWN.

Partial Gesture Constraints

G1a HandRight.Y > Head.Y
HandLeft.Y > Head.Y
HandRight.X > Head.X
HandLeft.X < Head.X

G1b HandRight.Y > HipRight.Y
HandLeft.Y > HipLeft.Y
HandRight.Y <
ShoulderRight.Y
HandLeft.Y < ShoulderLeft.Y
HandRight.Z < ElbowRight.Z
HandLeft.Z < ElbowLeft.Z
ElbowRight.Z <
ShoulderRight.Z
ElbowLeft.Z < ShoulderLeft.Z
HandRight.X > ElbowRight.X
HandLeft.X < ElbowLeft.X

G1c HandRight.Y < HipRight.Y
HandLeft.Y < HipLeft.Y

RECOGNIZING COMPLEX GESTURES VIA NATURAL INTERFACES

B. Gesture ‘Move both hands from right to left’

(Hands_RightLeft)

This movement consists of a horizontal movement of the two

hands, the initial position of the two hands is above and to the

right of the head and the end position is above and to the left of

the head. This gesture will be composed of two partial gestures.

The mathematical definition is shown in Table II:

G2a. The two hands raised up above the head and tilted to the

right.

Position criteria: The vertical position of the hands must

be above the head. The horizontal position of both hands

has to be to the right of our head.

G2b. The two hands raised up above the head and tilted to the

left.

Position criteria: The vertical position of the hands is

above the head. The horizontal position of both hands has

to be to the left of our head.

TABLE II. MATHEMATICAL CONSTRAINTS FOR GESTURE

HANDS_RIGHTLEFT.

Partial Gesture Constraints

G2a HandRight.Y > Head.Y
HandLeft.Y > Head.Y
HandRight.X >Head.X
HandLeft.X > Head.X

G2b HandRight.Y > Head.Y
HandLeft.Y > Head.Y
HandRight.X < Head.X
HandLeft.X < Head.X

C. Gesture ‘Throw a ball with the right foot and with raised

hands’ (Kick_Ball)

This movement consists in having both hands raised upwards at

all times, tilting the right foot backwards and then forward.

This gesture is composed of two partial gestures. The

mathematical definition is shown in Table III:

G3a. The two hands are lifted vertically upwards and the right

foot lifted off the ground and tilted backwards.

Position criteria: The vertical position of the two hands is

above the head. The vertical position of the right foot is

above that of the left. The depth of the right foot is greater

(farther) than that of the left foot.

G3b. The two hands are lifted upwards so that the vertical

position of the two is above the head, the right foot is

raised above the left foot and inclined forward.

Position criteria: The vertical position of the two hands is

above the head. The vertical position of the right foot is

above the left one. The depth of the right foot is smaller

(closer) than that of the left foot.

TABLE III. MATHEMATICAL CONSTRAINTS FOR GESTURE KICK_BALL.

Partial Gesture Constraints

G3a HandRight.Y > Head.Y
HandLeft.Y > Head.Y
HandRight.X > Head.X
HandLeft.X < Head.X
FootRight.Y > FootLeft.Y

FootRight.Z > FootLeft.Z
G3b HandRight.Y > Head.Y

HandLeft.Y > Head.Y
HandRight.X > Head.X
HandLeft.X < Head.X
FootRight.Y > FootLeft.Y
FootRight.Z < FootLeft.Z

IV. GESTURE RECOGNITION

The data provided by the sensor are those related to the

skeleton, and to each of the joints present in it. This

information is organized as sets of values in the Skeleton and

Joint classes, which provide the list of joints and their

positions.

To access this information, we must register in the

corresponding communication channel:

// Enable skeleton data flow
this.sensor.SkeletonStream.Enable ();

// Choose the tracking mode (standing or sitting)
this.sensor.SkeletonStream.TrackingMode =

SkeletonTrackingMode.Default;

// Indicate if we want the detection in near or far

mode
this.sensor.SkeletonStream.EnableTrackingInNearRange

= true;

// Subscribe to the data channel
this.sensor.SkeletonFrameReady +=

this.SensorSkeletonFrameReady;

By initializing all the components and subscribing to the data

channels that are needed for recognition, the sensor provides

the data of the skeletons of the users that are in its field of

vision. Once the skeleton data is available, the first step is to

check if the position of the joints corresponds to the defined

gestures. This checkup is done using the checkGestures

method of the GestureManager.cs class.

In this method, the list of gestures is scrolled to see which of

them is being performed. This is implemented by creating an

instance of the checkGesture method of the Gesture.cs

class for each of the gestures. This method checks the

compliance of the partial gestures that are part of the gesture

by calling the checkGesturePart method for each of them.

When one of these instances detects the beginning of a

gesture, it will launch an event, and, when the gesture ends, it

will launch an event of completion.

To check the first segment of the gesture, we first check the

status of the joints that are part of that segment, whether they

are being followed or not. If they are not, this method returns

false, since we can say directly that the segment detection has

failed. If the joints are well detected, the compliance of the

conditions of the partial gesture is checked by ascertaining the

position of the joints. The execution time is limited by a timer.

The diagram in Fig. 3 explains the full process of detecting a

gesture. The sequence diagram corresponding to the complete

Proceedings of the 12th INDIACom; INDIACom-2018

5th 2018 International Conference on “Computing for Sustainable Global Development”, 16th – 18th March, 2018

detection process is shown in Fig. 4. The class diagram for the

recognition module is shown in Fig. 5.

First time?

Check Gesture

Check
PartialGesture

(step)

Partial gesture?

Raise event
‘Partial gesture

recognized’

Increment step
(step++)

Step ==
numPartialGestu

res?

Raise event
‘Gesture

recognized’

Initialize step
(step = 0)

Timeout

Start timer
(step = 0)

No

Yes

YesNo

No

Yes

Skeleton

Wait for new
Skeleton

Fig. 3. Process of gesture detection.

User

Interact

Partial gesture detected

Gesture detected

Fig. 4. Process of gesture detection.

V. CONCLUSION AND FUTURE SCOPE

With the advent of natural interfaces, the applications of this

technology have multiplied. However, these devices usually

only offer recognition of basic gestures. We have shown in

this paper how it is possible to create personalized complex

gestures based on the recognizing capabilities of these sensors.

The paper has described the mathematical conditions that

define three complex gestures (move hands up and down,

move hands left and right, and kick a ball), and has shown

how they can be implemented.

Fig. 5. Class diagram.

Proceedings of the 12th INDIACom; INDIACom-2018

5th 2018 International Conference on “Computing for Sustainable Global Development”, 16th – 18th March, 2018

Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

ACKNOWLEDGEMENT

This work has been partially funded by the ‘Plan Propio de

Investigación y Transferencia’ of the Universidad de Málaga.

REFERENCES

 [1] Kinect Development Kit for Windows,

https://developer.microsoft.com/es-es/windows/kinect/develop,

Microsoft, 2014.

 [2] Windows Presentation Foundation,

https://msdn.microsoft.com/es-

es/library/ms754130(v=vs.110).aspx, Microsoft, 2015.

 [3] PlayStation Move, https://www.playstation.com/en-

us/explore/accessories/vr-accessories/playstation-move/, Sony,

2015.

 [4] Nintendo Wii controller, https://www.nintendo.com/wii/,

Nintendo, 2013.

 [5] Kinect sensor, https://www.xbox.com/es-ES/xbox-

one/accessories/kinect, Microsoft, 2013.

 [6] Xbox 360, https://www.xbox.com/, Microsoft, 2013.

 [7] Rare, https://www.rare.co.uk/, 2014.

 [8] PrimeSense, https://www.primesense.com/, 2013.

 [9] JointType Enumeration, https://msdn.microsoft.com/en-

us/library/microsoft.kinect.jointtype.aspx, Microsoft, 2015.

https://developer.microsoft.com/es-es/windows/kinect/develop
https://msdn.microsoft.com/es-es/library/ms754130(v=vs.110).aspx
https://msdn.microsoft.com/es-es/library/ms754130(v=vs.110).aspx
https://www.playstation.com/en-us/explore/accessories/vr-accessories/playstation-move/
https://www.playstation.com/en-us/explore/accessories/vr-accessories/playstation-move/
https://www.nintendo.com/wii/
https://www.xbox.com/es-ES/xbox-one/accessories/kinect
https://www.xbox.com/es-ES/xbox-one/accessories/kinect
https://www.xbox.com/
https://www.rare.co.uk/
https://www.primesense.com/
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx

