Design and implementation of an 85-kHz Bidirectional Wireless Charger

Wireless charging and V2G market and grid integration

Alicia Triviño-Cabrera
Associate Professor
University of Málaga (Spain)
atc@uma.es
Scenario & Goal:

First WPT prototype (2013-2014)

- Litz Wire
- IGBTs
 - Unidirectional
 - 20 kHz
 - 3.7 kW
- Semikron drivers

- Bidirectional
- 85 kHz
- 7 kW
Index

- System implementation
- Experimental results
- Control algorithm
- Conclusions
- Power Electronics for power transfer at 85 kHz (Recommendations SAE J2954)
- Bidirectional systems.
- Control system
 - Symmetric compensation topology (Series-Series)
Coil construction

Design based on an iterative algorithm with the main goals:

- Maximize the efficiency of the system
- Reduce the costs of the Litz wire
- Avoid bifurcation

![Graphs showing performance metrics](a), (b), (c), (d)]

Our design: to avoid bifurcation of the number of turns in the primary and secondary coils.
Coil construction

Secondary coil
(0.5x0.5 m2,
14 turns,
20 mm2)

Primary coil
(0.75x0.75 m2,
11 turns,
20 mm2)
Power electronics

SiC MOSFET

(switching frequency and power)

CREE KIT8020CRD8FF1217P-1 with C2M0080120D

Controller

Intel Edison + PIC16F18344 (Phyton)
Communication system

The controller has a Low Energy Bluetooth module

Maximum distance: 30 m
Communication rate: 24 Mbps
Index

❖ System implementation
❖ Experimental results
❖ Control algorithm
❖ Conclusions
Experimental Results

Electrical features of the WPT system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>85 kHz</td>
</tr>
<tr>
<td>Primary coil dimensions</td>
<td>0.75 m × 0.75 m</td>
</tr>
<tr>
<td>Cross-sectional area of the primary coil wire</td>
<td>20 mm²</td>
</tr>
<tr>
<td>Resistance of the primary coil (R₁)</td>
<td>195.6 mΩ</td>
</tr>
<tr>
<td>Self-inductance of the primary coil (L₁)</td>
<td>240.5 μH</td>
</tr>
<tr>
<td>Secondary coil dimensions</td>
<td>0.5 m × 0.5 m</td>
</tr>
<tr>
<td>Cross-sectional area of the secondary coil wire</td>
<td>20 mm²</td>
</tr>
<tr>
<td>Resistance of the secondary coil (R₂)</td>
<td>143.1 mΩ</td>
</tr>
<tr>
<td>Self-inductance of the secondary coil (L₂)</td>
<td>230.6 μH</td>
</tr>
<tr>
<td>Distance between coils assumed in the design (gd)</td>
<td>0.2 m</td>
</tr>
<tr>
<td>Compensation topology</td>
<td>Series-Series</td>
</tr>
<tr>
<td>Capacitance of the primary side (C₁)</td>
<td>17.05 nF</td>
</tr>
<tr>
<td>Capacitance of the secondary side (C₂)</td>
<td>15.88 nF</td>
</tr>
<tr>
<td>Load resistance</td>
<td>24 Ω</td>
</tr>
</tbody>
</table>
Experimental results: charging the EV

<table>
<thead>
<tr>
<th>PRIMARY SIDE (GRID)</th>
<th>SECONDARY SIDE (EV)</th>
</tr>
</thead>
</table>

Inverter input

- Voltage
- Current

Inverter output

- Voltage
- Current

Rectifier input

- Voltage
- Current

Battery

- Voltage
- Current

<table>
<thead>
<tr>
<th>Power</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 kW</td>
<td>288V</td>
<td>6.28A</td>
</tr>
<tr>
<td></td>
<td>287V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>208mA</td>
<td></td>
</tr>
<tr>
<td>3.5 kW</td>
<td>288V</td>
<td>6.086A</td>
</tr>
<tr>
<td></td>
<td>6.38A</td>
<td></td>
</tr>
</tbody>
</table>
Experimental results: discharging the EV – injecting to the grid

<table>
<thead>
<tr>
<th>PRIMARY SIDE (EV)</th>
<th>SECONDARY SIDE (GRID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Voltage</td>
</tr>
<tr>
<td>Current</td>
<td>Current</td>
</tr>
<tr>
<td>Power: 2.72 kW</td>
<td>Power: 2.65 kW</td>
</tr>
</tbody>
</table>

![Graphs showing experimental results](image-url)
Index

- System implementation
- Experimental results
- Control algorithm
- Conclusions
Control algorithm

Goals:

- To control the **power delivered** to the load while **restricting** some other electrical magnitudes.
- To work under **misalignments** conditions.

Primary current is clearly affected by misalignment
A phase-shift technique is implemented:
Implementation of the control algorithm
Control algorithm: results

(a) NO MALIGNMENT, (b) CONTROL

(a) NO CONTROL

(b) CONTROL

MISALIGNMENT

NO MISALIGNMENT

Alicia Triviño – University of Málaga
Index

- System implementation
- Experimental results
- Control algorithm
- Conclusions
Conclusions & Future work

- We have built a bidirectional 3.7-kW WPT system operating at 85 kHz (difficulty of the power electronics).

- Future work:
 - Control algorithms (misalignments, V2G services)
 - Communication systems
Design and implementation of an 85-kHz Bidirectional Wireless Charger

Wireless charging and V2G market and grid integration

Alicia Triviño-Cabrera
Associate Professor
University of Málaga (Spain)
atc@uma.es