IDENTIFICACIÓN DE PARÁMETROS DEL MODELO DE INTERACCIÓN ESPECTADOR-GRADA

Javier Fernando Jiménez Alonso Dpto. Estructuras de Edificación e Ingeniería del Terreno. Universidad de Sevilla

> Javier Naranjo Pérez Andrés Sáez

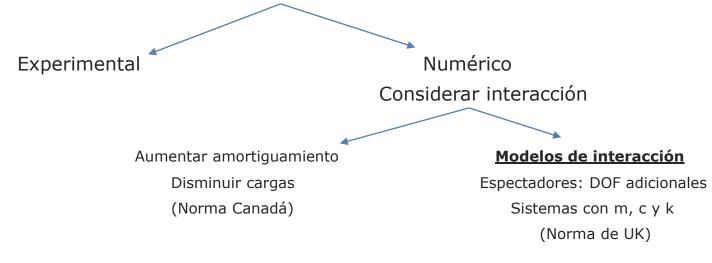
Dpto. Mecánica de Medios Continuos y Teoría de Estructuras. Universidad de Sevilla

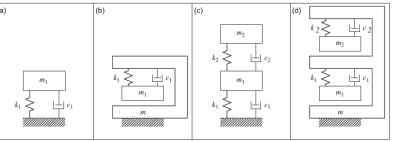
Felipe García Sánchez

Dpto. de Ingeniería Civil, de Materiales y Fabricación. Universidad de Málaga

Dpto. de Ingeniería Civil, de Materiales y Fabricación

Universidad de Málaga 6 de junio 2018


TABLA DE CONTENIDOS

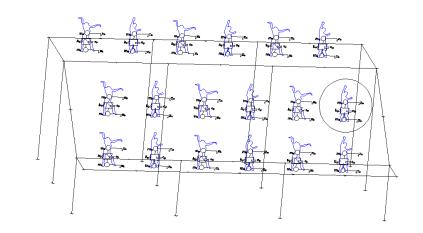

- 1. Modelo de interacción espectador-estructura
- 2. Modelo de Elementos Finitos (EF) de la grada
- 3. Actualización modelo EF
- 4. Identificación numérica parámetros espectadores

INTRODUCCIÓN

- ¿Por qué hacer un modelo de interacción?
 - o Parámetros modales estructura *varían* con la presencia de personas

[1]

[1] Jones C, Reynolds P and Pavic A (2011) Vibration serviceability of stadia structures subjected to dynamic crowd loads: A literature review. Journal of Sound and Vibration 330(8): 1531–1566.


FORMULACIÓN

Ecuación equilibrio estructura:

$$M_i \ddot{z}_i + C_i \dot{z}_i + K_i z_i = 0$$

Ecuación equilibrio espectador:

$$m_a \ddot{z}_a + c_p (\dot{z}_a - \dot{z}_s) + k_p (z_a - z_s) = 0$$

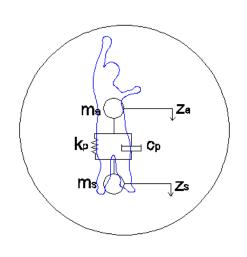
 $m_s \ddot{z}_s + c_p (\dot{z}_s - \dot{z}_a) + k_p (z_s - z_a) = 0$

Condiciones de contorno:

$$z_{s} = w(x_{p}, y_{p})$$

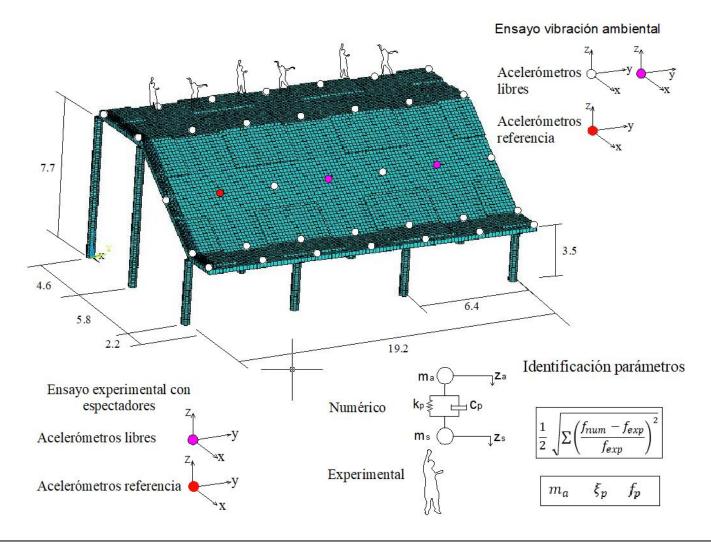
$$\dot{z}_{s} = \dot{w}(x_{p}, y_{p})$$

$$\dot{z}_{s} = \dot{w}(x_{p}, y_{p})$$

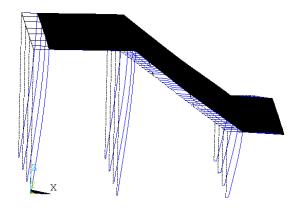

$$\ddot{z}_{s} = \ddot{w}(x_{p}, y_{p})$$

$$\ddot{z}_{s} = \ddot{w}(x_{p}, y_{p})$$

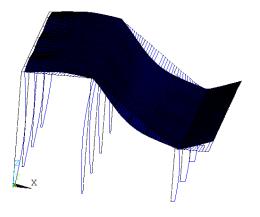
$$\ddot{w}(x_{p}, y_{p}) = \sum_{i=1}^{n} \dot{z}_{i} \cdot \phi_{\text{num}_{i}}(x_{p}, y_{p})$$


$$\ddot{w}(x_{p}, y_{p}) = \sum_{i=1}^{n} \ddot{z}_{i} \cdot \phi_{\text{num}_{i}}(x_{p}, y_{p})$$

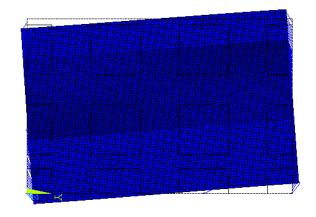
$$\ddot{w}(x_{p}, y_{p}) = \sum_{i=1}^{n} \ddot{z}_{i} \cdot \phi_{\text{num}_{i}}(x_{p}, y_{p})$$



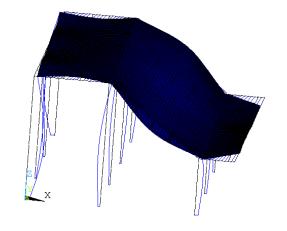
PROCESO DE IDENTIFICACIÓN



ANÁLISIS MODAL



Longitudinal $f_1 = 3.70 \, Hz$



Vertical 1

 $f_3 = 9.07 \; Hz$

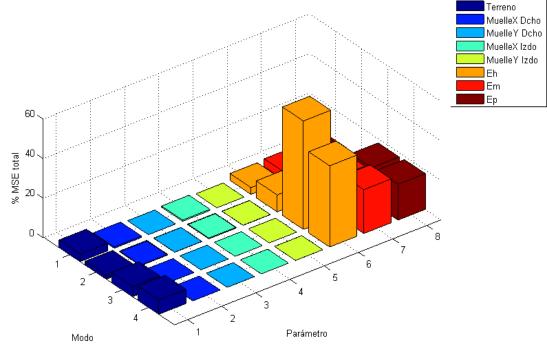
Torsión $f_2 = 7.64 Hz$

Vertical 2

 $f_3 = 10.54 \, Hz$

ANÁLISIS DE SENSIBILIDAD

Fórmula Fox and Kapoor (1968)
 Basada en energía
 deformación modal


$$M_{ij} = \frac{\sum_{e=1}^{ne} MSE_i^e}{\sum_{i=1}^{N} MSE_j^e} \cdot 100$$

$$i = 1, 2, \dots m_f$$

$$j = 1, 2, \dots m_f$$

- M_{ii} : matriz de sensibilidad
- n_e: número elementos afectados al mod
- N: número elementos total
- m_{θ} : número parámetros considerados
- N: número de modos de vibración considerados

ENSAYO EXPERIMENTAL CON ESPECTADORES

	Primera	Segunda	Tercera
Grada vacía	4,231	11,117	13,580
Pasivos	4,368	10,609	13,182
Hacer la ola (2 Hz)	4,226	11,262	13,451
Bailar	4,282	11,166	13,507
Saltar (2 Hz)	4,152	10,912	13,108
Saltar (4 Hz)	3,963	10,851	13,200
Bouncing (2 Hz)	4,017	11,135	13,514
Bouncing (4 Hz)	3,986	11,147	13,534

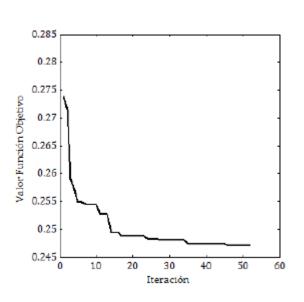
Análisis de los resultados

Influencia de la actividad

Parámetros espectadores distintos para

las distintas actividades

Influencia frecuencia de la actividad



IDENTIFICACIÓN DE PARÁMETROS

- Algoritmo genético
 - Función objetivo:

$$f = \frac{1}{2} \left[\left(\frac{f_{num} - f_{exp}}{f_{exp}} \right)^2 \right]^{\frac{1}{2}}$$

- Frecuencias naturales amortiguadas
- Población inicial: 100 vectores solución
- Máx. iteraciones = 60
- Convergencia solución-nºiteraciones

IDENTIFICACIÓN DE PARÁMETROS

	m_a [%]	$f_p[Hz]$	ξ_p [%]
Pasivos	0,903	4,958	0,678
Hacer la ola (2 Hz)	1,000	5,000	0,670
Bailar	0,939	4,190	0,271
Saltar (2 Hz)	0,900	4,255	0,614
Saltar (4 Hz)	0,900	4,243	0,530
Bouncing (2 Hz)	1,000	4,243	0,619
Bouncing (4 Hz)	1,000	4,245	0,679

Misma actividad

Mismos parámetros

- Frecuencia actividad no es significativa
- El problema de interacción puede ser definido con mayor detalle para una mayor variedad de escenarios de carga.

COMPARACIÓN NORMA INGLESA

Norma inglesa

	Frecuencia Natural [Hz]	Factor amortiguamiento [%]
Espectadores pasivos	5	40
Espectadores activos	2,3	25

Numéricos

	Frecuencia Natural [Hz]	Factor amortiguamiento [%]
Espectadores pasivos	4,96	67
Espectadores activos	4,36	55

GRACIAS POR SU ATENCIÓN

Dpto. de Ingeniería Civil, de Materiales y Fabricación
Universidad de Málaga
6 de junio 2018

