INTRODUCTION. The present study is carried out in Málaga, frequently affected by intrusions of air masses with high concentrations of atmospheric particulate matter. 40K is a natural radionuclide and has been associated with the arrival of coarse re-suspended material from the African continent. A systematic 13-year analysis (January 2005-December 2017) of the concentration of radionuclides in bulk (wet + dry) deposition and PM10 air concentrations has been performed to test the possible utility of 40K as tracer of African mineral dust inputs in Málaga (4° 28’ 8” W; 36° 43’ 40” N). Also the atmospheric aerosols are collected using a high volume sampler during 9-year (January 2009-December 2017). It is a prerequisite to know the environmental long-term behaviour of radionuclides as a relatively large number of values are required for statistically meaningful conclusions. The identification of African dust events was carried by 96-hour back-trajectory analysis arriving at three different heights (500 m, 1500 m, 3000 m a.g.l.) calculate with the HYPLIT model, and by the information obtained from the output of the dust regional Atmospheric model (DREAM 8b).

RESULTS AND DISCUSSION

The results from specific activities (Bq/L) of 40K in bulk, 40K (µBq/m3) in air, PM10 and monthly number of days affected by intrusions were analyzed to derive the statistical estimates. Table 1 provides the summary of the descriptive statistics such as number of samples (N), arithmetic mean (AM), geometric mean (GM), standard deviation (SD), maximum (MAX) and minimum (MIN) values, the coefficient of variation (CV) and Skewness (GI).

Table 1. Summary statistics of the activity concentrations of the 40K in bulk and air, PM10 and monthly days affected by African outbreaks.

<table>
<thead>
<tr>
<th></th>
<th>N (monthly)</th>
<th>AM (Bq/L)</th>
<th>GM (Bq/L)</th>
<th>SD (Bq/L)</th>
<th>MAX (Bq/L)</th>
<th>MIN (Bq/L)</th>
<th>CV(%)</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>77</td>
<td>0.25</td>
<td>0.17</td>
<td>0.14</td>
<td>0.94</td>
<td>0.06</td>
<td>68</td>
<td>1.4</td>
</tr>
<tr>
<td>Air</td>
<td>1500</td>
<td>0.25</td>
<td>0.17</td>
<td>0.14</td>
<td>0.94</td>
<td>0.06</td>
<td>68</td>
<td>1.4</td>
</tr>
<tr>
<td>PM10</td>
<td>166</td>
<td>0.25</td>
<td>0.17</td>
<td>0.14</td>
<td>0.94</td>
<td>0.06</td>
<td>68</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 2. Results from factor analysis applied on 40K bulk, 40K air and some parameters.

The total variance explained is about 75% in both cases. PC1 illustrates correlations among some meteorological parameters. The main difference between 40K in bulk and 40K in air is that the first one is related with PM10, intrusions and air temperature (see PC2 Table 2a) whereas 40K in air is only related with the wind (see PC3, Table 2b).

Figure 3 shows the seasonal variations of 40K in bulk and air, PM10 and monthly days affected by intrusions. The highest values were observed in Spring and Summer and the lowest ones in Winter and Autumn, except 40K in air, that is constant in all seasons approximately.

Figure 3 - Seasonal variation of specific activities of 40K in bulk, 40K air, PM10 and number of days affected by intrusions.

The identification of African events was confirmed by means of back-trajectory analysis (at 500m, 1500m, 3000m a.g.l.) and BSC-Dream8b dust images. Figure 4 shows two plots examples where 40K and PM10 are maximum, being the origin of these events mainly from the north and West Sahara.

CONCLUSION

• These results show that the monitoring of 40K in bulk deposition at this coastal site gives information on the influence of African dust intrusions by the identified factors in the VARIMAX rotation, so it can be used as radiotracer of Saharan dust contributions.

ACKNOWLEDGMENT

The authors wish to thank to Spanish Nuclear Safety Council (CSN) for financial support and to the Spanish Meteorological Agency (AEMET), for the provision of data used in this study.