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Distributionally Robust Optimization

Distributionally Robust Optimization (DRO). Introduction

• Stochastic Programming: infx∈X EQ f (x, ξ)
• Robust Optimization: infx∈X supξ∈Ξ f (x, ξ)
• DRO is essentially Stochastic Programming + Robust Optimization.

2



Data-Driven Distributionally Robust Optimization

Data-Driven Distributionally Robust Optimization (DDRO)

• Input: Training samples: ξ̂1, . . . , ξ̂N
• Construct a set of probability distributions QN using the traininig samples
(ambiguity set)

How to construct an ambiguity set?

• Seek probability distributions close to the empirical distribution P̂ based on
the training samples.

• How close?
• We use probability metrics. A usually choice is Wasserstein metric.
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Data-Driven Distributionally Robust Optimization

The goal is to compute:
inf
x∈X

sup
Q∈QN

EQ f (x, ξ)

and the optimal solution x∗.
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DDRO
Wasserstein metric of order p

Wasserstein metric (of order p) between two probability distributions P and Q:

Wp(P,Q) =

(
inf

(X ,Y ):X P,Y Q
E(‖X − Y ‖p)

)1/p
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DDRO
Wasserstein metric

Equivalently, Wasserstein metric between two probability distributions P and Q,
W (P,Q), is the minimum cost of moving P to Q. In the discrete case in 1-D:
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DDRO

• A problem: DDRO with Wasserstein’s metric is too conservative:

• Too many distributions in the Wasserstein ball!!
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DDRO

• A problem: DDRO with Wasserstein’s metric is too conservative:
• A common approach to solving this problem is to add a priori information!!

We want find good probability distributions closer to the true distribution with
similar features!!
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DDRO
Wassersein metric

Wasserstein metric paradigm
• Advantages: Good theoretical properties: E.g.: Convergence with respect to
Wasserstein metric (of order p) is equivalent to the usual weak convergence of
measures plus convergence of the first p-th moments, rates of convergence of
the empirical distribution to the true distribution.

• Disadvantages: We get too conservative distributions.
• Idea behind this approach: the mass of the empirical distribution is moved to

the worst case location points with the worst case mass in such points.
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DDRO
Some remarks about DDRO

A brief scheme
• Formulate the problem and the ambiguity set.
• Reformulate the inner supremum problem in a nice form using duality
arguments in order to join it with the infimum outer problem.

• We get a minimization problem with a constraint of the form:

sup
ξ

F (x, ξ) 6 0

• So, the assumptions of ambiguity set and the objective function are essential!!
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DDRO
Remarks and commom assumptions in DDRO

Reformulation of robust constraints in DDRO paradigm

Nowadays, sometimes
sup
ξ∈Ξ

F (x, ξ) 6 0

can be reformulated in a nice form applying the results existing in:
• Deriving robust counterparts of nonlinear uncertain inequalities, Ben-Tal et al.
(2015), Mathematical Programming.
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Motivation

A Wasserstein ball around the empirical distribution includes distributions with dif-
ferent support and allows (in a sense) robustness to unseen data.

(Sinha et al. (2018), Certifying Some Distributional Robustness with Principled Adversarial
Training)

• Thus, we consider a Wasserstein’s ball.
• Using an ambiguity set, our goal is to find good hidden distributions
(distributions closer to the true distributions with similar features) which
reflects the random phenomena of our model.

• How do we do?
• We consider conic constraints in order to add a priori shape information.
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Our approach

We split the support set in K regions and we introduce K decision variables (the
mass in each region) subject to:

•
∑K

i=1 pi = 1 and pi > 0
• The array (pi )

K
i=1 is in a cone C which reflects the shape of the distribution.
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An example: The Univariate Newsvendor problem
DDRO. Formulation and notation

• x : order quantity (decision
variable).

• ξ: demand of the item (random
variable).

• h: unit holding cost.
• b: unit backorder cost.

• (x − ξ)+: quantity in stock, where
z+ = max(z , 0).

• (ξ − x)+: shortage quantity.

Thus, the problem is the following:

inf
x>0

sup
Q∈QN

EQh(x − ξ)+ + b(ξ − x)+

QN is the ambiguity set which is constructed using a Wasserstein ball (using the
Wasserstein metric of order 1) and we consider the conic constraints approach
presented before.
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Numerical experiments
Data set and assumptions

Parameters of the model: h = b = 20.

The true distribution:

• The probability distribution is a
Beta distribution B(5, 5)

The decision-maker knows:

• The probability distribution is
unimodal.

• The support set is the interval
[0, 1].
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Numerical experiments
Data set

We construct K regions over the support set of the demand:

For each i = 1, . . . ,K , we assign a probability mass pi to the i-th region. We
consider the cone

C = {p ∈ RK : p1 6 p2 6 . . . 6 pm > pm+1 > . . . > pK}
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Numerical experiments
Order Quantity

N=2 N=5 N=10 N=20 N=50
0.0

0.2

0.4

0.6

0.8

1.0
DDRO
SAA

Our DDRO approach obtains less variance
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Numerical experiments
Actual Expected Cost

N=2 N=5 N=10 N=20 N=50
2.0

2.5

3.0

3.5

4.0

4.5
DDRO
SAA

Our DDRO approach obtains less variance
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Conclusions

• Shape information helps us to get better solutions than SAA method.

• Shape information is added in an easy way using conic constraints which
becomes linear!!
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Questions?

Thanks for the attention!

Supported by the project: FlexAnalytics - Advanced Analytics to Empower the
Small Flexible Consumers of Electricity.
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