Singing Information Processing: Techniques and Applications

Emilio Molina Martínez
Tesis Doctoral / PhD Thesis

Programa de Doctorado en Ingeniería de Telecomunicación
Escuela Técnica Superior de Ingeniería de Telecomunicación
Universidad de Málaga, 2017

Tutor
Lorenzo José Tardón García

Directores
Lorenzo José Tardón García
Ana María Barbancho Pérez
Los directores de esta tesis doctoral, Dr. Lorenzo José Tardón García y Dra. Ana María Barbancho Pérez, acreditan que habiendo revisado esta versión de la tesis, es apta para ser entregada al tribunal autorizado.

Dr. Lorenzo José Tardón García

Dra. Ana María Barbancho Pérez

Málaga, a 24 de abril de 2017
Abstract

Singing is an essential component of music in all human cultures around the world, since it is an incredibly natural way of musical expression. Consequently, digital processing of singing has a major impact on society from the viewpoints of industry, culture and science. However, unlike speech processing, singing processing is a rather immature research field, and many challenges associated to it are not solved yet for real-world purposes. In such context, this dissertation contributes with a varied set of novel techniques and applications related to singing information processing, together with a review of the background related to each of them.

First, we analyze the importance of pitch tracking in query-by-singing-humming, since this relationship had not been deeply studied in the past. For this analysis, a comparative study of state-of-the-art pitch trackers is carried out. The achieved results show that [Boersma, 1993] (with a not-obvious parameters tuning) and [Mauch, 2014], have a great performance for query-by-singing-humming due to the smoothness of the resulting F0 contour.

In addition, a novel singing transcription algorithm based on a hysteresis process on the pitch-time curve is proposed, together with an evaluation framework for singing transcription. The interest of our singing transcription algorithm is that it achieves state-of-the-art error rates using a simple approach. The proposed evaluation framework, on the other hand, is a powerful resource for future researchers in singing transcription, and it is a valuable step forward towards a better definition of the problem and a better evaluation of the proposed solutions.

Moreover, this thesis also presents a method for singing skill evaluation. It uses dynamic time warping to align the user’s performance and a reference in order to provide a score for pitch intonation and rhythm accuracy. The evaluation shows a high correlation between the scores provided by our system and the scores provided by a group of expert musicians.

Besides, we present a method to produce realistic intensity variations in singing voice. The proposed approach is based on a parametric model of spectral envelope, and it improves the perceived realism of intensity variation when compared with other commercial software, such as Melodyne and Vocaloid. The drawback of the chosen approach is that it requires manual intervention, but the achieved results provide relevant insights towards realistic automatic intensity transformation in singing voice for real-world purposes.

Finally, we propose a novel method to reduce the dissonance of isolated recorded chords. It is based on multiple F0 analysis, and a frequency shifting of sinusoidal components to produce an in-tune sound. The evaluation has been performed by a set of trained musicians, showing a clear improvement of the perceived consonance after the proposed transformation.
Resumen

La voz cantada es una componente esencial de la música en todas las culturas del mundo, ya que se trata de una forma increíblemente natural de expresión musical. En consecuencia, el procesado automático de voz cantada tiene un gran impacto desde la perspectiva de la industria, la cultura y la ciencia. En este contexto, esta Tesis contribuye con un conjunto variado de técnicas y aplicaciones relacionadas con el procesado de voz cantada, así como con un repaso del estado del arte asociado en cada caso.

En primer lugar, se han comparado varios de los mejores estimadores de tono conocidos para el caso de uso de recuperación por tarareo. Los resultados demuestran que [Boersma, 1993] (con un ajuste no obvio de parámetros) y [Mauch, 2014], tienen un muy buen comportamiento en dicho caso de uso dada la suavidad de los contornos de tono extraídos.

Además, se propone un novedoso sistema de transcripción de voz cantada basada en un proceso de histéresis definido en tiempo y frecuencia, así como una herramienta para evaluación de voz cantada en Matlab. El interés del método propuesto es que consigue tasas de error cercanas al estado del arte con un método muy sencillo. La herramienta de evaluación propuesta, por otro lado, es un recurso útil para definir mejor el problema, y para evaluar mejor las soluciones propuestas por futuros investigadores.

En esta Tesis también se presenta un método para evaluación automática de la interpretación vocal. Usa alineamiento temporal dinámico para alinear la interpretación del usuario con una referencia, proporcionando de esta forma una puntuación de precisión de afinación y de ritmo. La evaluación del sistema muestra una alta correlación entre las puntuaciones dadas por el sistema, y las puntuaciones anotadas por un grupo de músicos expertos.

Por otro lado, se presenta un método para el cambio realista de intensidad de voz cantada. Esta transformación se basa en un modelo paramétrico de la envolvente espectral, y mejora sustancialmente la percepción de realismo al compararlo con software comerciales como Melodyne o Vocaloid. El inconveniente del enfoque propuesto es que requiere intervención manual, pero los resultados conseguidos arrojan importantes conclusiones hacia la modificación automática de intensidad con resultados realistas.

Por último, se propone un método para la corrección de disonancias en acordes aislados. Se basa en un análisis de múltiples F0, y un desplazamiento de la frecuencia de su componente sinusoidal. La evaluación la ha realizado un grupo de músicos entrenados, y muestra un claro incremento de la consonancia percibida después de la transformación propuesta.
Acknowledgments

Throughout my last years, many people have been around me, what makes me feel happy and lucky. Some of them have positively influenced in my PhD in one way or another, and I would like to mention them in order to let them know.

First, I would like to mention ATIC research group in University of Málaga. It has been my home for three years, and we have shared a lot of experiences. I would like to thank Lorenzo, Isabel and Ana María for believing in me and trusting me from the very beginning, since it has been a great source of motivation throughout these years. Thanks also to Carles, a great workmate and friend, for our everyday lunch in law department, and for everything we have shared. Thanks also to Alejandro, Jesús, Panos, Najera... for those conversations and coffees at the lab. Thanks to all students that participated in my music production workshop, it was a really nice experience.

Along all these years, I have also been in contact with my previous colleges from MTG in Universitat Pompeu Fabra in Barcelona. We have shared a lot of moments, knowledge, code, etc. So many people that have inspired me somehow: Juanjo, Jan, María, Marius, John, Tim, Emilia... Thanks for being around me.

My family has also a lot to do with this story. My parents always showed me that passion and work should be together, and their support and love have been essential for me. They have worked hard for making my life easy, so thanks.

Finally, thanks to Mabel, my soulmate. You have always encouraged me to do my best in every step of my life because you understand what it means for me, and this PhD is a great example of it. You are great, that’s why I love you. Thanks!
Contents

1 Introduction ... 1
 1.1 Research Goals 5
 1.2 Thesis Outline 6

2 Background and Related Work 9
 2.1 Singing Voice Production 10
 2.1.1 Anatomy of the Human Voice 10
 2.1.2 Singing vs. Speech 12
 2.2 Pitch Estimation 13
 2.2.1 Monophonic F0 Estimation 13
 2.2.1.1 Time-domain Algorithms 14
 2.2.1.2 Frequency-domain Algorithms 15
 2.2.1.3 Tracking Stage 16
 2.2.1.4 Voicing 16
 2.2.2 Melody Extraction 17
 2.2.3 Multi-F0 Estimation 18
 2.3 Singing Transcription 19
2.3.1 Handcrafted Approaches ... 21
2.3.2 Probabilistic Approaches .. 22
2.4 Dynamic Time Warping .. 24
2.5 Automatic Singing Assessment 26
 2.5.1 Existing Systems for Automatic Assessment 26
 2.5.1.1 Entertainment ... 26
 2.5.1.2 Education .. 26
 2.5.2 Musicological Perspective 27
2.6 Timbre Processing .. 28
 2.6.1 Source-Filter Model ... 28
 2.6.2 Spectral Envelope Extraction 29
 2.6.2.1 LPC-based Methods 30
 2.6.2.2 Cepstrum-based Methods 32
 2.6.2.3 True Envelope .. 33
 2.6.3 Formant Analysis .. 34
 2.6.4 Features for Timbre Processing 37
 2.6.4.1 Mel-Frequency Cepstral Coefficients (MFCC) 37
 2.6.4.2 PLP and RASTA-PLP 38
 2.6.4.3 Time-domain Features 38
 2.6.4.4 Frequency-domain Features 39
 2.6.4.5 Unsupervised Feature Learning 39
2.7 Spectral Modeling Synthesis 40
 2.7.1 Sinusoidal Plus Residual Model (SpR) 41
 2.7.2 Harmonic Plus Residual Model (HpR) 42
CONTENTS

2.7.3 Sinusoidal Plus Stochastic Model (SpS) 43
2.7.4 Harmonic Plus Stochastic Model (HpS) 45
2.7.5 Implementation . 45

3 Global Summary of Results 49

3.1 Comparative Analysis of F0 Trackers for QBSH 51
3.1.1 Algorithms Evaluated . 52
3.1.1.1 F0 Trackers . 52
3.1.1.2 Audio-to-MIDI Melodic Matchers 53
3.1.2 Evaluation Strategy . 55
3.1.2.1 Datasets . 55
3.1.2.2 Combinations of F0 Trackers and Melody Matchers 56
3.1.2.3 Evaluation Measures 56
3.1.3 Results & Discussion . 56
3.1.3.1 Acc_ov and MRR for each F0 tracker - Dataset - Matcher . 57
3.1.3.2 MRR vs. Acc_ov for each matcher 59

3.2 Singing Transcription . 60
3.2.1 SiPTH: Singing Transcription 61
3.2.2 Evaluation Framework for Singing Transcription 63
3.2.2.1 Proposed Dataset . 64
3.2.2.2 Evaluation Measures 64
3.2.3 Results & Discussion . 66

3.3 Automatic Singing Assessment . 69
3.3.1 Description of the Two Approaches 69
3.3.1.1 Frame-level Similarity 69
3.3.1.2 Note-level Similarity 71
3.3.1.3 Score Computation 71
3.3.2 Evaluation .. 71
 3.3.2.1 Groundtruth 71
 3.3.2.2 Evaluation Measures 72
3.3.3 Results & Discussion 72
3.4 Timbre Analysis and Processing 73
 3.4.1 Summary of the Approach 74
 3.4.2 Evaluation of the Approach 76
 3.4.2.1 Evaluation Dataset 77
 3.4.2.2 Evaluation Methodology 77
 3.4.3 Results & Discussion 77
3.5 Dissonance Reduction in Polyphonic Audio 78
 3.5.1 Description of the Approach 79
 3.5.1.1 Analysis Stage 79
 3.5.1.2 Harmonic Reorganization Stage 80
 3.5.2 Evaluation Methodology 83
 3.5.2.1 Dataset 83
 3.5.2.2 Evaluation 84
 3.5.3 Results & Discussion 85

4 Conclusions and Future Research 89
 4.1 Conclusions and Research Contributions 89
4.2 Summary of Contributions .. 91
4.3 Suggestions for Future Research 93

APPENDIX A Relevant online research resources 97
 A.1 Software .. 97
 A.2 Datasets .. 101

APPENDIX B Publications .. 103
 B.1 Fundamental frequency alignment vs. note-based melodic similarity for singing voice assessment .. 105
 B.2 Dissonance reduction in polyphonic music using harmonic reorganization ... 107
 B.3 Evaluation framework for automatic singing transcription 109
 B.4 Parametric model of spectral envelope to synthesize realistic intensity variations in singing voice .. 111
 B.5 The importance of F0 tracking in query-by-singing-humming . . . 113
 B.6 SiPTH: Singing transcription based on hysteresis defined on the pitch-time curve ... 115

References .. 117
List of Figures

- **Figure 1.1:** Singing Information Processing applications 4
- **Figure 2.1:** Background associated to each contribution of this thesis 9
- **Figure 2.2:** Anatomy of the voice organ ... 11
- **Figure 2.3:** Spectrogram of speech vs. singing 13
- **Figure 2.4:** Spectrogram of two consecutive vowels 20
- **Figure 2.5:** Trellis diagram of Ryynänen’s approach 22
- **Figure 2.6:** Distribution of observable features for each state 23
- **Figure 2.7:** Example of use of DTW for pitch contour alignment 24
- **Figure 2.8:** Songs2See screenshot ... 27
- **Figure 2.9:** Schema of source-filter processing 29
- **Figure 2.10:** LPC modelling of speech .. 31
- **Figure 2.11:** Scheme for cepstral smoothing 33
- **Figure 2.12:** True envelope algorithm at several iterations 34
- **Figure 2.13:** Spectrogram of two consecutive vowels 35
- **Figure 2.14:** Formants distribution for 46 phones 36
- **Figure 2.15:** Sinusoidal plus residual model 42
- **Figure 2.16:** Harmonic plus residual model 43
- **Figure 2.17:** Stochastic model ... 45
- **Figure 2.18:** Block diagram of SMS technique 47
Figure 3.1: Overall scheme of our study in the context of query-by-singing-humming .. 51
Figure 3.2: Scheme of the proposed baseline method for audio-to-MIDI melody matching 54
Figure 3.3: Pitch vectors with different kind of errors .. 59
Figure 3.4: MRR vs. Overall Accuracy ... 60
Figure 3.5: Chroma contours estimation ... 62
Figure 3.6: Hysteresis process for note segmentation .. 63
Figure 3.7: GUI for the proposed evaluation framework ... 65
Figure 3.8: Examples of the proposed note categories ... 66
Figure 3.9: Comparison between state-of-the-art singing transcribers 68
Figure 3.10: Cost matrix of DTW ... 70
Figure 3.11: GUI for annotating spectral envelope parameters 75
Figure 3.12: Model parameters for three different singing intensities 76
Figure 3.13: Mean perceived closeness to a real change of intensity 78
Figure 3.14: Adjustment of musical restrictions ... 80
Figure 3.15: Generation of overtones grid ... 81
Figure 3.16: Detail of peak frequency spectrograms .. 82
List of Tables

Table 3.1: F0 overall accuracy and MRR obtained for each case 58
Table 3.2: Results of interjudgement reliability 72
Table 3.3: Correlation of each similarity measure with the experts’ ratings 73
Table 3.4: Polynomial regression error 73
Table 3.5: Questionnaire results for instrumental chords 86
Table 3.6: Questionnaire results for vocal chords 87
CHAPTER 1

Introduction

Singing is an essential component of music in all human cultures around the world, since it is an incredibly natural way of musical expression. In fact, the expression of feelings through singing is considered to be far older than the expression of thoughts through speech [Jespersen, 1922], and it is agreed to be present even in other animal species [Wallin and Merker, 2001]. In the case of western music, the role of singing voice throughout the history has varied. During the medieval period and the Renaissance, vocal music was especially popular in religious contexts. After 17th century, the birth of opera leads to a new context for singing voice, in which virtuoso solo singers are accompanied by an orchestra in a theatrical context. In 20th century, recording technologies and audio amplification contributed to the appearance of non-operatic, speech-like singing styles and new expressive resources (e.g. whispering). Nowadays, singing has a clear leading role in most modern music styles (e.g. pop).

Consequently, digital processing of singing has a major impact on society from the viewpoints of industry, culture and science due to its countless applications. For instance, Music Information Retrieval (MIR) systems can greatly benefit from singing analysis since vocals convey highly relevant information about the audio content (expressiveness, singer, style, lyrics, etc). In addition, singing is an accessible and intuitive way of human-machine interaction, so it is particularly suitable for games, composition tools, query-by-humming-singing systems or educational applications. In the context of education, singing is essential for the development of general music skills [Welch et al., 1988]. Moreover, singing typically provides important clues about our music cognition, so singing analysis can be also useful from a scientific perspective to better understand our mental processes.

However, unlike speech processing, singing processing is a rather immature research field, and the challenges associated to it are often underestimated. In many singing-related research topics, there is a lack of good evaluation tools (datasets, software...),
and most of the classical problems are far to be solved for real-world purposes: note transcription (not even in a monophonic context [Gómez et al., 2013]), realistic timbre modifications [Molina et al., 2014c], lyric transcription and synchronization [Goto, 2014], etc. Indeed, many approaches that work for specific musical instruments, are not suitable for singing voice (e.g. note transcription [Gómez et al., 2013]). The difficulty of singing processing resides in the high variability of singing signals, as they are strongly affected by a sort of aspects: singer (gender, timbre, training, age...), music style (e.g. rap is completely different from opera), lyrics (e.g. determining the note-segmentation strategy), etc. To sum up, there is a clear need of further research to overcome such singing-related challenges.

Fortunately, the research community is increasingly interested in singing analysis and processing [Mauch et al., 2015b]. Indeed, the area of research called Singing Information Processing has been recently defined [Goto et al., 2010], and every year, new valuable approaches and resources are available (e.g. Tony tool\footnote{http://isophonics.net/tony} for note-wise annotation).

Scientific Context: Singing Information Processing

The area of research called Singing Information Processing was initially proposed by [Goto et al., 2010], and it is defined as “music information processing for singing voices”. More recently, [Goto, 2014] presents a review of this research area through a collection of organized applications (which are summarized in Figure 1.1), some of which are described in following paragraphs.

One of the classical research problems is singing synthesis [Cook, 1991]. This topic has been actively studied in the second half of 1980s and throughout 1990s [Cook, 1996]. More recently, corpus-based synthesis methods based on the concatenation of samples have been proposed [Bonada and Serra, 2007] [Schwarz, 2007]. One of the most successful applications of corpus-based synthesis is Vocaloid [Kenmochi and Ohshita, 2007], which has become very popular (especially in Japan).

Lyric transcription and synchronization, on the other hand, aim to give computer the ability to understand lyrics in singing voice. This challenging problem can be seen as the singing version of automatic speech recognition (ASR), which is a classic research problem, and it is considered unsolved for generic singing with accompaniment. If the text of the lyrics is known in advance, the problem is called lyrics synchronization. Research into lyric synchronization can be divided into two categories: that using no forced-alignment (e.g. [Kan et al., 2008]), and that using forced alignment (e.g. [Fujihara et al., 2011]).

Some other applications are based on voice timbre analysis and processing. Vocal timbre is an essential element of singing, since it conveys information about the
singer, the vocal quality, expressive aspects, etc. Many applications have been proposed based on vocal timbre processing: voice conversion [Toda et al., 2007], singer identification [Zhang, 2003], emotion recognition [Kanato et al., 2014], etc. In addition, some music information retrieval systems are directly based on singing voice, such as query-by-singing-humming applications, which use short singing or humming excerpts as a search key in a collection of songs. A variety of successful methods for QBH have been proposed, mostly based on a mix F0 contour and note-wise matching [Wang et al., 2008] [Li et al., 2008], but also based on lyrics matching [Wang et al., 2010] [Suzuki et al., 2007] or MFCC and formants matching [Duda et al., 2007]. A less frequent variant of music information retrieval based on singing voice is based on “voice percussion” [Nakano et al., 2005].

Singing transcription is a relevant and challenging research problem that refers to the automatic conversion of a recorded singing signal into a symbolic representation (e.g. a MIDI file) by applying signal-processing methods [Ryynänen, 2006]. It can be used as an intermediate stage for QBSH [Pardo et al., 2004], for singing assessment [Dittmar et al., 2010], or directly applied to computational tools for musicians (e.g. ScoreCloud²). In addition, some successful systems are commercially available for pitch contour modification (e.g. Melodyne³ or Auto-tune⁴). This kind of systems are massively used nowadays in recording studios to correct intonation errors of singers.

Finally, automatic singing skill evaluation, or automatic singing assessment, has been addressed in a variety of works [Rossiter and Howard, 1996] [Howard et al., 2004] [Saino et al., 2006] (see [Molina, 2012] for a review). In general, all these systems focus on intonation assessment with visually attractive real-time feedback. Songs2See [Grollmisch et al., 2011] is a recent and representative example of the state of the art. These type of applications have been applied in two main fields: entertainment (mainly games) and education. Perhaps, the most famous game related to automatic singing skill evaluation is Singstar⁵, which has become popular in the last years.

Topics Addressed in this thesis

Given the relevance, and the growing interest of Singing Information Processing (as mentioned previously in this Section), this thesis addresses several specific topics related to such a broad field, which are described in the following paragraphs. We analyze the importance of pitch tracking in query-by-singing-humming, since this relationship has not been deeply studied in the past. In this thesis, the term

²http://scorecloud.com
³www.celemony.com
⁴www.antarestech.com
⁵www.singstar.com
Figure 1.1: Schema of Singing Information Processing applications, showing the kind of input and output in each case (audio signal, symbolic, etc.).
1.1 RESEARCH GOALS

Pitch is not used to refer to the perceptual feature, but to the fundamental frequency (F0) of a signal; therefore, the terms pitch and F0 are used indistinctly. For such analysis, we carry out a comparative study of state-of-the-art pitch trackers in the context of query-by-singing-humming. This study is described in more detail in [Molina et al., 2014d] (Section 3.1).

In addition, a novel singing transcription algorithm based on a hysteresis process on the pitch-time curve is proposed (published in [Molina et al., 2015]), together with an evaluation framework for singing transcription (published in [Molina et al., 2014b]). These contributions are summarized in Section 3.2.

Moreover, a method for singing skill evaluation (or singing assessment) is presented (see Section 3.3). This method has been published in [Molina et al., 2013], and it uses dynamic time warping to align the user’s performance and a reference in order to provide a score for pitch intonation and rhythm accuracy.

Besides, we present a study about the changes in spectral envelope when vocal intensity varies, together with a method to produce realistic intensity variations in singing voice. This method has been published in [Molina et al., 2014c], and it is summarized in Section 3.4.

Finally, in relation with the problem of pitch contour modification, we propose a novel method to reduce the dissonance of recorded chords (vocal or instrumental) by processing its sinusoidal component. It is based on a multiple F0 analysis, and a frequency shifting of sinusoidal component to produce an in-tune output sound. It has been published in [Molina et al., 2014a], and it is summarized in Section 3.5.

1.1 Research Goals

The research goals of this PhD involve both, techniques and applications, related to the field of Singing Information Processing. These goals are:

- Review the state-of-the-art of the research field Singing Information Processing. For it, the most relevant research problems, and the key references for each of them must be identified and understood. This review must be especially deep in the main topics addressed by this thesis: F0 and note tracking, automatic singing assessment and voice timbre processing.

- Develop a singing transcription method with state-of-the-art performance. This challenging goal can be broken down into several sub-goals:
 - Define a clear research methodology to address the problem of singing transcription, since the literature does not provide a clear one. This sub-goal involves deciding what kind of annotated data is needed, what
evaluation metrics are relevant and what are the available state-of-the-art methods to compare with.

- Gather a dataset of monophonic singing audio with note-level annotations.
- Gather, or implement, state-of-the-art singing transcription methods to compare with.
- Build a publicly available evaluation framework tool for singing transcription.
- Investigate and develop a novel method for automatic note transcription in singing voice.

- Investigate and develop a novel system for automatic singing assessment based on pitch contour and note-wise comparison with respect to a target reference. This goal also involves gathering singing performances with annotations by music teachers, which will be used for evaluation.

The previous goals have many aspects in common, since they mainly involve audio analysis techniques. However, the knowledge about singing information processing achieved along our investigation has also led us to two extra goals involving sound transformation:

- Investigate and develop a system to model timbre changes produced in singing voice when intensity varies. This goal also involves developing a software tool to visualize and annotate the spectral envelope of a dataset of sung vowels, which will be used for investigation.

- Investigate and develop a system to process out-of-tune vocal chords in order to make them sound in-tune. This goal also involves gathering an evaluation dataset and carrying out a listening test with musicians to assess the performance of the proposed method.

1.2 Thesis Outline

This thesis consists of four main chapters. In Chapter 1, we introduce the motivation and scientific context, together with the research goals and the outline of this thesis. Chapter 2 presents an overview on several research areas that are relevant for this thesis. These areas are: singing voice production (Section 2.1), pitch estimation (Section 2.2), singing transcription (Section 2.3), dynamic time warping (Section 2.4), automatic singing assessment (Section 2.5), timbre processing (Section 2.6), and spectral modeling synthesis (Section 2.7). In Chapter 3 we summarize
1.2. THESIS OUTLINE

the results of this thesis organized by topic: comparative analysis of F0 trackers for query-by-singing-humming (Section 3.1), singing transcription (Section 3.2), automatic singing assessment (Section 3.3), timbre analysis and processing (Section 3.4) and dissonance reduction in polyphonic audio (Section 3.5). Chapter 4 draws some general conclusions about the various aspects covered in previous chapters (Section 4.1), presents an enumeration of all scientific and technical contributions of this thesis (Section 4.2), and presents some suggestions for future research (Section 4.3). Finally, Appendix A enumerate all relevant web resources mentioned along this thesis, and Appendix B includes the published papers in the context of this thesis.
CHAPTER 2

Background and Related Work

In this chapter, we provide the background and previous work related to the various contributions of this thesis. In Figure 2.1 the relationship between such contributions (see Section 1.4) and the topics covered in this chapter is described.

Figure 2.1: Relationship between the contributions of this thesis (see Section 4.2) and the background presented in this chapter.
CHAPTER 2. BACKGROUND AND RELATED WORK

This chapter is organized as follows: Section 2.1 provides a general overview about voice production, since these scientific concepts are relevant for the rest of sections of this dissertation. Section 2.2 describes the state-of-the-art in pitch estimation, for both monophonic and polyphonic contexts. In Section 2.3, we present a review on note-level transcription of singing voice. Section 2.4 describes the technique of Dynamic Time Warping (DTW), since it is the base of our contribution on automatic singing assessment. Then, Section 2.5 presents an overview about the state-of-the-art on automatic singing assessment. In Section 2.6, a general overview about voice timbre processing is presented (source-filter model, spectral envelope extraction, formant analysis and timbre-related features). Finally, Section 2.7 presents spectral modeling synthesis (SMS) technique, which is implemented in our methods for timbre processing, and for polyphonic transformations.

2.1 Singing Voice Production

In this section, we describe some general aspects about the anatomy of the singing voice (Section 2.1.1), and we present some important differences between speech and singing (Section 2.1.2). This background is necessary to understand many acoustical characteristics of the singing voice signal, which is the main object of study in this thesis.

2.1.1 Anatomy of the Human Voice

According to [Sundberg, 1987], the singing voice can be defined as “the sounds produced by the voice organ and arranged in adequate musical sounding sequences”. The voice organ includes the lungs, the larynx, the pharynx, the nose and the mouth (see Figure 2.2.a).

The main function of the lungs (in speech and singing) is to produce an excess of air pressure, which generates an airstream [Sundberg, 1977]. The air passes through the glottis, a space at the base of the larynx between the two vocal folds. The back end of each vocal fold is attached to one of the two arytenoid cartilages, which are mobile, moving to separate the folds (for breathing), to bring them together and to stretch them. The vocal folds are at the bottom of the tube-shaped larynx, which fits into the pharynx, the wider cavity that leads from the mouth to the esophagus. When the airstream is periodically chopped by the oscillation of the vocal folds, an acoustic signal is produced (called voice source). The roof of the pharynx is the velum, or soft palate, which in turn is the door to the nasal cavity. When the velum is raised, the passage to the nose is closed and air moves out through the mouth. The larynx, the pharynx and the mouth together constitute the vocal tract, which
acts as a resonant chamber. The shape of the tract is determined by the positions of the articulators: the lips, the jaw, the tongue and the larynx, and they shape acoustically the voice source. The frequencies enhanced by the vocal tract are called formants. The final step is the acoustic radiation through the lips.

As shown in Figure 2.2.b, the voice production process can be modeled with three major units: the power supplier (the lungs), an oscillator (the vocal folds) and a resonator (the vocal tract). The power supplier directly affects the energy of the sound produced. The oscillator produces a complex tone (voice source) at certain frequency, whose partials decrease uniformly with frequency at the rate of about 12 decibels per octave (Figure 2.2.c). This slope is more step in soft speech, though. Finally, this signal is shaped by the resonator, which can be modeled as an all-pole filter (see Section 2.6.2.1).

A deeper description of voice production principles can be found in Sundberg’s and Titze’s well-known works [Sundberg, 1977] [Sundberg, 1987] [Titze, 2000].
2.1.2 Singing vs. Speech

Speech is the most common use of human voice in all cultures, and therefore most of the research studies about the human voice in the literature are related to it. The case of singing is commonly viewed as a special case of speech, but there are some profound differences between them (summarized in [Cook, 1991] and [Kim, 2003]). In this section, we enumerate the most relevant differences between speech and singing:

- Voiced / Unvoiced ratio: In singing voice, around a 90% of the sounds produced are voiced, whereas in speech the ratio of voiced sounds is around a 60%.

- Stability of pitch: In speech, pitch is not generally stable, and it usually consist of chirps up or down within each phoneme or word. In singing, pitch is typically stable within each note, although certain expressive resources may produce predictable and controlled pitch deviations, such as vibrato or pitch bends. In Figure 2.3, we show a good example of this difference.

- Range of Pitch: In speech, the range of pitch is determined by the speaker comfort and emotional state, and it is typically narrower than the singing range of pitch, which is determined by physiology and training.

- Dynamic range: The dynamic range of singing is greater than that of typical speech. Greater flow rates and greater excursions of the vocal folds imply that the singing system is likely to operate in higher orders of non-linearity.

- Singer formant: In opera singing styles, singers tend to group the third, fourth and sometimes fifth formants together around 3 KHz for increased resonance. Opera solo singers use the singer’s formant in order to be heard above the instruments. In other music styles, such as jazz or rock, the singer’s formant is not used. Note that vocal resonances are also highly important in non-opera styles, but they are not grouped into the singer’s formant in the same way as in opera singers.

- Singer’s vowel modification: When singing, the vowel sounds may mutate a function of pitch for comfort, projection and/or intelligibility. Some modifications in the sound is an artifact of wider harmonic spacing under the vocal tract filtering spectrum envelope, rather than spectral envelope change [Cook, 1999].
2.2 Pitch Estimation

In this section, we present an overview on pitch estimation. Note that, as mentioned in Chapter 1, in this thesis the term pitch and fundamental frequency (F0) are used indistinctly. This Chapter covers three main research problems related to pitch estimation: monophonic F0 estimation (Section 2.2.1), melody extraction (Section 2.2.2) and multiple F0 estimation (Section 2.2.3). The specific description of each problem is provided in each of the following sections.

2.2.1 Monophonic F0 Estimation

Monophonic F0 estimation refers to the problem of estimating the F0 contour of a signal containing one single melody without accompaniment. This is a classic problem in MIR research, and has been addressed from many different perspectives in the last decades [Gómez et al., 2003b]. Monophonic F0 estimation is typically computed frame by frame to provide the curve of instantaneous F0 along time. Depending on the way frames are processed, there are two major approaches: time-domain algorithms (Section 2.2.1.1), which directly process the waveform of the signal, and frequency-domain algorithms (Section 2.2.1.2), which work in the spectral domain. In addition, some monophonic F0 estimation methods greatly improve their accuracy by introducing a time tracking stage that smooths the frame-wise F0 estimation (some relevant approaches are described in Section 2.2.1.3). Finally, in

Figure 2.3: (a) Spectrogram of speech (b) Spectrogram of pop singing. Both cases have been produced by the same male voice.
Section 2.2.1.4 we describe current algorithms to solve voicing problem, that is commonly needed in monophonic F0 estimation to avoid reporting noisy F0 estimations in unvoiced regions (e.g. silence).

2.2.1.1 Time-domain Algorithms

In most approaches, F0 candidates are computed frame by frame in order to define a contour along time. In some cases, the F0 candidate with highest strength is selected as the F0 value for each frame. In other cases, F0 candidates are tracked along time in order to provide a more accurate estimation. Depending on the way F0 candidates are estimated for one frame, two main categories of algorithms can be identified: time domain algorithms and frequency domain algorithms.

Time domain algorithms try to find the periodicity of the input signal directly from the waveform. Most relevant time-domain approaches for pitch estimation are based on the autocorrelation operator and its variants [Rabiner, 1977]. The autocorrelation method has inspired a variety of successful algorithms [Boersma, 1993] [Shimamura and Kobayashi, 2001] [De Cheveigne and Kawahara, 2002], among which Yin algorithm is especially relevant.

Yin algorithm was developed by [De Cheveigne and Kawahara, 2002], and it is still today the basis of modern state-of-the-art algorithms for F0 estimation [Mauch, 2014]. This algorithm resembles the autocorrelation method [Rabiner and Schafer, 1978], but it introduces relevant improvements that make it more robust and accurate. Specifically, the autocorrelation function is replaced by the cumulative mean normalized difference function $d'_t(\tau)$, which peaks at the optimal local period with lower error rates than the traditional autocorrelation function. The cumulative mean normalized difference function $d'_t(\tau)$ is based on the squared difference function $d_t(\tau)$, which is defined as follows:

$$d_t(\tau) = \sum_{j=t}^{t+W} (x_j - x_{j+\tau})^2$$ \hspace{1cm} (2.1)

where:
τ = Integer lag variable such that $\tau \in [0,W)$
t = Time index
W = Window size
x_τ = Amplitude of the input signal x at time τ

The difference function is then normalized by the cumulative mean of the function over shorter lag periods:

$$d'_t(\tau) = \begin{cases} 1 & \tau = 0 \\ \frac{d_t(\tau)}{\frac{1}{\tau} \sum_{j=1}^{\tau} d_t(j)} & \text{otherwise} \end{cases}$$ \hspace{1cm} (2.2)
The Yin algorithm finds the local minimum with the smallest lag period τ' to perform a parabolic interpolation over the interval $\{\tau'-1, \tau'+1\}$ in order to accurately find the minimum period τ_p, which can be converted to frequency using the expression $F_0 = f_s/\tau_p$, where f_s is the sampling rate. The aperiodicity measure ap, also called voicing parameter [Krige et al., 2008], is given by $d'_t(\tau_p)$. This parameter is a function of the strength of the correlation at τ_p, which is related to the overall degree of signal periodicity within the current frame.

Apart from autocorrelation-based approaches, the literature reports other time-domain algorithms for F0 estimation, such as zero-crossing rate [Kedem, 1986] (the simplest one) or parallel processing [Gold and Rabiner, 1969]. See [Gómez et al., 2003b] for a review.

2.2.1.2 Frequency-domain Algorithms

These algorithms search for the fundamental frequency from spectral information of the signal, using the STFT or other kind of transformation.

Many different algorithms for F0 estimation in the frequency-domain have been proposed for decades. In the late 60s, Noll proposed several algorithms based on this approach: the use of the cepstrum for pitch estimation, since it peaks at the period of the signal under certain circumstances [Noll, 1967]; and a method based on harmonic product spectrum, which was based on the computation of the common divisor of its harmonic sequence [Noll, 1969]. Some years later, in 1987, Lahat et al. proposed a method based on the spectrum autocorrelation, which derived from the observation that a periodic but non-sinusoidal signal has a periodic magnitude spectrum, the period of which is the fundamental frequency [Lahat et al., 1987].

On the other hand, some other successful frequency-domain approaches are based on the idea of harmonic matching. This idea consists of comparing the harmonic positions of a predicted F0 and the actual positions of the harmonics in the signal. One of the most successful implementations is the Two-way mismatch (TWM) algorithm presented by [Maher and Beauchamp, 1994]. In TWM algorithm, for each fundamental frequency candidate, mismatches between the harmonics generated and the measured partials frequencies are averaged over a fixed subset of the available partials. A weighting scheme is used to make the procedure robust to the presence of noise or absence of certain partials in the spectral data. The discrepancy between the measured and predicted sequences of harmonic partials is referred as the mismatch error.

A more recent frequency-domain approach is SWIPE method, proposed by Camacho in 2007 [Camacho and Harris, 2008]. This algorithm estimates the pitch as the fundamental frequency of the sawtooth waveform whose spectrum best matches the spectrum of the input signal. The algorithm proved to outperform other well-known F0 estimation algorithms, and it is used in the F0 estimation stage of some
state-of-the-art query-by-humming systems [Li et al., 2013].
However, despite the big amount of frequency-domain approaches proposed during
decades, the current state-of-the-art in F0 estimation for monophonic signals is
mainly based on the time-domain [Boersma, 1993] [Talkin, 1995] [De Cheveigné
and Kawahara, 2002] [Mauch, 2014].

2.2.1.3 Tracking Stage

In F0 estimation context, tracking consists of connecting the most convenient F0
candidates from every frame in order to create a smooth and representative F0
contour. Nowadays, most state-of-the-art methods for F0 estimation use some kind
of tracking strategy.

One of the most relevant tracking methods for monophonic F0 estimation is [Boersma,
1993], since nowadays it is still used with success in several contexts [Molina et al.,
2014d]. It defines a local strength for each F0 candidate at each frame by using a
large set of parameters: time step, pitch floor, number of candidates, silence thresh-
hold, voicing threshold, octave cost, octave-jump cost, voiced / unvoiced transition
cost, pitch ceiling. As proved by [Molina et al., 2014d], this method significantly
improves its performance for query-by-singing-humming when its parameters are
adapted to the input signal. The optimal path between F0 candidates is solved
using dynamic programming. A similar approach is also proposed in [Talkin, 1995],
and nowadays it is also widely used with success.

Recently, in 2014, Matthias Mauch has proposed pYIN [Mauch, 2014], which adds
an HMM-based tracking stage to the well-known Yin algorithm [De Cheveigné
and Kawahara, 2002] in order to find a smooth path over the F0 candidates found by
Yin. This combination leads to excellent results in the context of query-by-singing-
humming, especially in the case of highly degraded singing signals.

2.2.1.4 Voicing

The process of detecting voiced sounds (when vocal folds vibrate) in singing or
speech is called voicing. Since fundamental frequency only makes sense in periodic
sounds (voiced sounds), the voicing process is needed to obtain a representative
and clean F0 contour from a speech or singing signal. Some approaches estimate
voiced sounds using a wide variety of descriptors: the RMS [Haus and Pollastri,
2001], the instantaneous aperiodicity measure [Ryynänen, 2006], the evidence of
pitch [Salamon and Gómez, 2012], or the zero crossing rate (ZCR) combined with
the RMS [Rabiner, 1977]. In other cases, unvoiced state acts just like one more
candidate F0 within a tracking stage [Boersma, 1993] [Mauch, 2014].
2.2. PITCH ESTIMATION

2.2.2 Melody Extraction

Melody extraction refers to the problem of F0 estimation of a single predominant pitched source from polyphonic music signals with a lead voice or instrument [Salamon2013]. This problem is directly related to some aspects of singing voice processing, and it is more challenging than monophonic F0 estimation.

In the context of polyphonic audio, monophonic F0 estimators do not perform well because of the presence of more than one pitch simultaneously. As a consequence, melody extraction methods are generally based on the concept of pitch salience, which is a function that represents the salience of each F0 within a frame. This function is computed in various steps:

1. **Preprocessing:** Some approaches apply a preprocessing to the signal: bandpass filtering [Goto, 2004], equal loudness filtering [Salamon and Gómez, 2012], enhancement of lead voice through source separation [Hsu and Jang, 2010] [Yeh et al., 2012].

2. **Spectral transform:** Next, the signal is windowed into frames and a transform function is applied to obtain a spectral representation of each frame. Different type of transformations can be applied: Short-Time Fourier Transform (STFT) [Ryynänen and Klapuri, 2008] [Salamon and Gómez, 2012], multirate filterbank [Goto, 2004], constant-Q transform [Cancela, 2008], multi-resolution FFT [Dressler, 2006] [Hsu and Jang, 2010] [Yeh et al., 2012], etc.

3. **Peaks extraction:** After applying the transform, most approaches only use the spectral peaks for further processing.

4. **Salience computation:** At the core of salience based algorithms lies the multipitch representation, i.e. the salience function [Klapuri, 2008]. The peaks of this function are taken as possible candidates for the melody, which are further processed in the next stages. Different methods can be used to obtain a salience function: most approaches use some form of harmonic summation, by which the salience of a certain pitch is calculated as the weighted sum of the amplitude of its harmonic frequencies [Cancela, 2008] [Hsu and Jang, 2010] [Ryynänen and Klapuri, 2008] [Salamon and Gómez, 2012] [Yeh et al., 2012]. Other approaches include two-way mismatch [Maher and Beauchamp, 1994] computed by [Rao and Rao, 2010], summary autocorrelation used by [Paiva et al., 2006] and pairwise analysis of spectral peaks as done by [Dressler, 2011].

Once the pitch salience function is available for each frame, then a tracking strategy is applied to find a smooth and representative F0 contour (as in the case of monophonic pitch trackers).
On the other hand, other approaches for melody extraction use source separation to isolate the leading voice from the accompaniment [Durrieu, 2010] [Tachibana et al., 2010], and has gained popularity in recent years following the advances in audio source separation research.

2.2.3 Multi-F0 Estimation

Multiple F0 estimation aims at identifying all pitched sounds that might be present simultaneously in an audio signal. It is different from melody extraction problem, because in this case we are interested not only in the lead voice, but in identifying all possible pitched sounds. As described in [Ibañez, 2010], existing approaches have been classified into:

- **Salience methods**: They try to emphasize the underlying fundamental frequencies by applying signal processing transformations to the input signal [Tolonen and Karjalainen, 2000] [Peeters, 2006] [Zhou et al., 2009] [Zhou and Mattavelli, 2007].

- **Iterative cancellation methods**: They estimate the most prominent f0, subtracting it from the mixture and repeating the process for the residual signal until a termination criterion [Klapuri, 2003] [Klapuri, 2005] [Klapuri, 2008].

- **Joint estimation methods**: They evaluate a set of possible hypotheses, consisting of F0 combinations, to select the best one without corrupting the residual at each iteration [Yeh, 2008] [Barbancho et al., 2010].

- **Supervised learning methods**: They attempt to assign a class to a musical pitch, and it applies trained classifiers (such as support vector machines or neural networks) to detect the presence of each pitch [Marolt, 2004a] [Marolt, 2004b] [Poliner et al., 2007] [Zhou, 2006].

- **Unsupervised learning methods**: They are based on non-negative matrix factorization (NMF), which approximates a non-negative matrix X as a product of two non-negative matrices W and H, in such a way that the reconstruction error is minimized: \(X \approx WH \), where X represents the spectral data, H corresponds to the spectral models (basis functions), and W are the weights. This methodology is suitable for instruments with a fixed spectral
2.3. **Singing Transcription**

Singing transcription, in the context of this thesis, can be defined as follows: “Given the acoustic waveform of a single-voice singing performance, produce a sequence of notes and rests which is melodically and rhythmically as close to the performance as possible” [Ryynänen, 2006]. In other words, singing transcription refers to the automatic conversion of a recorded singing signal into a symbolic representation (e.g. a MIDI file) by applying signal-processing methods. In Figure 2.4, a representative example of singing transcription using two state-of-the-art methods (pYIN [Mauch et al., 2015a] and Melotranscript\(^1\)) is shown.

The applications of note-level singing transcription are countless. One of its renowned applications is query-by-singing-humming [Pardo et al., 2004], since many state-of-the-art approaches [Doeroso, 2013] [Li et al., 2013] combine note-level and frame-

\(^1\)https://www.samplesumo.com/melody-transcription
level matching to improve their performance. Other applications are singing tutors [Dittmar et al., 2010], computer games (e.g. Singstar2), tools for musicians (e.g. ScoreCloud3), etc.

![Figure 2.4: Excerpt of “Yesterday” (The Beatles) sung by a male amateur singer. (a) Spectrogram and syllable segmentation. (b) Transcription using pYIN. (c) Transcription using Melotranscript. The errors made by these transcribers are representative of the behavior of state-of-the-art singing transcribers with real-world audio.](image)

Singing transcription is usually associated with melody transcription task (also called note tracking), which is more general problem because it also applies to

2http://www.singstar.com/

3http://scorecloud.com/
musical instruments. However, singing transcription is a task not only related with melody transcription, but also with speech recognition, and it is challenging even in the case of monophonic signals without accompaniment. This fact is due to the continuous character of the human voice and its acoustic and musical particularities, which are often singer-dependent [Gómez et al., 2013]. As a consequence, many difficulties appear for obtaining correct F0 estimations, detecting note transitions (onsets and offsets) and labelling notes in terms of pitch or duration. These difficulties are verified when comparing state-of-the-art systems for audio onset detection (task related to note segmentation and required for automatic transcription), which yield an average F-measure (a statistical measure of accuracy, from 0 to 1) around 0.78 according to the 2010 edition of the Music Information Retrieval Evaluation eXchange (MIREX). This F-measure is obtained for a mixed dataset of 85 files, but if we just consider the 5 tested singing voice excerpts, the maximum F-measure is 0.47. This suggests that state-of-the-art systems for singing voice transcription are not accurate enough to be used in an unsupervised way, even in a monophonic context.

In the literature, one can find various approaches for singing transcription (see [Molina et al., 2014b] for a comparative evaluation). In following sections, the most relevant state-of-the-art methods are described and organized into handcrafted approaches (Section 2.3.1), and probabilistic approaches (Section 2.3.2).

2.3.1 Handcrafted Approaches

A simple but commonly referenced approach was proposed by [McNab et al., 1996], and it relies on several handcrafted pitch-based and energy-based segmentation methods. Specifically it uses a “island-building” strategy, which groups areas with stable pitch values, followed by a segmentation stage that detects sudden amplitude or pitch changes. These segments are then assigned discrete note frequencies using a tuning adaptation strategy to deal with untrained singers with no stable tonal reference. Later, [Haus and Pollastri, 2001] used a similar approach with some refined rules to deal with intonation mistakes.

On the other hand, [Clarisse et al., 2002] contributed with an auditory model for pitch estimation, followed by a segmentation stage based on loudness, voicing and pitch variation. This approach led to later improved systems such as [De Mulder et al., 2003] [De Mulder et al., 2004], whose latest evolution is *Melotranscript*\(^1\), provided by SampleSumo company.

\(^1\)http://www.music-ir.org/mirex
2.3.2 Probabilistic Approaches

Other approaches use Hidden Markov Models (HMM) to detect note-events in singing voice [Viitaniemi et al., 2003] [Ryynänen, 2006] [Krige et al., 2008] [Mauch et al., 2015a]. These systems are directly inspired by the classical HMM-based approach for speech recognition [Young et al., 2009], where phonemes (or words) are modeled with separately trained left-to-right HMMs (acoustic model), which are connected in a larger probabilistic system determining the transitions between acoustic units (linguistic model).

<table>
<thead>
<tr>
<th>Attack note 50</th>
<th>Sustain note 50</th>
<th>Release note 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack note 48</td>
<td>Sustain note 48</td>
<td>Release note 48</td>
</tr>
<tr>
<td>Attack note 40</td>
<td>Sustain note 48</td>
<td>Release note 40</td>
</tr>
</tbody>
</table>

Figure 2.5: Trellis diagram of HMM-based approach proposed by [Ryynänen, 2006]. The acoustic model represents the evolution of features within the same note, and the musicological model represents the transitions probabilities between notes. In red, an example of Viterbi-decoded path is shown (corresponding to two consecutive notes).
In singing, the acoustic units are associated to musical notes, and the observable features are pitch, energy, voicing, accent, etc. In the case of [Viitaniemi et al., 2003], one state per note is used, whereas [Ryyränen, 2006] [Krige et al., 2008] and [Mauch et al., 2015a] consider several consecutive states per note (typically corresponding to attack, sustain, release or silence). The final sequence of notes corresponds to the path of states with maximum likelihood, which can be decoded using Viterbi algorithm (see [Rabiner, 1989] for a tutorial about it). This note sequence decoding process typically relies on a musicological model using key information [Viitaniemi et al., 2003] [Ryyränen, 2006], or other kind of heuristics to favor reasonable intervals while singing [Mauch et al., 2015a]. In Figure 2.5, an example trellis diagram of this HMM-based approach is illustrated. In Figure 2.6, the distribution of some features are shown for each state of such HMM-based scheme. These features have been implemented as described in [Ryyränen and Klapuri, 2004], and they have distributions for different stages of the note: silence, attack, sustain and release.

A different probabilistic approach for singing transcription is proposed by [Gómez et al., 2013]. It does not relies on hidden Markov models; instead, it performs a short note transcription by maximizing a likelihood function using low-level features (e.g. pitch, voicing or stability), and then it consolidates them into longer notes using an
iterative process.

2.4 Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm to find an optimal alignment between two similar temporal sequences that may vary in time or speed. Some early works about DTW are [Vintsyuk, 1968] [Sakoe and Chiba, 1971] [Hiroaki, 1978], where dynamic programming algorithms are proposed for pattern matching in speech recognition. For a comprehensive tutorial about DTW in the context of music information retrieval, see [Müller, 2007]. On the other hand, a ready-to-use implementation of DTW in Matlab can be found in [Ellis, 2003].

![Figure 2.7: Example of use of DTW for pitch contour alignment.](image)

As described in [Müller, 2007], the objective of DTW is to compare two (time-dependent) sequences $X := (x_1, x_2, \ldots, x_N)$ of length $N \in \mathbb{N}$ and $Y := (y_1, y_2, \ldots, y_M)$ of length $M \in \mathbb{M}$. These sequence may be discrete signals (time-series) or, more generally, feature sequences sampled at equidistant points in time. In the following, we fix a feature space denoted by \mathcal{F}. Then, $x_n, y_m \in \mathcal{F}$ for $n \in [1 : N]$ and $m \in [1 : M]$. To compare two different features $x, y \in \mathcal{F}$, one needs a local cost measure, sometimes also referred to as local distance measure, which is defined to be a function:

$$c : \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$$ \hspace{1cm} (2.3)

Typically, $c(x, y)$ is small (low cost) if x and y are similar to each other, and otherwise $c(x, y)$ is large (high cost). Evaluating the local cost measure for each pair of elements of the sequences X and Y, one obtains the cost matrix $C \in \mathbb{R}^{N \times M}$ defined
by \(C(n, m) := c(x_n, y_m) \). Then the goal is to find an alignment between \(X \) and \(Y \) having minimal overall cost.

Definition 1. An \((N, M)\)-warping path (or simply referred to as warping path if \(N \) and \(M \) are clear from the context) is a sequence \(p = (p_1, \ldots, p_L) \) with \(p_l = (n_l, m_l) \in [1 : N] \times [1 : M] \) for \(l \in [1 : L] \) satisfying the following three conditions.

(i) **Boundary condition:** \(p_1 = (1, 1) \) and \(p_L = (N, M) \).

(ii) **Monotonicity condition:** \(n_1 \leq n_2 \leq \cdots \leq n_L \) and \(m_1 \leq m_2 \leq \cdots \leq m_L \).

(iii) **Step size condition:** \(p_{l+1} - p_l \in \{(1, 0), (0, 1), (1, 1)\} \) for \(l \in [1 : L - 1] \).

The total cost \(c_p(X, Y) \) of a warping path \(p \) between \(X \) and \(Y \) with respect to the local cost measure \(c \) is defined as:

\[
c_p(X, Y) := \sum_{l=1}^{L} c(x_{n_l}, y_{m_l})
\]

(2.4)

Furthermore, an optimal warping path between \(X \) and \(Y \) is a warping path \(p^* \) having minimal total cost among all possible warping paths. The **DTW distance** \(\text{DTW}(X, Y) \) between \(X \) and \(Y \) is then defined as the total cost of \(p^* \). The computational cost of classical DTW is \(O(M \times N) \), although extensive research have been performed on how to accelerate DTW computations (e.g., [Salvador and Chan, 2007] [Al-Naymat et al., 2009]).

Regarding the applications of DTW, during the 70’s it was a trendy approach to perform speech recognition [Hiroaki, 1978], but it was displaced during the 80’s due to the appearance of HMM based methods [Rabiner, 1989]. Nowadays, however, DTW is being proposed as a promising approach for many applications ([Anguera, 2012] claims the existence of a DTW’s new youth). In the field of speech, it is used for query-by-example spoken term detection [Anguera and Ferrarons, 2013], unsupervised training of acoustic models [Jansen and Church, 2011], zero resources spoken term discovery [Jansen et al., 2010], etc. In addition to speech, DTW has found numerous applications in a wide range of fields including data mining, information retrieval, bioinformatics, chemical engineering, signal processing, robotics, or computer graphics; see, e. g., [Keogh and Ratanamahatana, 2004] and the references therein. In the field of music information retrieval, DTW plays an important role for synchronizing music data streams [Dixon and Widmer, 2005] [Hu et al., 2003] [Müller et al., 2004] [Müller et al., 2006] [Soulez et al., 2008]. In Figure 2.7, we show an example of use of DTW for pitch contour alignments, as used in our approach for automatic singing assessment (Section 3.3). DTW has also been used in the field of computer animation to analyze and align motion data [Bruderlin and Williams, 1995] [Giese and Poggio, 2000] [Hsu et al., 2005] [Kovar and Gleicher, 2003] [Müller and Röder, 2006].
2.5 Automatic Singing Assessment

Automatic singing assessment refers to the task of automatically analyzing a music performance in order to score it, and to provide meaningful feedback about it. In the literature, this task has been also referred as singing skill evaluation [Nakano et al., 2009], solfège evaluation [Schramm et al., 2015] or performance scoring [Mayor et al., 2006]. In this section, we present some previous approaches for automatic performance assessment (Section 2.5.1), together with a musicological analysis about the topic (Section 2.5.2).

2.5.1 Existing Systems for Automatic Assessment

Automatic singing assessment has been mainly applied to two fields: entertainment (Section 2.5.1.1) and education (Section 2.5.1.2). In most cases these two aspects are tied, but in the case of education there is a clearer aim at improving the musical skills of the user. As an exception, [Nichols et al., 2012] does not use automatic singing assessment for entertainment nor education, but for a music information retrieval system able to automatically discover talented singers in Youtube videos.

2.5.1.1 Entertainment

In last years, many musical games based on automatic performance rating have become successful (e.g. Guitar Hero5, Rockband6, etc.). In the case of singing voice, the main approach is a karaoke-style game with automatic intonation rating. Some examples of these games are Singstar7 and Ultrastar8. These systems usually perform a relatively simple analysis of singing voice, and usually assess just pitch accuracy by comparing user’s pitch contour with a reference. Other approaches are song-independent (e.g. Skore9 or [Nakano et al., 2009]), and they analyse some features as pitch stability, vibrato, etc. in order to grade the user performance.

In general, these systems do not use formal music notation, and they are aimed at engaging the user without focusing on the proper development of music skills.

2.5.1.2 Education

Existing systems with educational purposes typically lead to complex and ambitious approaches. These systems should be able to provide a meaningful feedback in

5www.guitarhero.com
6www.rockband4.com
7www.singstar.com
8http://ultrastardx.sourceforge.net
9http://www.bmat.com/products/skore-en/
Figure 2.8: Screenshot of Songs2See web application [Dittmar et al., 2010].

order not only to engage the user, but also to incrementally improve his or her
music skills. A representative example of educational tool for singing learning is
Songs2See [Dittmar et al., 2010] (a screenshot is shown in Figure 2.8), which uses
music notation and note-based evaluation.

Other kind of systems rather focus on providing real-time feedback to the user, in-
stead of scoring the whole user performance. Examples are [Rossiter and Howard,
1996], [Howard et al., 2004] or Sing&See10. The main aim of these approaches is
helping the user to better understand their mistakes through a real-time visualiza-
tion of some parameters of their voice (e.g. pitch [Howard et al., 2004], vibrato
[Nakano et al., 2007], etc).

2.5.2 Musicological Perspective

The assessment of a musical performance is commonly affected by many subjective
factors, even in the case of expert musicians’ judgments. Certain aspects such as
the context, the evaluator’s mood, or even the physical appearance of the performer
can strongly change the perceived quality of the same performance [Griffiths and
Davidson, 2006]. As a consequence, automatic assessment of user performance is

10www.singandsee.com
a really challenging problem. However, under certain conditions, some objective aspects can be analyzed in order to model the expert’s judgment.

Previous researchers have studied the reliability of judgments in music performance evaluation [Wapnick and Ekholm, 1997] [Ekholm et al., 1998] [Bergee, 2003] [Nakano et al., 2006], with some relevant results for the purposes of this thesis. In such studies, different musicians were asked to grade a certain number of performers according to different aspects, with the aim to study how similar the different judgments were. In [Wapnick and Ekholm, 1997], the case of solo voice evaluation has been addressed through a set of experiments, with a focus on technique aspects: appropriate vibrato, color/warmth, diction, dynamic range, efficient breath management, evenness of registration, flexibility, freedom in vocal range, intensity, intonation accuracy, legato line, resonance/ring and overall score. Among these aspects, the ones presenting a higher reliability were intonation accuracy, appropriate vibrato, resonance/ring and the overall score. In [Bergee, 2003], the rhythm/tempo aspects are also considered, and the conclusions are quite similar. Since intonation, vibrato, timbre (resonances) and overall score seems to be more objective aspects than the others (according to the reliability analysis), these aspects are good candidate features to build automatic assessment systems.

2.6 Timbre Processing

In this section, we present a review of techniques and approaches for voice timbre processing. In Section 2.6.1 the source-filter model is presented. Then, the most common approaches for spectral envelope extraction are described in Section 2.6.2. In Section 2.6.3 we review some concepts related to formant analysis. Finally, in Section 2.6.4 we describe a set of features for timbre processing that have been successfully applied in state-of-the-art speech and singing applications.

2.6.1 Source-Filter Model

As described in Section 2.1.1, human voice can be modelled as an excitation (produced by the vocal chords), shaped by some resonators (vocal tract). This excitation-resonance model is also known as source-filter model [Zölzer, 2011]. Although this generic concept is present in a varied set of synthesis models (e.g. Klatt synthesizer [Klatt, 1980]), the term source-filter processing in the literature generally refers to a specific scheme for sound processing based on a time-frequency representation, where the spectral envelope and the source signal are separately processed frame by frame. In Figure 2.9, we show the block diagram of the source-filter processing scheme. In such scheme, the Spectral Envelope Estimation block is the core of the system, and much effort in the literature is devoted to achieve good spectral enve-
lopes estimators (see Section 2.6.2). Note that, despite source-filter model fits well the acoustic mechanism of voice production, the inverse-filtered excitation signal $e_1(n)$ does not totally correspond to the glottal source, since the glottal source is a low-pass signal, whereas $e_1(n)$ is perfectly white.

![Figure 2.9: Schema of source-filter processing: $x(n) =$ input speech / singing signal, $H_1(z) =$ original spectral envelope filter, $e_1(n) =$source signal (white in frequency), $H_2(z) =$transformed spectral envelope filter, $y(n) =$output transformed speech / singing signal](image)

Source-filter processing is useful to perform any kind of voice transformation in which the spectral envelope must be separately processed. For instance, proper pitch shifting in singing voice must avoid formants to be uncontrollably shifted along pitch. In this case, the use of source-filter processing has been successful to perform pitch shifting with formants preservation [Röbel and Rodet, 2005]. Additionally, source-filter processing also allows to perform spectral morphings, or certain effects based on spectral envelope processing (such as formants shifting without modifying the pitch).

2.6.2 Spectral Envelope Extraction

The term spectral envelope denotes a smooth function that passes through the prominent spectral peaks [Röbel and Rodet, 2005]. However, there exists no technical or mathematical definition for it, and what is desired depends to some extend on the signal. In the case of speech and singing, the desired spectral envelope is the actual acoustic response of the vocal tract producing the target sound. Two classic approaches for this problem are linear predictive coding (LPC) (Section 2.6.2.1), and cepstrum-based methods (Section 2.6.2.2). A relevant variant of cepstrum-based methods is true envelope algorithm [Imai and Abe, 1979], which estimates the spectral envelope using an iterative approach (Section 2.6.2.3). For a comprehensive review on spectral envelope estimation see [Zölzer, 2011].
2.6.2.1 LPC-based Methods

Linear Predictive Coding (LPC) is used to efficiently find the coefficients of an all-pole filter that fits the magnitude spectrum of a stationary input signal \(x(n) \) [Makhoul, 1975]. This model works well for voice, since the all-pole filter is a good approximation of the acoustic response of vocal resonances.

In LPC the current input signal \(x(n) \) is approximated by a linear combination of past samples of it. The prediction of \(x(n) \) is computed using an FIR filter by:

\[
\hat{x}(n) = \sum_{k=1}^{p} a_k x(n - k)
\]

(2.5)

where:
\(p \) = Prediction order
\(a_k \) = Prediction coefficients

The difference between the original input signal \(x(n) \) and its prediction \(\hat{x}(n) \) is called residual or prediction error, and it is evaluated by:

\[
e(n) = x(n) - \hat{x}(n) = x(n) - \sum_{k=1}^{p} a_k x(n - k)
\]

(2.6)

If LPC estimation is done with a high enough prediction order, \(e(n) \) tends to be flat in frequency. The \(z \)-transform of \(e(n) \), \(E(z) \), can be then related to the concept of spectral envelope:

\[
\hat{X}(z) = X(z) \sum_{k=1}^{p} a_k z^{-k} = X(z)P(z)
\]

(2.7)

\[
E(z) = X(z)[1 - P(z)]
\]

(2.8)

\[
E(z) = X(z)A(z)
\]

(2.9)

where:
\(P(z) \) = Prediction filter
\(A(z) \) = Prediction filter error

Since \(E(z) \) tends to be flat in frequency, \(A(z) \) models the inverse of the spectral envelop. The inverse filter of \(A(z) \) is an IIR all-pole filter \(H(z) \), which is called synthesis filter or LPC filter, and represents the spectral envelope of the signal:

\[
H(z) = \frac{1}{A(z)} = \frac{1}{1 - P(z)}
\]

(2.10)

\[
H(z) = \frac{1}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_N z^{-N}}
\]

(2.11)
Since LPC coefficients a_k are hard to interpret and manipulate, $H(z)$ is commonly expressed using its poles:

$$H(z) = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-2}) \cdots (1 - p_N z^{-N})}$$ \hspace{1cm} (2.12)

The literature reports some voice processing methods based on manipulating these poles [Slifka and Anderson, 1995] [Morris and Clements, 2002]. In Figure 2.10 we show the estimated $H(z)$ for a short window of a speech signal with different LPC orders.

![pole-zero diagram LPC modelling](image)

Figure 2.10: LPC modeling for a short window of speech using different orders. In left side, we show the poles-zeros diagram, and in right side we present the estimated spectral envelope. Note the importance of choosing a good LPC order to avoid undesirable under- or over-fitting to the magnitude spectrum.

Regarding the computation of LPC filter coefficients, there exists three main methods: autocorrelation, covariance (both described in [Markel and Gray, 1976]) and Burg [Gray and Wong, 1980], among which the autocorrelation method is the most common one. In the autocorrelation method, the prediction error energy

$$E_p = E\{e^2(n)\}$$ \hspace{1cm} (2.13)
of a windowed excerpt of the signal is minimized by setting the partial derivatives to zero:

$$\frac{\partial E_p}{\partial a_i} = 0$$ \hspace{1cm} (2.14)

This system of equations can be expressed in a compact way using the autocorrelation operator $r_{xx}(i)$, finally leading to the so-called normal equations:

$$\sum_{k=1}^{p} a_k r_{xx}(i - k) = r_{xx}(i)$$ \hspace{1cm} (2.15)

which can be efficiently solved using Levinson-Durbin recursion [Levinson, 1947]. The autocorrelation method is implemented in the `lpc` function of the Signal Processing Toolbox of MATLAB11.

LPC has been used to perform formant analysis [Snell and Milinazzo, 1993], music/speech/noise segmentation [Muñoz-Expósito et al., 2005], speaker modification using poles warping [Slifka and Anderson, 1995], etc. Other systems based on LPC make use of a different representation of filter coefficients called Line Spectral Frequencies (LSF) or Line Spectral Pairs (LSP) [McLoughlin, 2008], which is more appropriate to perform spectral interpolations. However, LPC-based approaches have a sort of drawbacks that motivate research on alternatives. Specifically, the optimal order p of the LPC filter is hard to obtain, and it directly affects the usefulness of the estimated spectral envelope. If the order p is too low, the resulting envelope may fit poorly the spectrum of the signal. In contrast, if p is too high, there may be a problem of overfitting. Moreover, even if the optimal order were known, it contains systematic errors due to the fact that the harmonic spectrum sub-samples the spectral envelope. These problems are especially manifested in voiced and high pitched signals.

2.6.2.2 Cepstrum-based Methods

The real cepstrum (commonly called simply cepstrum) is the result of taking the Inverse Discrete Fourier Transform (IDFT) of the log magnitude of the DFT of a signal:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} kn}$$ \hspace{1cm} (2.16)

$$c[n] = \sum_{n=0}^{N-1} \log(|X[k]|) e^{j \frac{2 \pi}{N} kn}$$ \hspace{1cm} (2.17)

11http://es.mathworks.com/help/signal/ref/lpc.html
In this thesis, we apply the term *cepstrum* to refer to the *real cepstrum*, and it must not be confused with the *complex cepstrum* or the *power cepstrum*, that are different transformations [Childers et al., 1977].

Roughly, the cepstrum can be seen as the “spectrum of the spectrum”, so low \(n\) values in \(c[n]\) are related to smooth variations in the log magnitude of the spectrum, and high \(n\) values to rapid variations. These \(n\) values are commonly called *quefrencies*, in order to differentiate them from standard frequency concept. If we keep only the cepstral coefficients with low quefrencies, and we apply an extra DFT transformation to \(c[n]\), we obtain a smoothed representation of the original log magnitude, i.e. the spectral envelope. In Figure 2.11 we show the computational steps to estimate the spectral envelope of a signal using the cepstrum.

\[
A_i[k] = \max(\log(|X[k]|), E_{i-1}[k])
\]

and apply the cepstral smoothing to \(A_i[k]\) to obtain \(E_i[k]\). The procedure is initialized setting \(A_0[k] = \log(|X[k]|)\), and starting the cepstral smoothing to obtain

![Figure 2.11: Block diagram of spectral envelope estimation using cepstral smoothing](image)
CHAPTER 2. BACKGROUND AND RELATED WORK

$E_0[k]$. The estimated envelope will steadily grow. The algorithm stops if for all k the relation $A_i[k] < E_i[k] + \theta$. In Figure 2.12 we show the obtained spectral envelope for several iterations of this algorithm for a voiced speech frame.

![Figure 2.12: Spectral envelope obtained with the True Envelope algorithm for several iterations. Note that, at iteration 1, the spectral envelope is a simple cepstral smoothing of the log($|X[k]|$).](image)

For more information about the true envelope estimator, see [Zölzer, 2011] and [Villavicencio et al., 2006].

2.6.3 Formant Analysis

The Acoustical Society of America defines a formant as: “a range of frequencies [of a complex sound] in which there is an absolute or relative maximum in the sound spectrum” [ANSI, 2004]. In speech science and phonetics, however, a formant is sometimes used to mean an acoustic resonance of the human vocal tract [Titze, 2000]. Thus, in the literature, formant can mean either a resonance or the spectral maximum that the resonance produces. In this thesis, we use the term formant to mean an acoustic resonance (as in [Titze, 2000]).
2.6. TIMBRE PROCESSING

The frequencies and bandwidths of formants are primarily dependent upon the shape of the vocal tract, which is determined by the position of the articulators (tongue, lips, jaw, etc.). In continuous speech or singing, the formant frequencies vary as the articulators change position. Typically, no more than five formants are considered in speech or singing analysis, whose frequencies are labeled as F1-F5 (see Figure 2.13). The first two formants F1 and F2 are frequently used as a compact representation of the vowel space (see Figure 2.14), whereas F3, F4 and F5 are rather related to the voice timbre. In the specific case of opera singing, F3 and F4 (and sometimes also F5) are commonly grouped to create the “singer formant” [Sundberg, 2001], which produces a significant boost around 3kHz to be heard above the orchestra.
CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.14: Distribution of first and second formants frequencies (F1 and F2) for 46 different phones spoken by several male speakers, taken five different phonemes categories: “ae” (e.g. bat), “ew” (e.g. bet), “iy” (e.g. beet), “ow” (e.g. boat), “uw” (e.g. boot). See TIMIT dataset documentation for more details [Garofolo, 1993]. The plotted formants frequencies are manual annotations obtained from VTR dataset [Deng et al., 2006].

The literature reports many different approaches for automatic formant analysis. The classical method is based on all-pole modeling using LPC analysis, and it consists in associating the poles positions with the actual formants frequencies [Snell and Milinazzo, 1993]. This approach is the one suggested by Matlab documentation for formants extraction\footnote{\url{www.mathworks.com/help/signal/ref/lpc.html}}. Some variants of this approach propose improvements in LPC modeling [Alku et al., 2013], or the use of phase in order to estimate formants [Bozkurt et al., 2004]. Other approaches also include a tracking stage, frequently based on dynamic programming and/or probabilistic models [Xia and Espy-Wilson, 2000], in order to obtain more accurate formants trajectories. Finally, the literature also report methods based on less common strategies: multiband energy demodulation [Potamianos and Maragos, 1996], auditory preprocessing and bayesian estimation [Gläser et al., 2010], particle filters [Zheng and Hasegawa-Johnson, 2004], etc.

Automatic formant analysis has been widely applied in phonetic studies [Carlsson and Sundberg, 1992] [Busby and Plant, 1995], speech and singing synthesis [Borges et al., 2008] [Bonada and Serra, 2007], as well as in some approaches for classic speech-related problems such as automatic speech recognition [Holmes et al., 1997] or speaker verification [Becker et al., 2008]. However, state-of-the-art approaches for speech recognition are not based on formant-based features, but in MFCC [Baker
et al., 2009], PLP [Hermansky, 1990] or in deep neural networks [Hinton et al., 2012]. The reason is that automatic formant tracking techniques can introduce important errors when two formants are merged (e.g. F1 and F2 in “uw” vowels, or F2 and F3 in “iy” vowels), or when a formant does not produce a spectral prominence in the spectrum [Deng et al., 2006]. As a conclusion, formant-based features are a compact representation of speech and singing signals, and they are interestingly related to physical aspects of the vocal tract, but in practice their estimation is not reliable enough for many real-world problems related to speech and singing.

2.6.4 Features for Timbre Processing

In this section we present more timbre-related features commonly used for speech and singing analysis. First, we describe the well-loved MFCC (Section 2.6.4.1), which have been successful in many different problems related to speech and singing. In Section 2.6.4.1 we describe PLP and RASTA-PLP, which are speaker-invariant features. Then, in Section 2.6.4.3 we present two relevant time-domain features for speech and singing processing: zero crossing rate and 4Hz modulation. In Section 2.6.4.4 we present some frequency domain features which are commonly used in many audio analysis problems. Finally, we draft some ideas about unsupervised feature learning in Section 2.6.4.5.

2.6.4.1 Mel-Frequency Cepstral Coefficients (MFCC)

Perhaps, the most versatile feature for timbre analysis are Mel-Frequency Cepstral Coefficients (MFCC) [Logan, 2000]. MFCCs are used in state-of-the-art solutions for classic problems such as speech recognition [Baker et al., 2009] or speaker identification [Hasan et al., 2004]. They are computed in 5 steps (see [Ellis, 2005] for a Matlab implementation):

1. Take the Fourier Transform of a frame.

2. Map the powers of the spectrum obtained above onto the Mel scale, using triangular overlapping windows.

3. Take the logs of the powers at each of the Mel frequencies.

4. Take the discrete cosine transform of the list of Mel log powers, as if it were a signal.

5. The MFCCs are the amplitudes of the resulting spectrum. In many speech-related applications, only the coefficients 2 to 13 are kept.
MFCCs are a compact representation of a sound frame (using typically 12 coefficients named as $C1$-$C12$), and they convey highly discriminatory information for phonetic and timbre analysis. In addition, MFCC coefficients are fairly uncorrelated, and therefore they can be used in simple statistical models. In many applications, the temporal difference of MFCCs (known as ΔMFCC), and the temporal difference of ΔMFCC (known as $\Delta\Delta$MFCC) are also considered [Young et al., 2009].

2.6.4.2 PLP and RASTA-PLP

Perceptual Linear Prediction (PLP) was originally proposed by Hynek Hermansky in 1990 as a way of warping spectra to minimize the differences between speakers while preserving the important speech information [Hermansky, 1990]. This technique uses three concepts from the psychoacoustics of hearing to derive an estimate of the auditory spectrum: (1) the critical-band spectral resolution, (2) the equal-loudness curve, and (3) the intensity-loudness power law. The auditory spectrum is then approximated by an autoregressive all-pole model.

RASTA is a separate technique that applies a band-pass filter to the energy in each frequency subband in order to smooth over short-term noise variations and to remove any constant offset resulting from static spectral coloration in the speech channel e.g. from a telephone line [Hermansky and Morgan, 1994]. A Matlab implementation of this technique can be found in [Ellis, 2005].

2.6.4.3 Time-domain Features

In this section we describe two simple, but highly relevant, time-domain features for speech and singing analysis: zero crossing rate and 4Hz modulation.

- **Zero Crossing Rate:** As defined in [Kedem, 1986], the Zero Crossing Rate (ZCR) is the rate of sign-changes along the signal, i.e., the rate at which the signal changes from positive to negative or back. This measure highly correlates with the spectral center of mass or Spectral Centroid of the input signal (see Section 4.3.3).

- **4Hz Modulation:** The 4Hz Modulation Energy Peak is a characteristic feature of speech signals due to a near 4Hz syllabic rate of English language. It is computed by decomposing the original waveform into 20 [Karneback, 2001] or 40 [Scheirer, 1998] mel-frequency bands, depending on the accuracy. The energy of each band is extracted and a second band pass filter centered at 4 Hz is applied to each one of the bands.
2.6.4.4 Frequency-domain Features

Along with MFCCs (already described in Section 2.6.4.1), many frequency-domain features can be used to perform timbre analysis of audio signals. In this section, we provide a brief description of each one (for more information see [Guan, 2009]).

- **Spectral centroid:** The Spectral Centroid is defined as the balancing point of the spectral power distribution [Scheirer, 1998]. It is related to the perceived brightness of a sound.

- **Spectral flatness:** The Spectral Flatness is defined as the ratio of the geometric mean to the arithmetic mean of the power spectral density components in each critical band for the input signal. In general, a low spectral flatness reveals a tone-like signal, whereas a high spectral flatness indicates a signal that is completely noise-like.

- **Spectral flux:** The Spectral Flux is also known as Delta Spectrum Magnitude, and it measures the local temporal variations of the sound. See [Tzanetakis and Cook, 2002] for a formal definition.

- **Spectral roll-off:** Spectral rolloff point is defined as the Nth percentile of the power spectral distribution, where N is usually 85% or 95%. The rolloff point indicates the frequencies below which the N% of the magnitude distribution is concentrated. This measure is useful in distinguishing voiced speech from unvoiced: unvoiced speech has a high proportion of energy contained in the high-frequency range of the spectrum, where most of the energy for voiced speech and music is contained in lower bands.

2.6.4.5 Unsupervised Feature Learning

A detailed review about the use of deep learning for audio processing is out of the scope of this thesis. However, due to its increasing success in audio processing [Hinton et al., 2012], in this section we draft some ideas about deep learning applied to audio processing.

Since recently, the state-of-the-art in some classic problems related to speech or music is based on *deep neural networks* (e.g. automatic speech recognition [Hinton et al., 2012] or onset detection [Böck et al., 2012]). A deep neural network (DNN) is an artificial neural network with multiple hidden layers of units between the input and output layers.

The use of neural networks for sound-related problems was popular during the 80s, but they were abandoned during the 90s because other machine learning algorithms worked better (such as Support Vector Machines [Burges, 1998]). Over the last
few years, advances in both machine learning algorithms and computer hardware have led to more efficient methods for training DNNs, and this fact has produced a promising revival of neural networks in sound-related problems.

Generally, in the case of deep learning applied to audio processing, the input of the DNN is a matrix comprised by the values of a set of filterbanks along several frames [Dahl et al., 2010] [Schlüter and Osendorfer, 2011] [Hinton et al., 2012] [Böck et al., 2012]. The output of these DNN is usually a reduced set of values, which represents the input information in a meaningful way for the task it has been trained for. These values are then used as features for more complex tasks, such as: phone recognition [Dahl et al., 2010], music/speech discrimination [Schlüter and Sonnleitner, 2012], music similarity estimation [Schlüter and Osendorfer, 2011], etc.

A relevant, comprehensive and updated overview on deep learning can be found in [LeCun et al., 2015].

2.7 Spectral Modeling Synthesis

Spectral Modeling Synthesis (SMS) technique was firstly proposed by [Serra, 1989], although it has evolved during the last decades with some variants of it [Serra and Smith, 2014]. In its original idea, SMS technique models time-varying spectra as (1) a collection of sinusoids controlled through time by piecewise linear amplitude and frequency envelopes (deterministic part), and (2) a time-varying filtered noise component (stochastic part). The analysis procedure first extracts the sinusoidal trajectories by tracking peaks in a sequence of short-time Fourier transforms. These peaks are then removed by spectral subtraction. The remaining “noise floor” is then modeled as white noise through a time-varying filter. A piecewise linear approximation to the upper spectral envelope of the noise is computed for each successive spectrum, and the stochastic part is synthesized by means of the overlap-add technique. This signal model is also called deterministic plus stochastic.

Recent tutorials about SMS [Serra and Smith, 2014] propose some variants of this model, each one of which is suitable for a different purpose. In this section, we focus on four of them: sinusoidal plus residual model (SpR) in Section 2.7.1, harmonic plus residual model (HpR) in Section 2.7.2, sinusoidal plus stochastic model (SpS) in Section 2.7.3 and harmonic plus stochastic model (HpS) in Section 2.7.4. In Section 2.7.5, some details about the practical implementation of SMS models is presented.
2.7. SPECTRAL MODELING SYNTHESIS

2.7.1 Sinusoidal Plus Residual Model (SpR)

This model assumes the signal can be modeled as a sum of sinusoids plus a residual component:

\[y[n] = \sum_{r=1}^{R} A_r[n] \cos(2\pi f_r[n]n + \phi_r) + x_{\text{residual}}[n] = y_{\text{sinusoidal}}[n] + x_{\text{residual}}[n] \quad (2.19) \]

where:
- \(R \) = number of sinusoidal components
- \(A_r[n] \) = instantaneous amplitude of sinusoid \(r \)
- \(f_r[n] \) = instantaneous frequency of sinusoid \(r \)
- \(\phi_r \) = initial phase of sinusoid \(r \)

However, the standard implementation of this model works in frequency domain\(^{13}\), so a spectral expression might be closer to the actual workflow:

\[Y_l[k] = \sum_{r=1}^{R_l} A_{r,l} \hat{W}[k-\hat{f}(r,l)] e^{j\phi(r,l)} + X_{\text{residual}}[k] = Y_{\text{sinusoidal}}[k] + X_{\text{residual}}[k] \quad (2.20) \]

where:
- \(\hat{W}[k] \) = spectrum of analysis window
- \(l \) = frame number
- \(R_l \) = number of sinusoidal components in frame \(l \)
- \(A_{r,l} \) = amplitude of sinusoid \(r \) in frame \(l \)
- \(\hat{f}(r,l) \) = normalized frequency of sinusoid \(r \) in frame \(l \)
- \(\phi(r,l) \) = phase of sinusoid \(r \) in frame \(l \)
- \(Y_{\text{sinusoidal}}[k] \) = sinusoidal component spectrum in frame \(l \)
- \(X_{\text{residual}}[k] \) = residual component spectrum in frame \(l \)

The parameters of this model are obtained by a frame-wise peak-picking process on the magnitude spectrum. Typically, all local maxima above a threshold in the magnitude spectrum are considered peaks. In Figure 2.15, the use of SpR model with a sax sound is shown.

This model is useful to perform transformations affecting just the sinusoidal component of the sound (e.g., pitch shifting). It has been used in our approach for automatic dissonance reduction in polyphonic music (see Section 3.5).

\(^{13}\)https://github.com/MTG/sms-tools
2.7.2 Harmonic Plus Residual Model (HpR)

In this model, the fundamental frequency f_0 of the signal is estimated in order to select only the harmonic peaks of the sound. The harmonics are selected by choosing the closest spectral peaks to positions $[f_0, 2f_0, 3f_0, \ldots]$ and discarding the rest of them. The residual component contains the non-harmonic component.

This model is suitable for processing monophonic harmonic sounds (e.g. singing voice) when the residual component is not affected. For instance, this model allows to manipulate the f_0 contour of the input signal. However, it does not allow to modify the duration of the signal, since the residual component, which should be modified as well, cannot be altered. In Figure 2.16, a sax sound has been modeled with a HpR model.

In the block diagram of Figure 2.18, the blocks $F0$ detection and $Harmonic$ detection are used to perform the harmonic modeling of the input signal.
2.7.3 Sinusoidal Plus Stochastic Model (SpS)

This model is similar to the sinusoidal plus residual, but in this case a stochastic modeling of the residual component is performed. The stochastic modeling consists of white noise \(u[n] \), filtered by the same spectral envelope as the input signal (modeled by an impulse response \(h[n] \)).

\[
y[n] = \sum_{r=1}^{R} A_r[n] \cos(2\pi f_r[n] + \phi_r) + y_{\text{stochastic}}[n] = y_{\text{sinusoidal}}[n] + y_{\text{stochastic}}[n] \quad (2.21)
\]

where:
- \(R \) = number of sinusoidal components
- \(A_r[n] \) = instantaneous amplitude of sinusoid \(r \)
- \(f_r[n] \) = instantaneous frequency of sinusoid \(r \)
- \(\phi_r \) = initial phase of sinusoid \(r \)

The stochastic component can be defined as:

\[
y_{\text{stochastic}}[n] = \sum_{k=0}^{N-1} u[k] h[n - k] \quad (2.22)
\]
where: \(u[n] \) = white noise
\(h[n] \) = impulse response of residual approximation
\(y_{stochastic}[n] \) = stochastic component

Again, the same model can be expressed in frequency domain:

\[
Y_l[k] = \sum_{r=1}^{R_l} A_{(r,l)} W[k - \hat{f}_{(r,l)}] e^{j\phi_{(r,l)}} + Y_{stochasticl}[k] = Y_{sinusoidal}[k] + Y_{stochasticl}[k]
\]

(2.23)

where:
- \(l \) = frame number
- \(W[k] \) = spectrum of analysis window
- \(R_l \) = number of sinusoidal components in frame \(l \)
- \(A_{(r,l)} \) = amplitude of sinusoid \(r \) in frame \(l \)
- \(\hat{f}_{(r,l)} \) = normalized frequency of sinusoid \(r \) in frame \(l \)
- \(\phi_{(r,l)} \) = phase sinusoid \(r \) in frame \(l \)

In frequency domain, the stochastic component is defined as:

\[
Y_{stochasticl}[k] = |\tilde{X}_{residuall}[k]| e^{j\angle U[k]}
\]

(2.24)

where:
- \(|\tilde{X}_{residuall}[k]| \) = spectral envelope of residual in frame \(l \)
- \(\angle U[k] \) = spectral phases of noise (random)
- \(l \) = frame number

This model is useful to perform transformations affecting both the sinusoidal and the stochastic components of the sound. For instance, time stretching requires modifying the duration of both components, and this can be performed using such stochastic modeling. Our system for realistic intensity variation of singing voice (Section 3.4) is based on the SpS model, because the sinusoidal and the stochastic components are separately modified.

The disadvantage of the SpS model with respect to the SpR model is that it is only suitable for sounds with a pure stochastic residual component (e.g. breathy sounds). If applied to other kind of signals, some artifacts can be perceived due to the stochastic modeling of a non-stochastic signal. In Figure 2.17, we show the stochastic modeling of a ocean sound, which is suitable for this kind of modeling due to its clearly stochastic nature.
2.7. Spectral Modeling Synthesis

2.7.4 Harmonic Plus Stochastic Model (HpS)

This model is a variant of SpS model where, again, the fundamental frequency of
the signal is estimated and only the harmonic peaks of the sound are considered.
This model is only suitable for monophonic harmonic sounds with a pure stochastic
residual component (e.g. a flute), but in exchange, it provides a rich source of
transformations.

By using this model, many different transformations can be applied: to manipulate
breathiness, to remove/introduce vibrato, to apply pitch-shifting or time-stretching,
etc.

2.7.5 Implementation

The practical implementation works frame by frame, and takes several steps.

1. The frame \(x_t[n] \) is windowed by a window function \(w_t[n] \) (e.g. hann) in time
domain to produce \(xw_t[n] \).

2. The FFT of \(xw_t[n] \) is computed to produce the spectrum \(XW_t[k] \).
3. A peak picking process is applied to the frame spectrum. Any local maximum with magnitude value above a threshold t is considered a peak, and each peak is described with amplitude A, frequency f and phase p.

4. In case of harmonic model: the f_0 of the frame is computed and the harmonics of the signal are chosen among the detected peaks. The rest of peaks are discarded from the harmonic component.

5. Any transformation of the peaks can be done at this point (e.g. pitch shifting or timbre processing).

6. The sinusoidal or harmonic spectrum of the signal is generated from the list of peaks to produce $Y_{\text{sinusoidal}}[n]$ or $Y_{\text{harmonic}}[n]$.

7. The sinusoidal/harmonic spectrum is subtracted to the spectrum of the original signal in order to produce the residual component $X_{\text{residual}}[n]$.

8. In the case of stochastic model: The spectral envelope of the residual component is approximated. Any transformation to such spectral envelope can be performed at this point. A random phase spectrum is applied to it to produce the stochastic component $Y_{\text{stochastic}}[n]$.

9. Both components, residual/stochastic and sinusoidal/harmonic, are summed and the inverse FFT is applied to it in order to resynthesize the output frame $y_{w_l}[n]$.

The frames are then overlapped and added to compute the final waveform $y[n]$:

$$y[n] = \sum_{l=0}^{l=L} y_{w_l}[n - lH]$$

(2.25)

where: $y_{w_l}[n] = \text{Windowed output for frame } l$

$L = \text{Number of frames}$

$H = \text{Hop size}$
2.7. SPECTRAL MODELING SYNTHESIS

Figure 2.18: Block diagram of spectral modeling synthesis technique for one frame. Two switches are included to comprehend the four described models: sinusoidal plus residual, harmonic plus residual, sinusoidal plus stochastic and harmonic plus stochastic. Note that blocks Peaks transformation and Spectral envelope transformation are customizable and allow a large range of transformations to the original sound (pitch shifting, time stretching, timbre processing, etc.).

At this point, the most relevant background about topics addressed in this thesis has been presented. Specifically, we have presented an introduction about singing voice production (Section 2.1); a review on pitch estimation (Section 2.2); the state-of-the-art on singing transcription (Section 2.3); some basic concepts on Dynamic Time Warping (Section 2.4); a review on automatic singing assessment (Section 2.5); a review on timbre processing (Section 2.6), and a description of Spectral Modeling Synthesis (Section 2.7). In next chapter, a global summary of results achieved in this thesis is presented.
CHAPTER 3

Global Summary of Results

In Chapter 1, context and goals and this thesis were introduced, and in Chapter 2 a comprehensive review of the state-of-the-art in the topics related to this thesis was presented. In this chapter, we summarize the results and achievements of this thesis. The results achieved in this thesis are classified into the following topics:

Comparative analysis of F0 trackers for query-by-singing-humming (Section 3.1): This section presents a detailed comparative analysis between state-of-the-art pitch trackers for the specific context of query-by-singing-humming. It is a summary of [Molina et al., 2014d]:

Singing transcription (Section 3.2): This section presents an evaluation framework for singing transcription and a novel approach for note transcription of singing voice. It summarizes publications [Molina et al., 2014b] and [Molina et al., 2015]:

CHAPTER 3. GLOBAL SUMMARY OF RESULTS

Automatic singing assessment (Section 3.3): This section presents two variants of a novel approach for singing skill assessment: one approach based on pitch contour similarity, and another one based on note-based similarity. It is a summary of [Molina et al., 2013]:

Timbre analysis and processing (Section 3.4): This section presents a parametric spectral-envelope model for singing voice, together with an approach for synthesizing realistic intensity variations based on this model. It summarizes [Molina et al., 2014c]:

Dissonance reduction in polyphonic audio (Section 3.5): Finally, this section presents a method for dissonance reduction in polyphonic music (applicable also to choir music). It is a summary of [Molina et al., 2014a]:

In each of the results presented in this chapter, the methodology used to achieve the specific research goals is briefly described. This methodology, in general terms consists of: (i) a review of the state-of-the-art and background knowledge about the topic, (ii) an approach proposal to address the related problem, (iii) the evaluation of the proposed approach and a comparison with respect to other state-of-the-art approaches, and (iv) a discussion of the results and conclusions.
3.1 Comparative Analysis of F0 Trackers for Query-by-Singing-Humming

In this section a comparative study of several state-of-the-art F0 trackers applied to the context of query-by-singing-humming (QBSH) is presented. This study has been carried out using the well known, freely available, MIR-QBSH dataset\(^1\) in different conditions of added pub-style noise and smartphone-style distortion [Mauch and Ewert, 2013]. For audio-to-MIDI melodic matching, we have used two state-of-the-art systems and a simple, easily reproducible baseline method. For evaluation, we measured the QBSH performance for 189 different combinations of F0 tracker, noise/distortion conditions and matcher. In Figure 3.1, the scheme of our study is shown. Additionally, the overall accuracy of the F0 transcriptions (as defined in MIREX\(^2\)) was also measured. In the results, we found that F0 tracking overall accuracy correlates with QBSH performance, but it does not totally measure the suitability of a pitch vector for QBSH. In addition, we also found clear differences in robustness to F0 transcription errors between different matchers.

This section is a summary of the content presented in [Molina et al., 2014d]:

Specifically, this summary does not include information about the parameters chosen for F0 tracking, and the technical description of the baseline melodic matcher has been simplified.

\(^1\)http://mirlab.org/dataset/public/
\(^2\)http://www.music-ir.org/mirex
3.1.1 Algorithms Evaluated

In this section, the algorithms considered for F0 tracking and for melody matching are enumerated.

3.1.1.1 F0 Trackers

Eight different F0 trackers have been considered in our comparative study:

- **YIN [De Cheveigné and Kawahara, 2002]:** It resembles the idea of the autocorrelation method [Rabiner, 1977] but it uses the cumulative mean normalized difference function, which peaks at the local period with lower error rates than the traditional autocorrelation function.

- **pYIN [Mauch, 2014]:** It adds a HMM-based F0 tracking stage in order to find a “smooth” path through the fundamental frequency candidates obtained by Yin.

- **AC-DEFAULT [Boersma, 1993] (default configuration of parameters in Praat):** It is based on the autocorrelation method, but it improves it by considering the effects of the window during the analysis and by including a F0 tracking stage based on dynamic programming.

- **AC-ADJUSTED:** Same algorithm as AC-DEFAULT with a manually adjusted configuration of parameters. They have been adjusted using several random samples extracted from MIR-QBSH dataset. More details are found in [Molina et al., 2014d].

- **AC-LEIWANG [Doreso, 2013]:** It is based on [Boersma, 1993], but it uses a finely tuned set of parameters and a post-processing stage in order to mitigate spurious and octave errors.

- **SWIPE’ [Camacho and Harris, 2008]:** This algorithm estimates the pitch as the fundamental frequency of the sawtooth waveform whose spectrum best matches the spectrum of the input signal.

- **MELODIA-MONO [Salamon and Gómez, 2012]:** This system is based on the creation and characterization of pitch contours, which are time continuous sequences of pitch candidates grouped using auditory streaming cues. Melodic and non-melodic contours are distinguished depending on the distributions of its characteristics. In this case, the parameters preset Monophonic of MELODIA Vamp plugin has been chosen.

3. www.fon.hum.uva.nl/praat/
3.1. COMPARATIVE ANALYSIS OF F0 TRACKERS FOR QBSH

- MELODIA-POLY: Same algorithm as MELODIA-MONO, but with parameters adjusted to default preset *Polyphonic*.

3.1.1.2 Audio-to-MIDI Melodic Matchers

Three algorithms for melodic matching are considered: a simple baseline approach, MusicRadar and NetEase.

Description of baseline approach

The baseline approach for audio-to-MIDI matching is based in f_0 contour alignment using DTW (see Figure 3.2), and it is freely available\(^5\) to allow reproducibility of results. For each MIDI file in the database, several f_0 contours are extracted (hopsize 0.01s) with various lengths: 5, 6, 7, 8, 9, 10 and 11 seconds (all of them from the beginning of the song). Then, they all are resampled to 50 points vectors and zero-mean normalized. On the other hand, the f_0 contour from the audio query is equally extracted, resampled to 50 points and zero-mean normalized. Then, DTW is applied to find the alignment cost between the query and each reference excerpt. Finally, top-10 song with smallest alignment cost are reported.

MusicRadar

MusicRadar [Doreso, 2013] is a state-of-the-art algorithm for melodic matching, which participated in MIREX 2013 and obtained the best accuracy in all datasets, except for the case of IOACAS\(^6\). It is the latest evolution of a set of systems developed by Lei Wang since 2007 [Wang et al., 2008] [Wang et al., 2010]. The system takes advantage of several matching methods to improve its accuracy. First, Earth Mover’s Distance (EMD), which is note-based and fast, is adopted to eliminate most unlikely candidates. Then, Dynamic Time Warping (DTW), which is frame-based and more accurate, is executed on these surviving candidates. Finally, a weighted voting fusion strategy is employed to find the optimal match. In our study, we have used the exact melody matcher tested in MIREX 2013, provided by its original author.

NetEase

NetEase’s approach [Li et al., 2013] is a state-of-the-art algorithm for melodic matching, which participated in MIREX 2013 and obtained the first position for IOACAS dataset\(^6\), as well as relevant results in the rest of datasets. This algorithm adopts

\(^5\)www.atic.uma.es/ismir2014qbsh/

\(^6\)http://mirlab.org/dataSet/public/IOACAS_QBH.rar
Figure 3.2: Scheme of the proposed baseline method for audio-to-MIDI melody matching
a two-stage cascaded solution based on Locality Sensitive Hashing (LSH) and accurate matching of frame-level pitch sequence. Firstly, LSH is employed to quickly filter out songs with low matching possibilities. In the second stage, Dynamic Time Warping is applied to find the M (set to 10) most matching songs from the candidate list. Again, the original authors of NetEase’s approach (who also authored some older works on query-by-humming [Li et al., 2008]) collaborated in this study, so we have used the exact melody matcher tested in MIREX 2013.

3.1.2 Evaluation Strategy

In this section, we present the datasets used in our study (Section 3.1.2.1), the way in which we have combined F0 trackers and melody matchers (Section 3.1.2.2) and the chosen evaluation measures (Section 3.1.2.3).

3.1.2.1 Datasets

We have used the public corpus MIR-QBSH\(^1\) (used in MIREX since 2005), which includes 4431 .wav queries corresponding to 48 different MIDI songs. The audio queries are 8 seconds length, and they are recorded in mono 8 bits, with a sample rate of 8kHz. In general, the audio queries are monophonic with no background noise, although some of them are slightly noisy and/or distorted. This dataset also includes a manually corrected pitch vector for each .wav query. Although these annotations are fairly reliable, they may not be totally correct, as stated in MIR-QBSH documentation.

In addition, we have used the Audio Degradation Toolbox [Mauch and Ewert, 2013] in order to recreate common environments where a QBSH system could work. Specifically, we have combined three levels of pub-style added background noise (PubEnvironment1 sound) and smartphone-style distortion (smartPhoneRecording degradation), leading to a total of seven evaluation datasets: (1) Original MIR-QBSH corpus (2) 25 dB SNR (3) 25 dB SNR + smartphone distortion (4) 15 dB SNR (5) 15 dB SNR + smartphone distortion (6) 5 dB SNR (7) 5 dB SNR + smartphone distortion. Note that all these degradations have been checked in order to ensure perceptually realistic environments.

Finally, in order to replicate MIREX conditions, we have included 2000 extra MIDI songs (randomly taken from ESSEN collection\(^7\)) to the original collection of 48 MIDI songs, leading to a songs collection of 2048 MIDI songs. Note that, although these 2000 extra songs fit the style of the original 48 songs, they do not correspond to any .wav query of MIR-QBSH dataset.

\(^1\)www.esac-data.org/

\(^7\)www.esac-data.org/
CHAPTER 3. GLOBAL SUMMARY OF RESULTS

3.1.2.2 Combinations of F0 Trackers and Melody Matchers

For each of the 7 datasets, the 4431 .wav queries have been transcribed using the 8 different F0 trackers mentioned in Section 3.1.1.1. Additionally, each dataset also includes the 4431 manually corrected pitch vectors of MIR-QBSH as a reference, leading to a total of 279153 pitch vectors. Then, all these pitch vectors have been used as input to the 3 different melody matchers mentioned in Section 3.1.1.2, leading to 930510 lists of top-10 matched songs. Finally, these results have been used to compute a set of meaningful evaluation measures.

3.1.2.3 Evaluation Measures

In this section, we present the evaluation measures used in this study:

(1) Mean overall accuracy of F0 tracking (Accov):

For each pitch vector we have computed an evaluation measures defined in MIREX Audio Melody Extraction task: overall accuracy (Accov) (a definition can be found in [Salamon and Gómez, 2012]). The mean overall accuracy is then defined as

$$\overline{\text{Acc}_{ov}} = \frac{1}{N} \sum_{i=1}^{N} \text{Acc}_{ovi}$$

(3.1)

where:

- $N =$ total number of queries considered
- $\text{Acc}_{ovi} =$ overall accuracy of pitch vector for i:th query

We have selected this measure because it considers both voicing and pitch, which are important aspects in QBSH. For this measure, our ground truth consists of the manually corrected pitch vectors of the .wav queries, which are included in the original MIR-QBSH corpus.

(2) Mean Reciprocal Rank (MRR):

This measure is commonly used in MIREX Query By Singing Humming task, and it is defined as

$$\text{MRR} = \frac{1}{N} \sum_{i=1}^{N} r_i^{-1}$$

(3.2)

where:

- $N =$ total numbers of queries considered
- $r_i =$ rank of the correct answer for i:th query

Note that in case r_i is higher than 10, then we set $r_i = 0$.

3.1.3 Results & Discussion

In this section, we present the obtained results and some relevant considerations about them.
3.1. COMPARATIVE ANALYSIS OF F0 TRACKERS FOR QBSH

3.1.3.1 Accov and MRR for each F0 tracker - Dataset - Matcher

In Table 1, we show the Accov and the MRR obtained for the whole dataset of 4431 .wav queries in each combination of F0 tracker-dataset-matcher (189 combinations in total). Note that these results are directly comparable to MIREX Query by Singing/Humming task (MIR-QBSH dataset, also known as Jang’s dataset).

As expected, the manually corrected pitch vectors produce the best MRR in most cases (Accov is 100% because it has been taken as the ground truth for such measure). Note that, despite manual annotations are the same in all datasets, NetEase and MusicRadar matchers do not produce the exact same results in all cases. It is due to the generation of the indexing model (used to reduced the time search), which is not a totally deterministic process.

Regarding the relationship between Accov and MRR in the rest of F0 trackers, we find a somehow contradictory result: the best Accov does not always correspond with the best MRR. This fact may be due to two different reasons:

- The meaning of Accov may be distorted due to annotation errors in the ground truth (as mentioned in Section 3.1.2.1), or to eventual intonation errors in the dataset. However, manual annotations produce the best MRR, what suggests that the amount of these types of errors is low.

- The measure Accov itself is not totally representative of the suitability of a pitch vector for QBSH. Let’s illustrate this fact through an example: in Figure 3.3 we show two different pitch vectors with same overall accuracy Accov = 82.91%. However, pitch vector (a) matches the right song with rank ri = 1 whereas pitch vector (b) does not matches the right song at all (ri ≥ 11). The reason is that Accov do not take into account the pitch values of false positives, but in fact they are important for QBSH. Therefore, we conclude that the high MRR achieved by some F0 trackers (AC-LEIWANG when background noise is low, and PYIN for highly degraded signals), is not only due to the amount of errors made by them, but also to the type of such errors.

Additionally, we observed that, in most cases, the queries are matched either with rank ri = 1 or ri ≥ 11 (intermediate cases such as rank ri = 2 or ri = 3 are less frequent). Therefore, the variance of ranks is generally high, and their distribution is not Gaussian.
<table>
<thead>
<tr>
<th>F0 tracker</th>
<th>Clean dataset</th>
<th>25dB SNR + distortion</th>
<th>15dB SNR + distortion</th>
<th>5dB SNR + distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>100 / 0.82 / 0.89 / 0.96</td>
</tr>
<tr>
<td>(B)</td>
<td>89 / 0.80 / 0.89 / 0.96</td>
<td>89 / 0.80 / 0.89 / 0.96</td>
<td>88 / 0.79 / 0.88 / 0.94</td>
<td>84 / 0.71 / 0.86 / 0.94</td>
</tr>
<tr>
<td>(C)</td>
<td>90 / 0.74 / 0.85 / 0.94</td>
<td>90 / 0.71 / 0.85 / 0.92</td>
<td>86 / 0.72 / 0.84 / 0.92</td>
<td>85 / 0.66 / 0.81 / 0.89</td>
</tr>
<tr>
<td>(D)</td>
<td>90 / 0.71 / 0.85 / 0.93</td>
<td>90 / 0.74 / 0.85 / 0.94</td>
<td>90 / 0.78 / 0.87 / 0.94</td>
<td>85 / 0.77 / 0.87 / 0.94</td>
</tr>
<tr>
<td>(E)</td>
<td>89 / 0.71 / 0.85 / 0.92</td>
<td>89 / 0.71 / 0.84 / 0.92</td>
<td>84 / 0.66 / 0.80 / 0.91</td>
<td>83 / 0.65 / 0.80 / 0.91</td>
</tr>
<tr>
<td>(F)</td>
<td>86 / 0.62 / 0.81 / 0.89</td>
<td>86 / 0.70 / 0.83 / 0.92</td>
<td>81 / 0.64 / 0.78 / 0.89</td>
<td>82 / 0.60 / 0.77 / 0.88</td>
</tr>
<tr>
<td>(G)</td>
<td>88 / 0.56 / 0.81 / 0.88</td>
<td>87 / 0.47 / 0.79 / 0.86</td>
<td>83 / 0.47 / 0.76 / 0.85</td>
<td>86 / 0.39 / 0.78 / 0.87</td>
</tr>
<tr>
<td>(H)</td>
<td>87 / 0.66 / 0.83 / 0.87</td>
<td>87 / 0.67 / 0.82 / 0.87</td>
<td>83 / 0.64 / 0.78 / 0.84</td>
<td>86 / 0.66 / 0.81 / 0.84</td>
</tr>
<tr>
<td>(I)</td>
<td>84 / 0.62 / 0.76 / 0.86</td>
<td>84 / 0.62 / 0.76 / 0.86</td>
<td>79 / 0.50 / 0.64 / 0.74</td>
<td>84 / 0.63 / 0.76 / 0.75</td>
</tr>
</tbody>
</table>

Table 3.1: F0 overall accuracy and MRR obtained for each case. F0 trackers: (A) MANUALLY CORRECTED (B) AC-LEIWANG (C) AC-ADJUSTED (D) PYIN (E) SWIPE’ (F) YIN (G) AC-DEFAULT (H) MELODIA-MONO (I) MELODIA-POLY. The format of each cell is: Acc$_{av}$(%) / MRR-baseline / MRR-NetEase / MRR-MusicRadar.
Figure 3.3: According to MIREX measures, these two pitch vectors (manually manipulated) are equally accurate: voicing recall = 99.6%, voicing false-alarm = 48.4%, raw pitch accuracy = 82.91%, raw chroma accuracy = 97.41%, overall accuracy = 82.91%. However, pitch vector (a) is much more suitable than pitch vector (b) for QBSH.

3.1.3.2 MRR vs. $\overline{\text{Acc}_{ov}}$ for each matcher

In order to study the robustness of each melodic matcher to F0 tracking errors, we have represented the MRR obtained by each one for different ranges of $\overline{\text{Acc}_{ov}}$ (Figure 3.4). For this experiment, we have selected only the .wav queries which produce the right answer in first rank for the three matchers considered (baseline, Music Radar and NetEase) when manually corrected pitch vectors are used (around a 70% of the dataset matches this condition). In this way, we ensure that bad singing or a wrong manual annotation is not affecting the variations of MRR in the plots. Note that, in this case, the results are not directly comparable to the ones computed in MIREX (in contrast to the results shown in Section 3.1.3.1, which are directly comparable). Regarding the obtained results (shown in Figure 3.1), we observe clear differences in the robustness to F0 estimation errors between matchers, what is coherent with the results presented in Table 3.1. The main difference is found in the baseline
matcher with respect to both NetEase and Music Radar. Given that the baseline matcher only uses DTW, whereas the other two matchers use a combination of various searching methods, we hypothesise that such combination may improve their robustness to F0 tracking errors. However, further research is needed to really test this hypothesis.

![Graph of F0 estimation Overall Accuracy (%)](image)

Figure 3.4: MRR obtained for each range of Overall Accuracy (each range is marked with coloured background rectangles). We have considered only the .wav queries which, using manually corrected F0 vectors, produce MRR = 1 in all matchers. Note: The axis have been manually manipulated in order to better visualize the differences between curves.

3.2 Singing Transcription

In this section, we describe our contributions related to the topic of singing transcription. As described in Section 2.3, singing transcription refers to the task of automatically generating a symbolic representation (e.g. MIDI notes) from the audio signal. In this thesis two main contributions are presented in relationship with
such topic: (1) the method SiPTH for note transcription (Section 3.2.1) and (2) an evaluation framework for singing transcription (Section 3.2.2). In Section 3.2.3, we present the results achieved by our SiPTH algorithm with respect to several state-of-the-art methods using the proposed evaluation framework.

3.2.1 SiPTH: Singing Transcription

In this section we describe a novel method for monophonic singing transcription based on hysteresis defined on the pitch-time curve, which has been published in [Molina et al., 2015]:

Specifically, in this section we provide the key concepts of the SiPTH method in a simple and clear way, without providing deep details about the parameters chosen or the exact definitions of the terms used (e.g. *chroma contour*), which can be found in the paper.

Our approach implements an interval-based note segmentation through a hysteresis process on the pitch-time curve, which is obtained using Yin algorithm [De Cheveigné and Kawahara, 2002]. The exact definition of hysteresis varies from area to area and from paper to paper [Mayergoyz, 1986], but it typically implies a non-linear dependence of a system not only on its current state, but also on its past states. In our approach, we apply this concept to the note segmentation problem so that only large and/or sustained pitch deviations produce a change of note. The name SiPTH makes reference to the singing transcription task addressed and to the pitch-time hysteresis effect considered to perform note segmentation.

The selected approach for singing transcription can be summarized into the following steps:

1. **Chroma contour estimation**: First, the regions where chroma feature is stable are isolated, since they are candidates to sung notes (Figure 3.5).

2. **Voice/Unvoiced classification**: Then, each chroma contour is classified into two classes: voiced or unvoiced. This classification is performed with a previously trained tree classifier using two descriptors: aperiodicity and energy.

3. **Interval-based transcription**: Note segmentation based on pitch intervals is carried out. To this end, a dynamic averaging of the pitch curve is performed...
for each growing note in order to roughly estimate its average pitch value. This
dynamic average \(F0_A(l) \) is computed using the following expression:

\[
F0_A(l) = \frac{\sum_{k=l_0}^{l} F0(k)}{l - l_0 + 1}
\] (3.3)

where \(l_0 \) is the index corresponding to either the beginning of a new note, or
the beginning of a voiced region. Deviations of the instantaneous pitch curve
with respect to this average are measured to determine the next note change
according to a hysteresis process defined on the pitch-time curve (Figure 3.6).

Figure 3.5: Chroma contours estimation. The black curve represents the estimated
pitch value; red regions represent the mask where pitch values can vary between
consecutive frames. The use of a mask that allows fast octave jumps avoids fake
note changes if octave errors happen.

4. **Note labelling:** Finally, each note is labelled using three values: pitch, onset
and offset. The onset and the offset instants are directly obtained from the
note changes produced by the previous step. The pitch value is computed by
using an energy weighted \(\alpha \)-trimmed mean [Bednar and Watt, 1984]. In this
weighted mean, the extreme (high and low) values of \(F0 \) (typically outliers)
are discarded.

This method has been evaluated using the evaluation framework for singing voice
presented in Section 3.2.2. In Section 3.2.3 we present the results obtained by SiPTH
method in comparison with some state-of-the-art methods for singing transcription.
3.2. SINGING TRANSCRIPTION

Figure 3.6: Representation of the hysteresis process for the detection of note changes. Samples are taken from real data: from $\approx G_3$ to $\approx B_3$ to $\approx G_3$. The instantaneous F0 and the dynamic average $F0_A$ for each note are shown. Strong and/or sustained deviations of the instantaneous F0 with respect to the dynamic average trigger the detection of note changes. Observe that although the instantaneous F0 estimated for the final note deviates more than a semitone, the system does not detect a spurious note change.

3.2.2 Evaluation Framework for Singing Transcription

Given the lack of standard evaluation strategies for singing transcription, in this thesis, a comprehensive evaluation framework is proposed. It consists of a cross-annotated dataset of 1154 seconds and a set of extended evaluation measures, which are integrated in a Matlab toolbox. The presented evaluation measures are based on standard MIREX note-tracking measures, but they provide extra information about the type of errors made by the singing transcriber.

This evaluation framework is freely available\(^8\), and a detailed description of it can be found in [Molina et al., 2014b]:

\(^8\)http://www.atic.uma.es/ismir2014singing
Specifically, in this section we skip the description of previous evaluation approaches, which are presented in the paper, and we focus on the key aspects of the proposed evaluation methodology.

3.2.2.1 Proposed Dataset

The proposed dataset consists of 38 melodies sung untrained singers (men, women and children), recorded in mono with a sample rate of 44100Hz and a resolution of 16 bits. Generally, the recordings are not clean and some background noise is present. The duration of the excerpts ranges from 15 to 86 seconds and the total duration of the whole dataset is 1154 seconds. This music collection can be broken down into three categories, according to the type of singer: children (14 traditional melodies), adult male (13 pop melodies) and adult female (11 pop melodies).

The described music collection has been manually annotated to build the ground truth. First, we have transcribed the audio recordings with a baseline algorithm, and then all the transcription errors have been corrected by an expert musician with more than 10 years of music training. Then, a second expert musician (with 7 years of music training) checked all the annotations until both musicians agreed. The transcription errors were corrected by listening to the synthesized transcription and the original audio simultaneously.

3.2.2.2 Evaluation Measures

The proposed evaluation framework has been included in a Matlab toolbox, which can be used with a GUI (Figure 3.7) or via command line. In this framework, three different definitions of correct note are proposed:

- **Correct Onset, Pitch and Offset (COnPOff):** This is a standard correctness criteria, since it is used in MIREX\(^9\) (Multiple F0 estimation and tracking task), and it is the most restrictive one.

- **Correct Onset, Pitch (COnP):** This criteria is also used in MIREX, but it is less restrictive since it just considers onset and pitch, and ignores the offset value.

- **Correct Onset (COn):** We have also included the evaluation criteria used in MIREX Audio Onset Detection task.

\(^9\)www.music-ir.org/mirex
3.2. SINGING TRANSCRIPTION

Additionally, we have defined several types of errors:

- **Only Bad Onset (OBOn):** A note with correct pitch and offset, bad incorrect onset value.

- **Only Bad Pitch (OBP):** A note with correct onset and offset, but incorrect pitch value.

- **Only Bad Offset (OBOff):** A note with correct onset and pitch, but incorrect offset.

- **Split (S):** A split note refers to a note that has been incorrectly segmented into different consecutive notes.

- **Merged (M):** A set of consecutive notes that have been incorrectly merged into a single note.

- **Spurious notes (PU):** A transcribed note not corresponding to any ground-truth note.

![Figure 3.7: GUI for the proposed evaluation framework](image-url)
• Non-detected notes (ND): A ground-truth note not corresponding to any transcribed note.

In Figure 3.8, these categories are illustrated through some examples.

![Figure 3.8: Examples of the proposed note categories](image)

3.2.3 Results & Discussion

In this section, we provide the results of evaluating SiPTH method (Section 3.2.1) together with several state-of-the-art methods using the described evaluation framework in Section 3.2.2.

Compared Algorithms

The singing transcription algorithms considered in our evaluation are:

- **SiPTH [Molina et al., 2015]:** Proposed method for singing transcription described in Section 3.2.1, which is based on interval-based segmentation using a hysteresis process on the pitch-time curve of the audio signal.
3.2. SINGING TRANSCRIPTION

Gómez & Bonada [Gómez et al., 2013]: It consists of three main steps: tuning-frequency estimation, transcription into short notes, and an iterative process involving note consolidation and refinement of the tuning frequency. For the experiment, we have used a standalone binary provided by the authors of the algorithm.

Ryynänen [Ryynänen, 2008]: We have used Ryynänen’s method for automatic transcription of melody, bass line and chords in polyphonic music, although we only focus on melody transcription. The used version is the latest evolution of the original HMM-based monophonic singing transcriber [Ryynänen and Klapuri, 2004], provided by the authors of the algorithm.

Melotranscript ¹⁰: It is an improved, commercial version derived from the research initially carried out by [De Mulder et al., 2004], which is based on the use of an auditory model for singing transcription. For the experiment, we have used the demo version available in SampleSumo website.

Baseline algorithm: According to [Viitaniemi et al., 2003], the simplest possible segmentation consists of simply rounding a rough pitch estimate to the closest MIDI note n_i and taking all pitch changes as note boundaries. The proposed baseline method is based on such idea, and it uses Yin [De Cheveigné and Kawahara, 2002] to extract the F0 and aperiodicity at frame-level. A frame is classified as unvoiced if its aperiodicity is under < 0.4. Finally, all notes shorter than 100ms are discarded.

Results

In Figure 3.9 we show the results of our comparative analysis, from which several observations can be made. The first observation is that none of the state-of-the-art singing transcribers has a great performance in global terms. Indeed, the highest value F-measure of $COnPOff$ metric (correct onset, pitch and offset) is less than 0.5. Considering that $COnPOff$ metric reflects the global goodness of singing transcribers, this result shows that singing transcription problem is still far to be solved for all real-world purposes.

In any case, the best performing method is Melotranscript, followed by SiPTH and Gómez and Bonada, which have a similar performance. Finally, Ryynänen has a lower performance, probably due to the use of integer pitch values for the transcription (as suggested by [Mauch et al., 2015a]). This fact is also reflected by OBP metric (only bad pitch), which is especially high in the case of Ryynänen method.

¹⁰https://www.samplesumo.com/melody-transcription
In addition, the information provided by Split and Merged metrics allow us to identify the behavior of each method. Methods SiPTH and Ryynänen tend to merge notes, whereas the baseline method clearly tends to split them. On the other hand, Gómez and Bonada and Melotranscript are rather balanced in the type of errors made.

Besides, the metric OBOn (only bad onset), which ranges from 0.2 to 0.3 for the studied methods, let us note that an improvement in onset detection would significantly improve the global transcription accuracy. This might be due to the 50ms
tolerance for onset detection, which is quite challenging in the case of singing voice. To sum up, Melotranscript is the method with best performance, followed by SiPTH and Gómez and Bonada, which attain similar performance. Ryynänen method, however, has a lower accuracy probably due to the use of integer pitch values. All methods, however, are substantially better than the proposed Baseline transcriber.

3.3 Automatic Singing Assessment

In this thesis, we explore two variants of a novel approach for automatic singing assessment: frame-level similarity using f_0 curve alignment through Dynamic Time Warping (DTW), and note-level similarity using singing transcription. Both approaches provide the user with a set of intonation, rhythm and overall ratings. These ratings are obtained by measuring the similarity between the sung melody and a target performance. The approaches are evaluated by measuring the correlation between the provided ratings, and a set of ratings annotated by experts musicians. The details about this research can be found in [Molina et al., 2013]:

In this section, we summarize the content of this paper. Specifically, we skip the extended descriptions of the various similarity measures proposed; instead, we enumerate them and we highlight their key aspects.

3.3.1 Description of the Two Approaches

3.3.1.1 Frame-level Similarity

The f_0 contour of both the user performance and the target performance, are extracted using the Yin algorithm [De Cheveigné and Kawahara, 2002]. In these contours, unvoiced frames are indicated with $f_0 = 0$. Then, Dynamic Time Warping (DTW) [Hiroaki, 1978] is applied in order to find an optimal alignment between both f_0 contours. The cost matrix used for this alignment is

$$M_{ij} = \min\{(f_{0T}(i) - f_{0U}(j))^2, \alpha\} \quad (3.4)$$

where $f_{0T}(i)$ is the f_0 value of the target melody in the frame i, $f_{0U}(j)$ represents the f_0 value of the user’s performance in the frame j, M_{ij} is the cost value and α is a constant. In our approach, we use DTW as a frame-based similarity measure, since
the total cost of the optimal path, as well as its shape, provide relevant information about the user performance. Specifically, the cost of the optimal path provides information about the pitch deviation, and its shape about the rhythmic deviation (see Figure 3.10). Consequently, we define two measures: Total Intonation Error, defined as

$$TIE = \sum_{k=1}^{K} M_{i_k,j_k}$$

(3.5)

where: \([i_k, j_k]\) for \(k \in 1 \ldots K = \) optimal path

and Root Mean Squared Error, defined as

$$\varepsilon_{RMS} = \sqrt{\frac{1}{K} \sum_{k=1}^{K} \varepsilon_k^2}$$

(3.6)

where: \(\varepsilon_k = \) linear regression error (of DTW optimal path, see Figure 3.10).

Figure 3.10: Cost matrix of the DTW, together with the path for an ideal performance (dashed line) and two different user performances. Rhythmically unstable: \(\varepsilon_{RMS} = 0.36s\) (a) and rhythmically stable (different tempo): \(\varepsilon_{RMS} = 0.047s\) (b).
3.3. AUTOMATIC SINGING ASSESSMENT

3.3.1.2 Note-level Similarity

In this case, a note-level transcription is performed using SiPTH algorithm (see Section 3.2.1) of both user and target performances. Then, an f_0 contour alignment is performed (as in previous approach) in order to map each note from the user performance to a note from the target performance. Once this mapping is available, then several note-level similarity measures are computed: onset time deviation (ΔO), note frequency deviation (Δf) and interval deviation (ΔI).

3.3.1.3 Score Computation

The proposed system computes three different scores: intonation, rhythm and overall score. These scores are the output of three different polynomial regression functions, which use similarity measures as input features ($TIE, \epsilon_{\text{RMS}}, \Delta O, \Delta f$ and ΔI). These regressors are trained using a dataset of 27 singing performances assessed by 4 different expert musicians. More details are provided in Section 3.3.2.

3.3.2 Evaluation

In this section, we present the ground truth built for the evaluation (Section 3.3.2.1), as well as the evaluation measures computed (Section 3.3.2.2).

3.3.2.1 Groundtruth

We combine the use of real recordings and artificially generated melodies in order to systematically control the level of intonation and rhythm deviations. The evaluation dataset is then built by introducing random pitch/rhythm variations to three different target melodies, using an harmonic plus stochastic modelling of the input signal as described in [Gómez et al., 2003a]. Three levels of random variations have been applied for both pitch and rhythm. In total, nine combinations with different degree of error are generated from each reference melody. Therefore, 27 melodies (around 22 minutes of audio) comprise the whole evaluation dataset\(^\text{11}\).

Human judgements were collected from four trained musicians, who were asked to score from 1 to 10 the evaluation dataset in three different aspects: intonation, rhythm and overall impression. Melodies were presented in random order using headphones.

\(^\text{11}\)Audio samples extracted from the ground truth can be found at http://www.atic.uma.es/singing
3.3.2.2 Evaluation Measures

Three different measures have been computed to evaluate the singing voice assessment system: interjudgement reliability, correlation between similarity measures and human judgements and polynomial regression error. Interjudgement reliability, proposed in [Wapnick and Ekholm, 1997], measures the correlation between human ratings. This measure aims to quantify the objectivity of the ratings. We have computed the correlation between the ratings for each pair of musicians (in total $n(n-1)/2 = 6$ pairs), and then averaged all the correlations. We have also computed the correlation coefficient for each similarity measure with respect to the different mean score given by musicians. This is a good reference about how meaningful each similarity measure is for performance assessment. A total of 27 (9 similarity measures $\times 3$ ratings) correlation coefficients have been computed. Finally, the human criteria has been modelled in Weka through quadratic polynomial regression. The regression error quantifies the accuracy of the data fitting procedure. In this case, the evaluation dataset is the same as the training dataset. We consider the following measures from regression analysis: the correlation coefficient and the root mean squared error.

3.3.3 Results & Discussion

The mean correlation values corresponding to the interjudgement reliability measure are shown in Table 3.2. The results show that the agreement on rhythmic evaluation is lower. Nevertheless, the correlation in all cases is acceptable, and the case of intonation is specially good.

<table>
<thead>
<tr>
<th>Type of score</th>
<th>Mean correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intonation</td>
<td>0.93</td>
</tr>
<tr>
<td>Rhythm</td>
<td>0.82</td>
</tr>
<tr>
<td>Overall</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Table 3.2: Results of interjudgement reliability

Table 3.3 shows the correlation between the different similarity measures and the human ratings. We observe a high correlation of human ratings and DTW based measures (TIE and ε_{RMS}), specially for rhythm assessment. DTW based measures do not require singing transcription, since it directly uses the low-level feature. Therefore, DTW is a simple but efficient technique for intonation and rhythm automatic assessment.
3.4. Timbre Analysis and Processing

One of the contributions of this thesis is a method to model the variations of spectral envelope along intensity in singing voice. This method is based on a parametric model of spectral envelope, whose parameters are shifted accordingly to emulate the intensity variations in singing voice. All details have been published in [Molina et al., 2014c]:

Table 3.3: Correlation values of each similarity measure with the ratings given by trained musicians. Note: for note-level measures, we also include a weighted mean which weights each error by the note duration. $TIE=$ Total intonation error, $\varepsilon_{\text{RMS}}=$ Root Mean Squared Error, $\overline{\Delta O}=$ Mean onset time deviation, $\overline{\Delta O}_W=$ Weighted mean onset time deviation, $\overline{\Delta f}=$ Mean frequency deviation, $\overline{\Delta f}_W=$ Weighted mean frequency deviation, $\overline{\Delta I}=$ Mean interval deviation, $\overline{\Delta I}_W=$ Weighted mean interval deviation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIE</td>
<td>0.92</td>
<td>0.21</td>
<td>0.81</td>
</tr>
<tr>
<td>ε_{RMS}</td>
<td>0.0012</td>
<td>0.81</td>
<td>0.52</td>
</tr>
<tr>
<td>$\overline{\Delta O}$</td>
<td>0.026</td>
<td>0.68</td>
<td>0.48</td>
</tr>
<tr>
<td>$\overline{\Delta O}_W$</td>
<td>0.037</td>
<td>0.68</td>
<td>0.48</td>
</tr>
<tr>
<td>$\overline{\Delta f}$</td>
<td>0.96</td>
<td>0.2</td>
<td>0.82</td>
</tr>
<tr>
<td>$\overline{\Delta f}_W$</td>
<td>0.89</td>
<td>0.23</td>
<td>0.82</td>
</tr>
<tr>
<td>$\overline{\Delta I}$</td>
<td>0.94</td>
<td>0.34</td>
<td>0.9</td>
</tr>
<tr>
<td>$\overline{\Delta I}_W$</td>
<td>0.87</td>
<td>0.35</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Finally, Table 3.4 shows the obtained regression errors. The optimal polynomial combination of similarity measures provides high correlation with human judgments. For intonation, the results are specially good, because the chosen similarity measures are very representative and there is a high interjudgement reliability.

As a conclusion, our experiment show that the chosen similarity measures are suitable to model the criteria of real musicians, so further research (e.g. as [Schramm et al., 2015]) is encouraged to explore the possibilities of this approach with more data in real-world use cases.

<table>
<thead>
<tr>
<th>Type of error</th>
<th>Intonation</th>
<th>Rhythm</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>0.988</td>
<td>0.969</td>
<td>0.976</td>
</tr>
<tr>
<td>Root mean squared error</td>
<td>0.4167</td>
<td>0.58</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 3.4: Polynomial regression error
CHAPTER 3. GLOBAL SUMMARY OF RESULTS

In this section, we summarize the chosen approach (Section 3.4.1) by skipping formulas or specific parameter values, we describe the evaluation methodology (Section 3.4.2), and we present the results achieved (Section 3.4.3).

3.4.1 Summary of the Approach

The proposed method consists of several steps, which are summarized in the following paragraphs:

1. **Definition of a parametric model of spectral envelope:** The proposed parametric model of spectral envelope is inspired by previous systems for speech / singing synthesis like [Klatt, 1980] [Bonada et al., 2001], but in our case we use 4-pole resonators instead of 2-pole resonators. These type of models synthesize the spectral envelope with several resonator filters in parallel (equivalent to the acoustic formants) with a certain overall slope (determined by the glottal source). According to our model, twelve parameters are needed to define a spectral envelope:

 - Gain (Gain\(_{\text{dB}}\))
 - SlopeDepth (SlopeDepth\(_{\text{dB}}\))
 - Frequency of the glottal formant (\(f_{GP}\))
 - Bandwidth of the glottal formant (B\(_{GP}\))
 - Frequency of the first formant (\(f_1\))
 - Bandwidth of the first formant (B\(_1\))
 - Frequency of the second formant (\(f_2\))
 - Bandwidth of the second formant (B\(_2\))
 - Frequency of the third formant (\(f_3\))
 - Bandwidth of the third formant (B\(_3\))
 - Frequency of the forth formant (\(f_4\))
 - Bandwidth of the forth formant (B\(_4\))
2. Annotation of 60 sung vowels: By using a software tool specially created for this purpose (see Figure 3.11), the parameters of our model have been manually estimated for 60 sustained vowels sung by two male and two female amateur pop singers. The 60 sung notes correspond to 5 different sustained vowels (/a/, /e/, /i/, /o/ and /u/), in 3 different intended intensities (weak, normal, loud) for 4 different singers. All the notes were sung in a comfortable pitch register for all singers. In Figure 3.12 we plot the values obtained by this manual annotation.

Note that the spectral envelope is separately annotated for the harmonic and the residual components. These components are extracted using the algorithm presented in Section 2.7.4, specifically the implementation proposed in [Serra and Smith, 2014] (freely available in https://github.com/MTG/sms-tools).
Figure 3.12: Information about the harmonic component (light red color) and the residual component (dark blue color) at different degrees of intensity (a) Spectral envelope of an /a/ vowel sung by a male singer (b) Average power (c) Average Gain (d) Average Slope Depth (e) Average frequency values of the first four formants (f) Average bandwidths of the glottal resonator R_{GP} (g) Average bandwidths of the first formant R_1 (h) Average bandwidths of the second formant R_2

3. Modeling of parameters variation along intensity: Considering ΔI as the intensity variation introduced by the singer, each parameter has been modeled as

$$\Delta p_x = \Delta I \cdot w_x$$

where w_x is a weight obtained through linear regression on the analysis dataset described in step 2. As a consequence, in order to produce a perceived change of intensity ΔI, each parameter p_x must be assigned the value $p'_x \leftarrow p_x + \Delta p_x$. More details can be found in [Molina et al., 2014c].

3.4.2 Evaluation of the Approach

In this section, we describe the dataset (Section 3.4.2.1) and the methodology used for evaluation (Section 3.4.2.2).
3.4. TIMBRE ANALYSIS AND PROCESSING

3.4.2.1 Evaluation Dataset

We have collected 12 pairs of weak-loud sung vowels in mono audio with a sample rate of 11025 Hz: 4 weak-loud pairs sung by two singers (male M1 and female F1) taken from the analysis dataset, 4 sung by two singers (male M2 and female F2) not analysed before, and 4 pairs synthesized with “Bruno” (VM) and “Clara” (VF) singers in Vocaloid 3.0. Each singer (either real or synthetic) has sung a weak-loud pair using both an open vowel (/a/) and a closed vowel (/i/) in a comfortable register.

3.4.2.2 Evaluation Methodology

In the case of natural vowels, we have compared our approach (using a intensity variation of ∆I = ±10) against Melodyne Editor\(^{12}\) (state-of-the-art commercial software). In the case of synthetic vowels, we have compared our approach with Vocaloid 3.0\(^{13}\) by setting the parameter *Dynamics* to 127 (loud vowels) and 32 (weak vowels). It makes a total of 48 pairs of weak-loud or loud-weak changes\(^{14}\). The evaluation has been performed by four amateur musicians, who listened (with high-quality headphones) the different systems in random order, and they were asked to evaluate how close to a real change of intensity was the applied processing.

3.4.3 Results & Discussion

In Figure 3.13 we show the perceived closeness to a real change of intensity for each of the 48 pairs described in Section 3.4.2.2. In general, our approach achieves better results for loud-to-weak transformations, whereas in the case of weak-to-loud transformations, the results are less realistic. Indeed, we have observed that formants are less defined in weak sounds (see example in Figure 3.12.a), and therefore they are harder to analyse and manipulate. Regarding the results with synthetic vowels, our approach achieves more realism than Vocaloid at modifying the intensity for all cases.

As a conclusion, our experiments show that the manipulation of the spectral envelope significantly improve the realism of intensity changes in singing voice. Due to it, our approach provide relevant insights towards realistic intensity transformation in singing voice in real-world use cases.

\(^{12}\)www.celemony.com

\(^{13}\)www.vocaloid.com/en

\(^{14}\)Available at: http://www.atic.uma.es/icassp2014singing
Our approach
Melodyne
Vocaloid

Perceived closeness to a real change of intensity

Figure 3.13: Mean perceived closeness to a real change of intensity. Each specific combination of singer/vowel (see Section 3.4.2.2) has been evaluated with various approaches, represented with different colours. The meaning of axis values is defined in Section 3.4.2.1.

3.5 Dissonance Reduction in Polyphonic Audio

In this thesis, we also propose a method for automatic reduction of dissonance in recorded isolated chords, which is described in this section. Previous approaches address this problem using source separation and note-level processing. In our approach, we manipulate the harmonic structure as a whole in order to avoid beating partials which, according to prior research on dissonance perception, typically produce an unpleasant sound.

The proposed system firstly performs a sinusoidal plus residual modelling of the input and analyses the various fundamental frequencies existing in the chord. This information is used to create a symbolic representation of the in-tune version of the input according to some musical rules. Then, the partials of the signals are shifted in order to fit the in-tune harmonic structure of the input chord. The input is assumed to contain one isolated chord, with relatively stable fundamental frequencies belonging to the Western chromatic scale.

The evaluation has been performed by 31 expert musicians, who have quantified
3.5. DISSONANCE REDUCTION IN POLYPHONIC AUDIO

the perceived consonance of six varied, out-of-tune chords in three variants: unprocessed, processed with our system and processed by a state-of-the-art commercial tool (Melodyne Editor). The proposed approach attains an important reduction of the perceived dissonance, showing better performance than Melodyne Editor for most of the cases evaluated.

The detailed description of the proposed method is in [Molina et al., 2014a]:

In this section, we summarize the content of this paper by focusing on the most relevant aspects of the approach. Specifically, we skip the description of related work, e.g. studies about perceptual dissonance, or review of sinusoidal plus residual model that is already described in Section 2.7. We also skip the description of the scales taken into account for frequency rounding in the overtones grid generation stage, and the formulas associated to the beating reduction stage. Finally, in this thesis we include an extra evaluation using vocal chords, which is not included in the published paper.

3.5.1 Description of the Approach

The proposed approach is based on a analysis-resynthesis scheme, and it can be divided into three main blocks: Analysis, Harmonic reorganization and Synthesis.

3.5.1.1 Analysis Stage

In this stage, two analysis algorithms are applied: sinusoidal plus residual modeling [Serra, 1989], and multiple-f_0 analysis.

Sinusoidal plus residual modeling

The sinusoidal plus residual modeling is performed using Serra’s approach [Serra, 1989] (Section 2.7) with the following parameters: sample rate 44100Hz, window size $M = 8001$, window type Blackman-Harris 92dB, FFT size $N = 8192$ (zero-padded), hopsize $H = 2048$. Then, the sinusoids are temporally tracked by connecting spectral peaks if they are close in time ($<$70ms), frequency ($<$0.2 semitones) and amplitude ($<$20dB). A sequence of connected spectral peaks is called *partial*. Partials shorter than 200ms are directly removed.

Multiple-f_0 analysis
The multiple-f_0 analysis is performed using the approach proposed by [Klapuri, 2005]. This method consists of a computational model of the human auditory periphery, followed by a periodicity analysis mechanism. Estimation of multiple fundamental frequencies is achieved by cancelling each detected sound from the mixture and by repeating the estimation process with the residual. The vector of estimated f_0s in the input chord is $\hat{f}_0 = [\hat{f}_{01}, \hat{f}_{02} \ldots \hat{f}_{0n}]$.

3.5.1.2 Harmonic Reorganization Stage

In this stage, three different processing algorithms are applied: overtones grid generation, beating reduction and harmonic reorganization.

Overtones grid generation

Given the vector of estimated f_0s corresponding to the out-of-tune input chord \hat{f}_0, an in-tune version of the input chord \hat{f}_0^* is found by rounding each note to the closest slot within a given scale (typically major or minor). Then, the R first harmonics for each note of the in-tune version of the chords are added to the vector $\hat{f}_{\text{Hwhole}}^*$ (called *overtones grid*):

$$
\hat{f}_{\text{Hwhole}}^* = [\hat{f}^*_{01}, \hat{f}^*_{02}, \ldots \hat{f}^*_n, 2\hat{f}^*_{01}, 2\hat{f}^*_{02}, \ldots, 2\hat{f}^*_n, \ldots, R\hat{f}^*_{01}, R\hat{f}^*_{02}, \ldots, R\hat{f}^*_n] \quad (3.8)
$$

Note that this procedure just handles symbolic information, and it does not apply any processing to the input signal.

![Image](image_url)
Figure 3.14: Adjustment with musical restrictions of a largely out-of-tune C major chord.
3.5. DISSONANCE REDUCTION IN POLYPHONIC AUDIO

Figure 3.15: Generation of overtones grid. The overtones of every note (a) are combined into a single grid for the complete chord (b).

Beating reduction

Typically, out-of-tune chords contain undesired tremolo and vibrato in partials due to the sum of tones with similar, but not exact, frequencies. In the proposed approach, tremolo and vibrato are reduced by using envelope reconstruction and frequency stabilization (see [Molina et al., 2014a] for more details). This processing is especially noticeable for clean and pure sounds (e.g. synthetic sounds), and its contribution to the in-tuneness of the processed sound is quite limited for real-world sounds.

Harmonic reorganization

The core of the proposed approach is harmonic reorganization. In this sub-stage, the partials are shifted to the closest frequency from the overtones grid \hat{f}_{Hwhole}. For it, each partial is characterized with its average frequency value, and then they are pitch shifted accordingly to fit the overtones grid.

In Figure 3.16 all steps of the harmonic reorganization are shown.
Figure 3.16: Detail of the peak frequency spectrograms of several versions of a A major chord played with acoustic guitar.
(a) Original out-of-tune chord, whose notes are (name and MIDI number): A2 − 33 cents = 44.77, E2 − 33 cents = 51.77, A3 + 27 cents = 57.27, C#4 + 16 cents = 61.16, E4 − 20 cents = 63.80.
(b) Original chord after the beating reduction stage.
(c) Original chord after the beating reduction and the harmonic reorganization stages.
(d) A major chord played with a real in-tune guitar.
3.5. DISSONANCE REDUCTION IN POLYPHONIC AUDIO

3.5.2 Evaluation Methodology

The evaluation of the system has been performed in two parts. First, a group of 31 experts musicians rated the perceived consonance of 18 instrumental chords through a questionnaire. This is the evaluation published in [Molina et al., 2014a].

In addition, in this thesis, we include a second evaluation using 9 chords sung by a barbershop quartet. In this case, the perceived consonance of the chords was rated by 12 experts musicians (different from the previous 31 musicians) using the same questionnaire as in the first evaluation. This extra evaluation is not included in [Molina et al., 2014a], because it has been carried out after its publication.

3.5.2.1 Dataset

The dataset contains 18 instrumental chords and 9 barbershop quartet chords. More specifically, there are 3 versions of 9 different types of out-of-tune chords (6 instrumental and 3 sung chords). The instrumental sounds are increasingly complex (from synthetic stable sounds to real chamber ensembles). The barbershop quartet have been recorded by professional singers in a recording studio. Most of the chosen sounds are major chords, because they are very common in Western music and the difference between in-tune and out-of-tune chords is quite noticeable:

- Type of out-of-tune chords

 1. C Major played with 6 harmonic complex tones with ADSR envelope. Notes: C_4, $E_4 + 11$ cents, $G_4 - 21$ cents, $C_5 + 30$ cents. The single notes were artificially synthesized and then combined.

 2. C minor played with 6 harmonic complex tones with ADSR envelope. Notes: C_4, $E♭_4 + 13$ cents, $G_4 + 17$ cents, $C_5 - 32$ cents. As the previous case, the notes were artificially synthesized and then combined.

 3. A Major played with a real acoustic guitar. Notes: $A_2 - 33$ cents, $E_2 - 33$ cents, $A_3 + 27$ cents, $C♯_4 + 16$ cents, $E_4 - 20$ cents. The guitar was deliberately left out-of-tune to sound strongly dissonant, and all the strings were played together. Then, each note was separately analysed to find out its accurate frequency value.

 4. D Major played with a real acoustic guitar. Notes: $D_3 - 30$ cents, $A_3 + 28$ cents, $D_4 + 15$ cents, $F♯_4 + 3$ cents. The recording procedure was the same as in the previous case.

 5. B♭ Major played with a real woodwind quartet: $B♭_2$, $F_3 - 44$ cents, $B♭_3 - 50$ cents, $D_5 + 31$ cents. The notes of the chord were extracted
CHAPTER 3. GLOBAL SUMMARY OF RESULTS

from RWC database [Goto et al., 2003], carefully pitch-shifted and then combined.

6. C Major played with a real string quartet: C3 − 6 cents, E3 − 7 cents, C4 + 30 cents, G4 − 73 cents. This chord was generated in the same way as the previous one.

7. D♭ major chord sung by a real barbershop quartet: D♭2 - 18 cents, A♭2 − 44 cents, D♭3 + 31 cents, F3 + 35 cents. This chord has been generated by applying pitch-shifting to each vocal track of a barbershop quartet multitrack recording 15.

8. E♭ major chord sung by a real barbershop quartet: E♭2 - 58 cents, G2, B♭2 + 45, E♭3 + 52 cents. This chord was generated in the same way as the previous one.

9. D♭ major chord (high register) sung by a real barbershop quartet: D♭3 − 58, F3 + 45, A♭3 + 52, D♭4. This chord was generated in the same way as the previous one.

• Versions

 (A) Unprocessed chord.
 (B) Processed (developed approach).
 (C) Processed (Melodyne Editor).

In version B, we have used the following parameters for all the sounds: sampling rate = 44100 Hz, window size $M = 8001$ samples, FFT size $N = 8192$ samples, number of partials per note $R = 30$ and degree of polyphony $n = 5$. In version C, the degree of polyphony and the notes of the chord have been manually adjusted for each case in order to achieve the best results. In next sections, sounds will be identified by combining the number of the chord and the type of version, i.e. 1.A would be the first chord in the unprocessed version.

In chords 1, 2, 3, 4, 5 and 7 the chosen f_S is the tempered chromatic scale (no musical assumptions are made about the input). In 6, 8 and 9, some notes could be incorrectly rounded due to deviations higher than 50 cents, so in these cases the major scale has been chosen instead of the chromatic one.

3.5.2.2 Evaluation

Subjects

For the evaluation, 31 musicians were interviewed about the instrumental chords,

15Rounders’ recording at http://www.cambridge-nt.com/ms-ntk.htm
and 12 different musicians were interviewed about the barbershop quartet chords. All of them have passed a minimum of 7 years of formal music education, and they play very different instruments (woodwind, piano, percussion...), so there is no predominant instrument. In the first group of musicians there are 16 male and 15 female individuals, and most of the subjects’ age is below 25. In the second group, there are 8 male and 4 female individuals, and most of the subjects’ age is below 35.

Questionnaires

The subjects were asked to rate from 1 to 10 the perceived consonance of 18 sounds. For every group of three versions (A, B and C), they were also asked to choose, globally, the best version if they had to use such chord in a musical context.

Statistics

Different measures have been taken from the questionnaires for each sound in the dataset.

- Mean perceived consonance μ_c.
- Standard deviation of the perceived consonance σ_c.
- Percentage of times that a version has been chosen as the best option among the three versions.

3.5.3 Results & Discussion

The results obtained for instrumental chords are shown in Table 3.5. In the case of synthetic sounds (chords 1 and 2), the results show a clear improvement in the consonance of the processed sounds (either with Melodyne or either with our approach). Unprocessed sounds were strongly perceived as dissonant, whereas the processed ones improved the consonance rating around 3 points. Moreover, the developed approach provides better results than Melodyne Editor for the case of synthetic sounds, since in Melodyne case noticeable beating partials are still present in the processed chords.

The case of the acoustic guitar (chords 3 and 4) is especially interesting, since it is a very common instrument and the results are quite satisfactory. More than 70% of the subjects considered the selected approach to be better than Melodyne Editor. We conclude that plucked string instruments are very appropriate to be processed with the selected approach, since the assumed partial stability holds true for most of the cases.
CHAPTER 3. GLOBAL SUMMARY OF RESULTS

Table 3.5: Questionnaires results for instrumental chords. **x.A:** Unprocessed sound; **x.B:** Developed approach; **x.C:** Melodyne Editor.

<table>
<thead>
<tr>
<th>Chord version</th>
<th>Perceived consonance [1-10]</th>
<th>Chosen as best result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A Original</td>
<td>(\mu_c = 3.48 \sigma_c = 1.48)</td>
<td>3.2%</td>
</tr>
<tr>
<td>1.B Our approach</td>
<td>(\mu_c = 6.64 \sigma_c = 2.05)</td>
<td>77.4%</td>
</tr>
<tr>
<td>1.C Melodyne</td>
<td>(\mu_c = 5.48 \sigma_c = 1.80)</td>
<td>19.35%</td>
</tr>
<tr>
<td>2.A Original</td>
<td>(\mu_c = 2.67 \sigma_c = 1.30)</td>
<td>6.45%</td>
</tr>
<tr>
<td>2.B Our approach</td>
<td>(\mu_c = 5.35 \sigma_c = 2.25)</td>
<td>74.2%</td>
</tr>
<tr>
<td>2.C Melodyne</td>
<td>(\mu_c = 3.96 \sigma_c = 1.87)</td>
<td>19.3%</td>
</tr>
<tr>
<td>3.A Original</td>
<td>(\mu_c = 4.61 \sigma_c = 1.89)</td>
<td>3.2%</td>
</tr>
<tr>
<td>3.B Our approach</td>
<td>(\mu_c = 7.19 \sigma_c = 1.86)</td>
<td>83.9%</td>
</tr>
<tr>
<td>3.C Melodyne</td>
<td>(\mu_c = 5.83 \sigma_c = 2.35)</td>
<td>9.7%</td>
</tr>
<tr>
<td>4.A Original</td>
<td>(\mu_c = 4.32 \sigma_c = 1.81)</td>
<td>3.2%</td>
</tr>
<tr>
<td>4.B Our approach</td>
<td>(\mu_c = 7.09 \sigma_c = 1.68)</td>
<td>71%</td>
</tr>
<tr>
<td>4.C Melodyne</td>
<td>(\mu_c = 6.19 \sigma_c = 1.99)</td>
<td>25.8%</td>
</tr>
<tr>
<td>5.A Original</td>
<td>(\mu_c = 2.19 \sigma_c = 1.27)</td>
<td>0%</td>
</tr>
<tr>
<td>5.B Our approach</td>
<td>(\mu_c = 4.03 \sigma_c = 2.33)</td>
<td>32%</td>
</tr>
<tr>
<td>5.C Melodyne</td>
<td>(\mu_c = 4.64 \sigma_c = 2.38)</td>
<td>68%</td>
</tr>
<tr>
<td>6.A Original</td>
<td>(\mu_c = 1.54 \sigma_c = 0.80)</td>
<td>0%</td>
</tr>
<tr>
<td>6.B Our approach</td>
<td>(\mu_c = 5.54 \sigma_c = 2.15)</td>
<td>77.4%</td>
</tr>
<tr>
<td>6.C Melodyne</td>
<td>(\mu_c = 4.77 \sigma_c = 1.96)</td>
<td>22.6%</td>
</tr>
</tbody>
</table>
In the case of a woodwind quartet (5), Melodyne performs better than our approach, with a perceived consonance of 4.63 and 4.02 respectively. If both versions are carefully compared, it can be noticed that the difference between them in terms of dissonance is mild, but Melodyne produces a more natural result. In the case of the strings quartet (6) Melodyne does not properly separate the various notes of the chord, so 6.C is still dissonant and unnatural compared to 6.B. In all comparisons, a t-Student test (with p < 5%) revealed statistical validity [Zabell, 2008]. Regarding the results obtained with the barbershop quartet chords, they are similar to previous cases (shown in Table 3.6). In general, unprocessed sounds are perceived as strongly dissonant, whereas processed chords have a clear improvement of perceived consonance. In the case of 7 and 9, our approach performs definitely better than Melodyne, since Melodyne is not totally able to distinguish the various frequencies comprising the original chord. In the case of 8, Melodyne provides a more natural sound because it detects all frequencies in the original chord. Therefore, our observations lead us to conclude Melodyne has a bottleneck in multiple-F0 estimation when input chords are out-of-tune chords. In that sense, our approach has the advantage of being truly robust to missing F0s in the multiple-F0 estimation.

<table>
<thead>
<tr>
<th>Chord version</th>
<th>Perceived consonance [1-10]</th>
<th>Chosen as best result</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.A Original</td>
<td>(\mu_c = 6.09) (\sigma_c = 1.7)</td>
<td>(0)%</td>
</tr>
<tr>
<td>7.B Our approach</td>
<td>(\mu_c = 8.36) (\sigma_c = 1.12)</td>
<td>(100)%</td>
</tr>
<tr>
<td>7.C Melodyne</td>
<td>(\mu_c = 4.54) (\sigma_c = 1.81)</td>
<td>(0)%</td>
</tr>
<tr>
<td>8.A Original</td>
<td>(\mu_c = 3.90) (\sigma_c = 1.22)</td>
<td>(0)%</td>
</tr>
<tr>
<td>8.B Our approach</td>
<td>(\mu_c = 7.09) (\sigma_c = 1.04)</td>
<td>(36)%</td>
</tr>
<tr>
<td>8.C Melodyne</td>
<td>(\mu_c = 6.63) (\sigma_c = 1.02)</td>
<td>(64)%</td>
</tr>
<tr>
<td>9.A Original</td>
<td>(\mu_c = 3.36) (\sigma_c = 1.62)</td>
<td>(0)%</td>
</tr>
<tr>
<td>9.B Our approach</td>
<td>(\mu_c = 6.0) (\sigma_c = 2.04)</td>
<td>(73)%</td>
</tr>
<tr>
<td>9.C Melodyne</td>
<td>(\mu_c = 3.63) (\sigma_c = 2.37)</td>
<td>(27)%</td>
</tr>
</tbody>
</table>

Table 3.6: Questionnaires results for vocal chords. x.A: Unprocessed sound; x.B: Developed approach; x.C: Melodyne Editor.
Conclusions and Future Research

In this chapter, we draft some conclusions about the content presented (Section 4.1), we list the contributions of this thesis (Section 4.2), and we give some suggestions for future research (Section 4.3).

4.1 Conclusions and Research Contributions

In this thesis, we have proposed a varied set of techniques and applications in the field of singing information processing. Specifically, the goals presented at the outset of this dissertation (Section 1.1) address the following three topics: singing transcription (both pitch and note tracking), singing skill assessment, and sound transformation (concretely: voice timbre processing, and pitch shifting in polyphonic audio). Of course, the achievement of such goals also require a deep review of the state-of-the-art on related fields. Now, in view of the data and results presented in this thesis, we can say these goals have been successfully achieved.

Review of the state-of-the-art

First, a review covering all relevant literature about the topics addressed in this thesis has been presented in Section 2. It reflects the knowledge acquired during our investigation, and it is useful to contextualize the achieved results. The topics covered by this review are: singing voice production, pitch estimation (monophonic F0 estimation, melody extraction and multi-F0 estimation), singing transcription, dynamic time warping, automatic singing assessment, timbre processing and spectral modeling synthesis.
Comparative analysis of F0-trackers for query-by-singing-humming

A comparative study of several state-of-the-art F0-trackers in the context of query-by-singing-humming has been presented (Section 3.1). Specifically, eight different F0-trackers have been tested with two state-of-the-art melody matchers for query-by-singing-humming, plus a publicly available baseline method. Three main conclusions can be drawn from this study. The first conclusion is that the three melody matchers obtain the best results with the same F0-trackers in all cases. This suggests that a simple baseline melody-matcher can be used to compare the performance of different F0-trackers in query-by-singing-humming. The second conclusion is that the recently published pYIN method for F0-tracking [Mauch, 2014] has a surprisingly great performance in noisy environments. The third conclusion is that the way F0-tracking is usually evaluated in the literature is not totally representative of its suitability for query-by-singing-humming, since it does not consider the kind of errors committed by the F0-tracker in unvoiced frames.

Singing transcription

In this thesis, a singing transcription method based on a hysteresis process on the pitch-time curve (called SiPTH, as described in Section 3.2.1) has been proposed. This method applies a hysteresis-based transformation to the Yin algorithm in order to transform its outputs: F0, aperiodicity and energy, into a sequence of notes. The results show that this approach, which is simple to understand and to implement, achieves a performance comparable to other more complex state-of-the-art approaches for singing transcription.

In addition, a comprehensive evaluation framework for singing transcription has been presented in this thesis (Section 3.2.2). This framework includes an annotated dataset and a software tool to compute evaluation metrics and visualize the transcription. The evaluation metrics included in this framework report detailed information about the type of errors committed by the target transcriber, so they are useful to highlight its weaknesses. This framework has been used by some recent articles on singing transcription (e.g. [Mauch et al., 2015a]), and it is intended to encourage reproducible research in the area of singing transcription.

Automatic singing assessment

In Section 3.3, two different approaches for automatic singing assessment have been proposed and compared: (1) frame-level similarity against a target reference using f_0 curve alignment through Dynamic Time Warping, (2) note-level similarity using singing transcription. Both approaches require a target reference, which is considered the ideal performance. This ideal performance can be the MIDI file of
the original song, or the performance of a target user (e.g. a teacher). The system has been evaluated by analyzing the correlation between the scores provided by it, and the scores provided by a set of experts musicians. The results of our comparison show that frame-level similarity is a simple but effective technique for intonation and rhythm assessment, and that using singing transcription introduces more complexity to the system without a clear advantage.

Timbre analysis and processing

A method to model the variations of spectral envelope along intensity in singing voice has been proposed in Section 3.4. This method is based on a parametric spectral-envelope model, whose parameters are shifted accordingly to emulate the intensity variations in singing voice. Three contributions are related to this investigation: (1) a parametric model of spectral envelope based on 4-pole filter for formants modeling, (2) a software tool to annotate sung vowels using such parametric model, and (3) a method to shift the parameters of such model in order to produce realistic intensity variations. We observed that two parameters are mainly responsible for the perception of vocal intensity, since they decrease when vocal intensity increases: spectral tilt and formants bandwidth. The proposed system has been compared against Melodyne Editor and Vocaloid 3.0, through a listening questionnaire answered by four amateur musicians. The results show that the suggested approach significantly increases the realism of the transformations in comparison with the two other approaches, specially for the case of loud-to-weak transformations.

Dissonance reduction in polyphonic audio

Finally, a method for automatic reduction of dissonance in recorded isolated chords has been proposed in Section 3.5. This method performs a multiple-F0 estimation to identify the chord to be tuned, and a sinusoidal plus residual modeling to shift its partials. These partials are shifted to fit the harmonic structure of the in-tune version of the same chord. The evaluation methodology has been based on listening tests where a set of expert musicians have assessed the perceived consonance of several recorded chords before and after the processing. Our results show that the proposed system performs generally better than Melodyne Editor to improve the consonance of out-of-tune chords, both in instrumental and vocal chords.

4.2 Summary of Contributions

In this Section, we enumerate the scientific contributions of this thesis, together with the research resources published during our investigation.
Scientific contributions

• **Review of previous research:** A comprehensive review of current state-of-the-art methods and techniques related to *Singing Information Retrieval* field is provided in Chapter 2. This review covers the following topics: singing voice production (Section 2.1), pitch estimation (Section 2.2), singing transcription (Section 2.3), dynamic time warping (Section 2.4), automatic singing assessment (Section 2.5), timbre processing (Section 2.6) and spectral modeling synthesis (Section 2.7).

• **Comparative analysis of monophonic F0 trackers:** A comparative analysis of several state-of-the-art F0 trackers in the context of query-by-singing-humming has been carried out. It has been published in [Molina et al., 2014d], and summarized in Section 3.1.

• **Novel method for singing transcription:** A method for singing transcription (named as *SiPTH*) using interval-based segmentation with a hysteresis cycle on the pitch-time curve has been proposed. This method is simple to implement, and its performance is similar to other state-of-the-art methods. It has been published in [Molina et al., 2015], and summarized in Section 3.2.1.

• **Evaluation framework for singing transcription:** An analysis of previous evaluation strategies in singing transcription (used datasets and evaluation metrics), and an evaluation framework (annotated dataset, implemented metrics and GUI) has been presented. It has been published in [Molina et al., 2014b] and summarized in Section 3.2.2.

• **Method for singing assessment:** A novel approach for automatic singing assessment based on pitch contour alignment using dynamic time warping has been proposed. It has been published in [Molina et al., 2013] and summarized in Section 3.3.

• **Method for timbre processing:** A parametric model of spectral envelope based on 4-pole filters for formants modeling, together with an study about the variations of spectral envelope along singing intensity, and a method to perform realistic intensity variations in singing voice have been presented. It has been published in [Molina et al., 2014c] and summarized in Section 3.4.

• **Method for dissonance reduction in polyphonic audio:** A method for dissonance reduction of out-of-tune chords using harmonic reorganization has been proposed. It has been published in [Molina et al., 2015] and summarized in Section 3.5.
4.3. SUGGESTIONS FOR FUTURE RESEARCH

Research resources

- **Baseline algorithm for audio-to-MIDI melody matching**: We provide a Matlab implementation of a DTW-based baseline algorithm for audio-to-MIDI melody matching. It can be used as a starting point to work in query-by-singing-humming, or to measure the suitability of a given F0 tracker for query-by-singing-humming (as stated in Section 3.1). It can be found in the following link:

 www.atic.uma.es/ismir2014qbsh

- **Spectral envelope annotation tool**: Matlab tool (with GUI) to annotate parameters of spectral envelope in sustained vowels. More details about this tool can be found in Section 3.4, and it can be downloaded at the following link:

 www.atic.uma.es/icassp2014singing

- **Singing transcription evaluation tool**: Matlab tool (with GUI) to visualize and evaluate monophonic melody transcriptions and annotated dataset for singing transcription. This dataset consists of 38 melodies (1154 seconds) sung untrained singers (men, women and children), annotated by expert musicians at note-level. More details can be found in Section 3.2.2, and it can be downloaded in:

 www.atic.uma.es/ismir2014singing

- **Database of Piano Chords**: In addition to all provided material related to singing voice, a database of piano chords for multiple F0 estimation has been also published [Barbancho et al., 2013].

4.3 Suggestions for Future Research

Apart from the published material, many other relevant observations and ideas have appeared during our investigation. Some of these considerations are worth to be mentioned because they may be solutions for specific weaknesses of the proposed approaches, or may even be a promising alternative to deal with the addressed problems. In this section, we discuss these ideas and propose specific suggestions for future research.
Singing transcription

- **Better evaluation framework:** The usefulness of the evaluation framework described in Section 3.2.2 may be improved by adding more annotated data. The manual annotation might be efficiently performed using the recent Tony software tool [Mauch et al., 2015a]. Eventually, if this dataset become large enough, it might be used to define a *singing transcription task* in MIREX\(^1\). Additionally, the evaluation metrics used for it may be integrated in *mir_eval* [Raffel et al., 2014] Python package in order to make them available in a standardized format. Finally, this evaluation framework could include not only context-independent metrics (e.g. note accuracy), but also context-specific metrics (e.g. answering *how well does your transcriber work for query-by-singing-humming?*)

- **Singing transcription based on Hidden Markov Models (HMM) using timbre features:** According to our observations, an HMM-based method for singing transcription including timbre features (e.g. MFCCs) could be an interesting path forward. This idea is based on three main facts: (1) many successful system for speech recognition are based on HMMs using MFCCs as main feature (see Section 2.6.4.1), (2) speech recognition and singing transcription seem to share a similar nature (especially when lyrics are present), and (3) some successful approaches for singing transcription are already based on HMMs, but, to the best of our knowledge, none of them use timbre features (see Section 2.3).

Singing skill assessment

- **Robust pitch contour alignment:** Pitch contour alignment is the basis of our approach for singing assessment (see Section 3.3), but it can be challenging when the singer makes considerable intonation or rhythm errors. In order to deal with it, we propose to perform audio-to-audio alignment using not only pitch information, but also other features such as energy, aperiodicity, and even MFCCs. In this case, audio-to-MIDI alignment does not longer apply, so we propose the use of several reference audio recordings for each song (for higher robustness), corresponding to accurate, real singing performances.

- **Song-independent approach for automatic singing assessment:** The use of reference melodies has a clear disadvantage: a lot of material must be prepared in an eventual singing game to create a large set of singing exercises.

\(^1\)www.music-ir.org/mirex
However, as stated by [Nakano et al., 2009], the accuracy of singing performances can be often assessed by a human listener even if the melody being sung is unknown. Due to this fact, in some contexts, a song-independent approach might be more suitable to achieve a full working system for singing assessment, so we recommend to explore this way in further research.

Timbre processing

- **Alternative approach for realistic intensity variation using LPC poles warping:** The proposed method for realistic intensity variation in singing voice (see Section 3.4) is based on a parametric model of spectral envelope. We observed that two parameters are mainly varied along intensity: spectral slope and formants bandwidth. In view of this result, we suggest to explore LPC poles warping to process singing voice, since it is computationally lighter and might lead to other relevant real-time applications.

- **Removal of partial tracking stage in polyphonic audio processing:** Our approach for dissonance reduction in polyphonic audio (see Section 3.5) uses sinusoidal plus residual modeling, and tracks each sinusoid along time in order to identify the partials of the sound, as proposed by [Serra, 1989]. However, partial tracking is computationally costly, so we suggest to experiment without any kind of partial tracking to achieve a lighter, and more compact scheme for dissonance audio reduction in polyphonic audio.
CHAPTER 4. CONCLUSIONS AND FUTURE RESEARCH
In this appendix, we include a set of links with relevant research resources that have been referenced along this thesis.

A.1 Software

Sonic visualizer and sonic annotator

Sonic visualizer is a software tool with a GUI to visualize waveforms, spectrograms, descriptors, etc. It supports VAMP plugins for audio analysis, which include a long list of state-of-the-art descriptors. It has been used in many processes during our investigation. On the other hand, sonic annotator allows to use VAMP plugin in command line without a GUI:

- http://www.sonicvisualiser.org/
- http://www.vamp-plugins.org/sonic-annotator/

Essentia

Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval [Bogdanov et al., 2013]. It contains an extensive collection of reusable algorithms which implement audio input/output functionality, standard digital signal processing blocks, statistical characterization of data, and a large set of spectral, temporal, tonal and high-level music descriptors. The library is also wrapped in Python and includes a number of predefined executable extractors for the available music descriptors.

- http://essentia.upf.edu/
APPENDIX A. RELEVANT ONLINE RESEARCH RESOURCES

Librosa
LibROSA is a python package for music and audio analysis. It provides the building blocks necessary to create music information retrieval systems [McFee et al., 2015].

• https://github.com/librosa/librosa

Madmom
Madmom is an audio signal processing library written in Python with a strong focus on music information retrieval (MIR) tasks.

• https://github.com/CPJKU/madmom

mir_eval
Python library for computing common heuristic accuracy scores for various music/audio information retrieval/signal processing tasks [Raffel et al., 2014].

• https://github.com/craffel/mir_eval

MIRtoolbox
MIRtoolbox offers an integrated set of functions written in Matlab, dedicated to the extraction from audio files of musical features such as tonality, rhythm, structures, etc. The objective is to offer an overview of computational approaches in the area of Music Information Retrieval.

• https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

VOICEBOX: Speech Processing Toolbox for MATLAB
VOICEBOX is a speech processing toolbox consists of MATLAB routines.

• http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
Yin algorithm implementations

Some implementations of Yin algorithm for monophonic pitch tracking [De Cheveigné and Kawahara, 2002], which is described in Section 2.2.1, can be found in the following links:

- http://audition.ens.fr/adc/ (in Matlab, implemented by the author)
- https://github.com/JorenSix/TarsosDSP (in Java)
- https://code.soundsoftware.ac.uk/projects/pyin (in C++)
- https://github.com/ashokfernandez/Yin-Pitch-Tracking (pure C)

Praat software for voice analysis

Praat is a classical software tool that implements several voice analysis algorithms. It includes the classical (and well performing, as showed in Section 3.1) method for pitch tracking by [Boersma, 1993], as well as several methods for formant tracking.

- http://www.fon.hum.uva.nl/praat/

Melody extraction: MELODIA

MELODIA is an algorithm for melody extraction developed by [Salamon, 2013], and it is available at:

- http://mtg.upf.edu/technologies/melodia

MeloTranscript

SampleSumo’s Melody Transcription (MeloTranscript) library, is a technology package for offline monophonic melody transcription. It is the latest evolution of the method proposed by [De Mulder et al., 2004].

- https://www.samplesumo.com/melody-transcription

Songs2See

Songs2See is a representative example of the state-of-the-art in automatic singing skill assessment, and it works as an online game [Dittmar et al., 2010].

- http://www.songs2see.com/en/
LabROSA: Matlab Audio Processing Examples

Managed by Dan Ellis, it contains several little pieces of Matlab code related to MIR that might be fun or useful to play with.

- https://www.ee.columbia.edu/~dpwe/resources/matlab/

sms-tools

Sound analysis/synthesis tools for music applications written in python (with a bit of C) plus complementary lecture materials. It implements the spectral models described in Section 2.7.

- https://github.com/MTG/sms-tools

Baseline method for QBSH

It is described in Section 3.1.1.2, implemented in Matlab and based on DTW. It is useful to getting started in QBSH and to evaluate new F0 trackers in the context of QBSH.

Evaluation framework for singing transcription

Presented in Section 3.2.2, it is a Matlab tool (with GUI) to visualize and evaluate monophonic melody transcriptions. It implements a set of relevant metrics to analyze the behavior of the target transcriber.

Tool to annotate spectral envelope of singing

Matlab tool (with GUI) to annotate parameters of spectral envelope in sustained vowels. More details about the tool can be found in Section 3.4.

A.2 Datasets

MIR corpora by Roger Jang
Datasets for query-by-singing-humming, singing voice separation, query-by-tapping, etc.

• http://mirlab.org/dataSet/public/

Singing transcription dataset
Dataset for singing transcription used for evaluation in Section 3.2.2. It consists of 38 melodies sung by adult and child untrained singers, recorded in mono with a sample rate of 44100Hz and a resolution of 16 bits. The duration of the excerpts ranges from 15 to 86 seconds, and the total duration of the whole dataset is 1154 seconds.

• http://www.atic.uma.es/ismir2014singing/
APPENDIX B

Publications

APPENDIX B. PUBLICATIONS

Abstract

This paper presents a generic approach for automatic singing assessment for basic singing levels. The system provides the user with a set of intonation, rhythm and overall ratings obtained by measuring the similarity of the sung melody and a target performance. Two different similarity approaches are discussed: f_0 curve alignment through Dynamic Time Warping (DTW), and singing transcription plus note-level similarity. From these two approaches, we extract different intonation and rhythm similarity measures which are combined through quadratic polynomial regression analysis in order to fit the judgement of 4 trained musicians on 27 performances. The results show that the proposed system is suitable for automatic singing voice rating and that DTW based measures are specially simple and effective for intonation and rhythm assessment.
B.2

Abstract

In this paper, a method for automatic reduction of dissonance in recorded isolated chords is proposed. Previous approaches address this problem using source separation and note-level processing. In our approach, we manipulate the harmonic structure as a whole in order to avoid beating partials which, according to prior research on dissonance perception, typically produce an unpleasant sound. The proposed system firstly performs a sinusoidal plus residual modelling of the input and analyses the various fundamental frequencies present in the chord. This information is used to create a symbolic representation of the in-tune version of the input according to some musical rules. Then, the partials of the signals are shifted in order to fit the in-tune harmonic structure of the input chord. The input is assumed to contain one isolated chord, with relatively stable fundamental frequencies belonging to the Western chromatic scale. The evaluation has been performed by 31 expert musicians, which have quantified the perceived consonance of six varied, out-of-tune chords in three variants: unprocessed, processed with our system and processed by a state-of-the-art commercial tool (Melodyne Editor). The proposed approach attains an important reduction of the perceived dissonance, showing better performance than Melodyne Editor for most of the cases evaluated.
B.3

Abstract

In this paper, we analyse the evaluation strategies used in previous works on automatic singing transcription, and we present a novel, comprehensive and freely available evaluation framework for automatic singing transcription. This framework consists of a cross-annotated dataset and a set of extended evaluation measures, which are integrated in a Matlab toolbox. The presented evaluation measures are based on standard MIREX note-tracking measures, but they provide extra information about the type of errors made by the singing transcriber. Finally, a practical case of use is presented, in which the evaluation framework has been used to perform a comparison in detail of several state-of-the-art singing transcribers.
B.4

Abstract

In this paper, we propose a method to synthesize the natural variations of spectral envelope as intensity varies in singing voice. To this end, we propose a parametric model of spectral envelope based on novel 4-pole resonators as formant filters. This model has been used to analyse 60 vowels sung at different intensities in order to define a set of functions describing the global variations of parameters along intensity. These functions have been used to modify the intensity of 16 recorded vowels and 8 synthetic vowels generated with Vocaloid. The realism of the transformations performed with our approach has been evaluated by four amateur musicians in comparison to Melodyne for real sounds and to Vocaloid for synthetic sounds. The proposed approach has been proved to achieve more realistic sounds than Melodyne and Vocaloid, especially for loud-to-weak transformations.
APPENDIX B. PUBLICATIONS

Abstract
In this paper, we present a comparative study of several state-of-the-art F0 trackers applied to the context of query-by-singing-humming (QBSH). This study has been carried out using the well known, freely available, MIR-QBSH dataset in different conditions of added pub-style noise and smartphone-style distortion. For audio-to-MIDI melodic matching, we have used two state-of-the-art systems and a simple, easily reproducible baseline method. For the evaluation, we measured the QBSH performance for 189 different combinations of F0 tracker, noise/distortion conditions and matcher. Additionally, the overall accuracy of the F0 transcriptions (as defined in MIREX) was also measured. In the results, we found that F0 tracking overall accuracy correlates with QBSH performance, but it does not totally measure the suitability of a pitch vector for QBSH. In addition, we also found clear differences in robustness to F0 transcription errors between different matchers.

Abstract

In this paper, we present a method for monophonic singing transcription based on hysteresis defined on the pitch-time curve. This method is designed to perform note segmentation even when the pitch evolution during the same note behaves unstably, as in the case of untrained singers. The selected approach estimates the regions in which the chroma is stable, these regions are classified as voiced or unvoiced according to a decision tree classifier using two descriptors based on aperiodicity and power. Then, a note segmentation stage based on pitch intervals of the sung signal is carried out. To this end, a dynamic averaging of the pitch curve is performed after the beginning of a note is detected in order to roughly estimate the pitch. Deviations of the actual pitch curve with respect to this average are measured to determine the next note change according to a hysteresis process defined on the pitch-time curve. Finally, each note is labelled using three single values: rounded pitch (to semitones), duration and volume. Also, a complete evaluation methodology that includes the definition of different relevant types of errors, measures and a method for the computation of the evaluation measures are presented. The proposed system improves significantly the performance of the baseline approach, and attains results similar to previous approaches.
Bibliography

117

input parameters of Klatt’s speech synthesizer. In Proceedings of the 10th Brazilian Symposium on Neural Networks (SBRN 2008), pages 81–86, Salvador, Bahia, Brazil. ↑36

Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France. ↑36, ↑37

BIBLIOGRAPHY

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 185–188. ↑25

BIBLIOGRAPHY

on Audio, Language and Image Processing, Proceedings (ICALIP 2008), pages 471–475. ↑3, ↑53

Procesado de Información de Voz Cantada: Técnicas y Aplicaciones

Emilio Molina Martínez
Resumen en Castellano de Tesis Doctoral

Programa de Doctorado en Ingeniería de Telecomunicación
Escuela Técnica Superior de Ingeniería de Telecomunicación
Universidad de Málaga, 2017

Tutor
Lorenzo José Tardón García

Directores
Lorenzo José Tardón García
Ana María Barbancho Pérez
Resumen

La voz cantada es una componente esencial de la música en todas las culturas del mundo, ya que se trata de una forma increíblemente natural de expresión musical. En consecuencia, el procesado automático de voz cantada tiene un gran impacto desde la perspectiva de la industria, la cultura y la ciencia. En este contexto, esta Tesis contribuye con un conjunto variado de técnicas y aplicaciones relacionadas con el procesado de voz cantada, así como con un repaso del estado del arte asociado en cada caso.

En primer lugar, se han comparado varios de los mejores estimadores de tono conocidos para el caso de uso de recuperación por tarareo. Los resultados demuestran que [Boersma, 1993] (con un ajuste no obvio de parámetros) y [Mauch, 2014], tienen un muy buen comportamiento en dicho caso de uso dada la suavidad de los contornos de tono extraídos.

Además, se propone un novedoso sistema de transcripción de voz cantada basada en un proceso de histéresis definido en tiempo y frecuencia, así como una herramienta para evaluación de voz cantada en Matlab. El interés del método propuesto es que consigue tasas de error cercanas al estado del arte con un método muy sencillo. La herramienta de evaluación propuesta, por otro lado, es un recurso útil para definir mejor el problema, y para evaluar mejor las soluciones propuestas por futuros investigadores.

En esta Tesis también se presenta un método para evaluación automática de la interpretación vocal. Usa alineamiento temporal dinámico para alinear la interpretación del usuario con una referencia, proporcionando de esta forma una puntuación de precisión de afinación y de ritmo. La evaluación del sistema muestra una alta correlación entre las puntuaciones dadas por el sistema, y las puntuaciones anotadas por un grupo de músicos expertos.

Por otro lado, se presenta un método para el cambio realista de intensidad de voz cantada. Esta transformación se basa en un modelo paramétrico de la envolvente espectral, y mejora sustancialmente la percepción de realismo al compararlo con software comerciales como Melodyne o Vocaloid. El inconveniente del enfoque propuesto es que requiere intervención manual, pero los resultados conseguidos arrojan importantes conclusiones hacia la modificación automática de intensidad con resultados realistas.

Por último, se propone un método para la corrección de disonancias en acordes aislados. Se basa en un análisis de múltiples F0, y un desplazamiento de la frecuencia de su componente sinusoidal. La evaluación la ha realizado un grupo de músicos entrenados, y muestra un claro incremento de la consonancia percibida después de la transformación propuesta.
Contenido

1 Introducción

1.1 Objetivos de investigación 7

2 Resumen de resultados ... 9

2.1 Análisis comparativo de estimadores de tono 9
 2.1.1 Enfoque utilizado 9
 2.1.2 Resultados y discusión 10

2.2 Transcripción de voz cantada a notas 12
 2.2.1 SiPTH .. 12
 2.2.2 Herramienta de evaluación para transcripción de voz cantada 12
 2.2.2.1 Colección de datos propuesta 13
 2.2.2.2 Medidas de evaluación propuestas 13
 2.2.2.3 Resultados y discusión 14

2.3 Evaluación automática de la habilidad de canto 15
 2.3.1 Descripción del sistema 16
 2.3.1.1 Enfoque basado en similitud de curvas de tono 16
 2.3.1.2 Enfoque basado en similitud a nivel de nota 16
 2.3.1.3 Cálculo de la puntuación 16
 2.3.2 Evaluación y resultados 16
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Análisis y procesado de timbre</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1 Procedimiento</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2 Evaluación</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Resultados y discusión</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Reducción de disonancia en audio polifónico</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1 Evaluación</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2 Resultados y discusión</td>
<td>23</td>
</tr>
<tr>
<td>3 Conclusiones y líneas futuras</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Resumen de contribuciones</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Sugerencias para investigación futura</td>
<td>32</td>
</tr>
</tbody>
</table>
Sección 1

Introducción

La voz cantada es una componente esencial de la música en todas las culturas del mundo, ya que se trata de una natural y genuina forma de expresión musical. En la actualidad, las tecnologías de grabación de audio y la amplificación han contribuido a la aparición de estilos de canto muy diversos con recursos expresivos variados (e.g. susurros), y en parte debido a ello, la voz cantada tiene un rol claramente protagónista en la mayor parte de los estilos musicales modernos (e.g. pop). En consecuencia, el procesado digital de voz cantada tiene un gran impacto en la sociedad desde el punto de vista de la industria, la cultura y la ciencia.

Sin embargo, al contrario de lo que sucede con el ámbito de procesado de voz hablada, el procesado de voz cantada es un campo de investigación aún inmaduro, y los retos asociados aún están lejos de ser solucionados para aplicaciones válidas en el mundo real: transcripción a nivel de nota, modificación realista del timbre, transcripción y alineamiento de letra, etc. Muchos de estos problemas están prácticamente resueltos para instrumentos musicales, pero las soluciones empleadas suelen fracasar cuando se aplican a voz cantada. La razón es la gran variabilidad de la voz cantada, la cual se ve afectada por factores como: cantante (género, timbre, formación...), estilo musical (e.g. rap es completamente diferente a ópera), presencia o no de letra, etc. En consecuencia, es necesaria mucha investigación aún para superar estos retos asociados al procesado de voz cantada.

Contexto científico: Procesamiento de Información de Voz Cantada

El área de investigación llamado Procesamiento de Información de Voz Cantada (Singing Information Processing) [Goto et al., 2010] [Goto, 2014] se define como
“procesamiento de información musical para voz cantada”. Algunos de los problemas abordados en este ámbito de investigación son:

- Síntesis de voz cantada [Cook, 1991] [Cook, 1996] [Bonada and Serra, 2007] [Schwarz, 2007] [Kenmochi and Ohshita, 2007]

- Transcripción y sincronización de letra [Kan et al., 2008] [Fujihara et al., 2011]

- Análisis y procesado de timbre: conversión de voz [Toda et al., 2007], identificación de cantante [Zhang, 2003], reconocimiento de emoción [Kanato et al., 2014], etc.

- Sistemas de recuperación de información musical (Music Information Retrieval), como por ejemplo sistemas de búsqueda musical por canto o tarareo (query-by-singing-humming) [Wang et al., 2008] [Li et al., 2008], o búsqueda por percusión vocal [Nakano et al., 2005].

- Transcripción de voz cantada a notas [Ryynänen, 2006] [Pardo et al., 2004] [Dittmar et al., 2010].

- Modificación de la curva de tono, sobre todo estudiada en el ámbito comercial (por ejemplo Melodyne\(^1\) o Auto-tune\(^2\)).

- Evaluación automática de la habilidad de canto [Rossiter and Howard, 1996] [Howard et al., 2004] [Saino et al., 2006] [Grollmisch et al., 2011] [Molina, 2012].

Temas abordados en esta Tesis

Esta Tesis aborda varios temas específicos relacionados con este amplio campo de investigación.

Se analiza la importancia de la estimación de tono en sistemas de búsqueda por canto o tarareo. Para este análisis se ha llevado a cabo un estudio comparativo con estimadores de tono del estado del arte con una colección de datos ampliamente usada para estudiar sistemas de búsqueda por canto o tarareo [Molina et al., 2014d].

Además, se presenta un sistema de transcripción de voz cantada a notas utilizando un proceso de histéresis en la curva tiempo-tono [Molina et al., 2015], así como un marco de evaluación en Matlab para transcripción de voz cantada [Molina

\(^1\)www.celemony.com
\(^2\)www.antarestech.com
1.1. OBJETIVOS DE INVESTIGACIÓN

Los objetivos de investigación de esta Tesis incluyen tanto técnicas como aplicaciones en el ámbito del Procesado de Información de Voz Cantada. Estos objetivos son:

- Revisar el estado del arte de los problemas abordados en esta Tesis. Esta revisión debe ser especialmente profunda para los temas principales de esta Tesis: estimación de tono, transcripción de voz cantada a notas, evaluación automática de la habilidad de canto y procesado de timbre de voz.

- Desarrollar un sistema de transcripción de voz cantada a notas con una tasa de error al nivel, al menos, del estado del arte. Este objetivo se puede subdividir en varios sub-objetivos:
 - Definir una metodología de investigación clara para abordar el problema de transcripción de voz cantada: decidir qué tipo de datos deben utilizarse, qué métricas de evaluación son relevantes y cuáles son los métodos del estado del arte disponibles para comparar.
 - Crear una colección de voz cantada monofónica con anotaciones a nivel de nota.
 - Coleccionar otros métodos del estado del arte para transcripción de voz cantada para comparar con ellos.
 - Contribuir una herramienta para la evaluación de transcripción de voz cantada y hacerla públicamente disponible.
SECCIÓN 1. INTRODUCCIÓN

– Investigar y desarrollar un método para transcripción automática de voz cantada a nivel de nota.

• Investigar y desarrollar un sistema para evaluación automática de la habilidad de canto basado en una comparación de curvas de tono, y de secuencia de notas con respecto a una referencia.

• Investigar y desarrollar un sistema para modelar los cambios tímbricos producidos en voz cantada en función de la intensidad. Este objetivo también incluye desarrollar una herramienta software para visualizar y anotar la envolvente espectral de una colección de vocales cantadas.
Sección 2

Resumen de resultados

En esta sección se resume el capítulo 3 de la Tesis completa, donde se presentan los aspectos más relevantes de cada resultado conseguido durante esta investigación. Específicamente, se presenta un análisis comparativo de estimadores de tono para sistemas de búsqueda de música por canto o tarareo (sección 2.1), un método transcripción de voz cantada a notas y una herramienta de evaluación (sección 2.2), un método para evaluación automática de habilidad de canto (sección 2.3), un método para procesar automáticamente el timbre de la voz y producir variaciones realistas de intensidad (sección 2.4) y por último un método para reducir la disonancia en acordes desafinados (sección 2.5).

2.1 Análisis comparativo de estimadores de tono para búsqueda de música por canto o tarareo

En esta sección se resume el contenido de la sección 3.1 de la Tesis completa, que corresponde con la publicación [Molina et al., 2014d], donde se presenta un estudio comparativo de varios estimadores de tono del estado del arte aplicados al contexto de búsqueda musical por canto o tarareo.

2.1.1 Enfoque utilizado

Este estudio se ha llevado a cabo utilizando la base de datos MIR-QBSH ¹, que es bien conocida y está disponible públicamente, con diferentes condiciones de ruido ambiental y distorsión. Para el estudio se han evaluado 8 algoritmos:

1. YIN [De Cheveigné and Kawahara, 2002]

¹http://mirlab.org/dataset/public/
Para la evaluación, se han utilizado tres algoritmos de emparejamiento melódico audio-a-MIDI, dos de los cuales son estado del arte: MusicRadar [Doreso, 2013] y NetEase [Li et al., 2013], y el tercero es un sencillo algoritmo base que utiliza alineamiento temporal dinámico.

Para la evaluación se ha medido la tasa de acierto en búsqueda de música por canto o tarareo usando 189 combinaciones diferentes de estimador de tono, condiciones de ruido y distorsión y algoritmo de emparejamiento melódico. La tasa de acierto se ha medido utilizando la medida Rango Recíproco Medio (Mean Reciprocal Rank o MRR), definido como:

\[
MRR = \frac{1}{N} \sum_{i=1}^{N} r_i^{-1}
\]

where: \(N \) = número total de búsquedas
\(r_i \) = posición (o rango) de la respuesta correcta

Además, de cada curva de tono se ha obtenido la exactitud media de la estimación de tono \(\text{Acc}_v \) con respecto a una referencia corregida manualmente, tal y como se define en [Salamon and Gómez, 2012].

2.1.2 Resultados y discusión

Los resultados obtenidos se presentan en la tabla 2.1:
2.1. ANÁLISIS COMPARATIVO DE ESTIMADORES DE TONO

<table>
<thead>
<tr>
<th>F0 tracker</th>
<th>Clean dataset</th>
<th>25dB SNR + distortion</th>
<th>15dB SNR + distortion</th>
<th>5dB SNR + distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>100 / 0.82 / 0.89 / 0.96</td>
<td>100 / 0.82 / 0.89 / 0.95</td>
<td>100 / 0.82 / 0.89 / 0.95</td>
<td>100 / 0.82 / 0.89 / 0.95</td>
</tr>
<tr>
<td>(B)</td>
<td>89 / 0.80 / 0.89 / 0.96</td>
<td>88 / 0.80 / 0.88 / 0.95</td>
<td>88 / 0.79 / 0.88 / 0.94</td>
<td>84 / 0.71 / 0.86 / 0.94</td>
</tr>
<tr>
<td>(C)</td>
<td>90 / 0.74 / 0.85 / 0.94</td>
<td>88 / 0.72 / 0.84 / 0.92</td>
<td>89 / 0.71 / 0.84 / 0.92</td>
<td>85 / 0.66 / 0.81 / 0.89</td>
</tr>
<tr>
<td>(D)</td>
<td>90 / 0.71 / 0.83 / 0.92</td>
<td>85 / 0.74 / 0.85 / 0.94</td>
<td>90 / 0.78 / 0.87 / 0.94</td>
<td>85 / 0.77 / 0.87 / 0.94</td>
</tr>
<tr>
<td>(E)</td>
<td>89 / 0.71 / 0.83 / 0.92</td>
<td>84 / 0.66 / 0.80 / 0.91</td>
<td>88 / 0.72 / 0.84 / 0.93</td>
<td>83 / 0.65 / 0.80 / 0.91</td>
</tr>
<tr>
<td>(F)</td>
<td>86 / 0.62 / 0.81 / 0.89</td>
<td>81 / 0.64 / 0.78 / 0.89</td>
<td>82 / 0.60 / 0.77 / 0.88</td>
<td>75 / 0.50 / 0.67 / 0.82</td>
</tr>
<tr>
<td>(G)</td>
<td>88 / 0.56 / 0.81 / 0.88</td>
<td>83 / 0.47 / 0.79 / 0.86</td>
<td>86 / 0.39 / 0.78 / 0.87</td>
<td>81 / 0.35 / 0.73 / 0.82</td>
</tr>
<tr>
<td>(H)</td>
<td>87 / 0.66 / 0.83 / 0.87</td>
<td>83 / 0.64 / 0.78 / 0.84</td>
<td>86 / 0.66 / 0.81 / 0.84</td>
<td>82 / 0.58 / 0.74 / 0.80</td>
</tr>
<tr>
<td>(I)</td>
<td>84 / 0.62 / 0.76 / 0.86</td>
<td>79 / 0.50 / 0.64 / 0.74</td>
<td>84 / 0.63 / 0.76 / 0.86</td>
<td>79 / 0.50 / 0.65 / 0.75</td>
</tr>
</tbody>
</table>

Table 2.1: Exactitud media de estimación de tono y MRR obtenido para cada caso. Estimadores de tono: (A) REFERENCIA CORREGIDA MANUALMENTE (B) AC-LEIWANG (C) AC-ADJUSTED (D) PYIN (E) SWIPE' (F) YIN (G) AC-DEFAULT (H) MELODIA-MONO (I) MELODIA-POLY. El formato de cada celda es: \(\text{Acc}_{\alpha}(\%) / \text{MRR-algoritmo base} / \text{MRR-NetEase} / \text{MRR-MusicRadar} \).
Los resultados demuestran que el método basado en autocorrelación de [Boersma, 1993] (con un ajuste no obvio de parámetros) y pYIN [Mauch, 2014], tienen muy buen comportamiento en el contexto de búsqueda musical por canto o tararear, dada la continuidad y suavidad de los contornos de tono extraídos.

2.2 Transcripción de voz cantada a notas

Esta sección se resume el contenido de la sección 3.2 de la Tesis completa, que corresponde a las publicaciones [Molina et al., 2015] y [Molina et al., 2014b], donde se presenta un nuevo método (llamado SiPTH) para transcripción de voz cantada y una herramienta de evaluación en Matlab.

2.2.1 SiPTH

El enfoque propuesto [Molina et al., 2015] implementa segmentación a nivel de nota basada en intervalos mediante un proceso de histéresis definido en la curva tono-tiempo, la cual es obtenida usando el algoritmo Yin [De Cheveigné and Kawahara, 2002]. Concretamente, el algoritmo consta de varios pasos:

1. Estimación de contornos de croma: Primero se extraen regiones con contornos de croma estables.
2. Clasificación en segmentos vocales/no-vocales: Los contornos de croma se clasifican en vocales / no-vocales.
3. Transcripción basada en intervalos: Un promediado dinámico de la curva de tono se lleva a cabo, y se utiliza la desviación instantánea de la curva con respecto a esta para determinar los cambios de nota. Para establecer un cambio de nota se aplica un proceso de histéresis que favorece que sólo se contabilicen cambios de tono importantes, o sostenidos en el tiempo.
4. Etiquetado de notas: Finalmente cada nota es etiquetada con tres valores: inicio, fin, y frecuencia.

La evaluación del algoritmo se ha llevado a cabo utilizando el marco de evaluación propuesto, que se presenta en la siguiente sección.

2.2.2 Herramienta de evaluación para transcripción de voz cantada

Dada la ausencia de una metodología de evaluación standard para transcripción de voz cantada, en esta Tesis se presenta un marco de evaluación que consiste de una
base de datos anotada de 1554 segundos, y un software en Matlab (con interfaz gráfica) capaz de llevar a cabo una evaluación detallada de la transcripción a ser evaluada [Molina et al., 2014b].

2.2.2 Colección de datos propuesta

La colección de datos propuesta consta de 38 melodías cantadas por adultos y niños aficionados (formato mono, 16 bits a 44100Hz con cierto ruido ambiental), que en total suman 1154 segundos. La anotación se ha llevado a cabo manualmente por un músico experto, con una posterior revisión por otro músico experto diferente.

2.2.2.2 Medidas de evaluación propuestas

En el marco de evaluación propuesto se han incluido una serie de métricas de evaluación útiles para entender el comportamiento del transcriptor analizado. Algunas de estas medidas han sido utilizadas previamente en MIREX:

- Inicio, fin y tono de nota correctos (COnPOff)
- Inicio y tono de nota correctos (COnp)
- Inicio de nota correcto (COn)

Además, se han incorporado métricas propias sobre el tipo de errores cometidos:

- Tasa de notas con sólo inicio incorrecto (OBOn)
- Tasa de notas con sólo tono incorrecto (OBP)
- Tasa de notas con sólo fin incorrecto (OBOff)
- Tasa de notas divididas innecesariamente en varias notas (S)
- Tasa de notas unificadas indebidamente en una sola nota (M)
- Tasa de notas espúreas (PU)
- Tasa de notas no detectadas (ND)

2.2.2.3 Resultados y discusión

En esta sección se proporcionan los resultados de la evaluación del método SiPTH junto a varios métodos del estado del arte, usando el marco de evaluación descrito anteriormente.

Algoritmos analizados:

- SiPTH [Molina et al., 2015]
- [Gómez et al., 2013]
- [Ryynänen, 2008]
- Melotranscript ³
- Algoritmo de base muy sencillo

Los resultados obtenidos se muestran en la figura 2.1.

La primera observación es que ninguno de los métodos analizados tienen un muy buen comportamiento. En efecto, el valor-F más alto en la medida COnPOff (inicio, fin y tono de nota correcto) es menor de 0.5, por lo que el problema de transcripción de voz cantada aún está lejos de ser resuelto. En cualquier caso, el sistema que ofrece mejores resultados es Melotranscript, seguido por SiPTH [Molina et al., 2015] y [Gómez et al., 2013], que tienen un comportamiento similar. Finalmente, [Ryynänen, 2008] tiene una precisión menor, probablemente debido al uso de valores de tono enteros para la transcripción (como sugiere [Mauch et al., 2015]).

³https://www.samplesumo.com/melody-transcription
2.3 Evaluación automática de la habilidad de canto

En esta sección se resumen el contenido de la sección 3.3 de la Tesis completa, que corresponde a la publicación [Molina et al., 2013], donde se exploran dos variantes para la evaluación automática de la interpretación de voz cantada: similitud de las curvas de tono utilizando alineamiento temporal dinámico, y similitud a nivel de...

<table>
<thead>
<tr>
<th>Metric</th>
<th>Baseline</th>
<th>Melotranscript</th>
<th>Ryynänen</th>
<th>SiPTH</th>
<th>Gómez & Bonada</th>
<th>COnPOff (Precision)</th>
<th>COnPOff (Recall)</th>
<th>COnPOff (F-measure)</th>
<th>COnP (Precision)</th>
<th>COnP (Recall)</th>
<th>COnP (F-measure)</th>
<th>COn (Precision)</th>
<th>COn (Recall)</th>
<th>COn (F-measure)</th>
<th>OBOOn (RateGT)</th>
<th>OBP (RateGT)</th>
<th>OBOff (RateGT)</th>
<th>Split (RateGT)</th>
<th>Merged (RateGT)</th>
<th>Spurious (RateTR)</th>
<th>Non-detected (RateTR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figura 2.1: Comparación entre métodos del estado del arte para transcripción de voz cantada utilizando la herramienta de evaluación propuesta.
SECCIÓN 2. RESUMEN DE RESULTADOS

notas utilizando transcripción.

2.3.1 Descripción del sistema

2.3.1.1 Enfoque basado en similitud de curvas de tono
Las curvas de tono de la interpretación vocal y de una referencia es extraído usando el algoritmo Yin [De Cheveigné and Kawahara, 2002]. En estas curvas, se asigna \(f_0 = 0 \) a las ventanas temporales correspondientes a sonidos no vocálicos. Posteriormente, se utiliza alineamiento temporal dinámico [Hiroaki, 1978] para encontrar el alineamiento óptimo entre la interpretación a evaluar y la referencia. La base del enfoque propuesto se basa en la idea de que el camino óptimo de alineamiento ofrece información sobre entonación y ritmo. El error total acumulado en el camino óptimo se relaciona con el error de entonación, y la irregularidad del camino óptimo a lo largo de la matriz de coste se asocia a errores rítmicos.

2.3.1.2 Enfoque basado en similitud a nivel de nota
La interpretación a evaluar es transcrita a nivel de nota usando el transcriptor SiPTH (descrito en sección 2.2.1). Posteriormente, se aplica alineamiento temporal dinámico para encontrar la correspondencia entre cada nota de la interpretación a evaluar y la referencia. Disponiendo de esta información, se utiliza la desviación en los inicios de nota como descriptor de precisión rítmica, y las desviaciones de tono en las notas como descriptor de precisión de entonación.

2.3.1.3 Cálculo de la puntuación
Ambos enfoques utilizan la información disponible para ofrecer tres medidas: precisión rítmica, precisión de entonación y precisión global. Para ello, se utiliza un sistema de regresión polinomial de orden dos entrenado con puntuaciones ofrecidas por músicos expertos sobre una colección de 27 melodías (22 minutos de audio).

2.3.2 Evaluación y resultados
Para evaluación se han calculado las siguientes métricas utilizando el dataset mencionado:

- Confianza interjuicio de los músicos expertos
- Correlación entre las puntuaciones automáticas y las ofrecidas por los músicos
- Error de regresión polinomial
2.4. ANÁLISIS Y PROCESADO DE TIMBRE

En table 2.2, 2.3 y 2.4 se muestran los errores obtenidos.

<table>
<thead>
<tr>
<th>Tipo de puntuación</th>
<th>Coeficiente de correlación medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entonación</td>
<td>0.93</td>
</tr>
<tr>
<td>Ritmo</td>
<td>0.82</td>
</tr>
<tr>
<td>General</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Table 2.2: Confianza interjuicio de los músicos expertos

<table>
<thead>
<tr>
<th>Medida de similitud</th>
<th>Corr. con puntuación entonación</th>
<th>Corr. con puntuación ritmo</th>
<th>Corr. con puntuación general</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/E</td>
<td>0.92</td>
<td>0.21</td>
<td>0.81</td>
</tr>
<tr>
<td>ε_{RMS}</td>
<td>0.0012</td>
<td>0.81</td>
<td>0.52</td>
</tr>
<tr>
<td>Δ</td>
<td>0.037</td>
<td>0.68</td>
<td>0.48</td>
</tr>
<tr>
<td>Δ_{W}</td>
<td>0.96</td>
<td>0.2</td>
<td>0.82</td>
</tr>
<tr>
<td>Δ_{W}</td>
<td>0.89</td>
<td>0.23</td>
<td>0.82</td>
</tr>
<tr>
<td>Δ_{I}</td>
<td>0.94</td>
<td>0.34</td>
<td>0.9</td>
</tr>
<tr>
<td>Δ_{W}</td>
<td>0.87</td>
<td>0.35</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 2.3: Valores de correlación de cada medida de similitud con las puntuaciones proporcionadas por músicos expertos.

<table>
<thead>
<tr>
<th>Tipo de error</th>
<th>Entonación</th>
<th>Ritmo</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de correlación</td>
<td>0.988</td>
<td>0.969</td>
<td>0.976</td>
</tr>
<tr>
<td>Raíz de error cuadrático medio</td>
<td>0.4167</td>
<td>0.58</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 2.4: Error de regresión polinomial

Como conclusión, el enfoque propuesto modela adecuadamente el criterio de músicos expertos y ofrece una serie de puntuaciones de las cuales, la que más confianza ofrece, es la puntuación de entonación. Como aspecto negativo, el sistema no es capaz de indicar dónde están los errores, sino sólo una puntuación para toda la interpretación.

2.4 Análisis y procesado de timbre

En esta sección se resumen el contenido de la sección 3.4 de la Tesis completa, que corresponde a la publicación [Molina et al., 2014c], donde se describe un método para modelar las variaciones de la envolvente espectral en función de la intensidad de la voz cantada.
2.4.1 Procedimiento

La investigación se ha llevado a cabo en varios pasos:

1. Definición de un modelo paramétrico de envolvente espectral: Se propone un modelo paramétrico que utiliza filtros de 4º orden para modelar formantes, además de otros parámetros para modelar la pendiente, etc. En total se utilizan 12 parámetros.

2. Anotación manual de 60 vocales de voz cantada: Utilizando una herramienta software especialmente diseñada para ello, se han anotado los parámetros de la envolvente espectral de 60 vocales cantadas en diferentes intensidades. Los parámetros varían con respecto a la intensidad según se muestra en la figura 2.2.

3. Modelado de la variación de parámetros en función de la intensidad: Utilizando un modelo de regresión lineal, se ha modelado la variación de cada parámetro del modelo en función de la intensidad: $\Delta p_x = \Delta I \cdot w_x$ donde w_x es el peso obtenido mediante regresión lineal sobre la colección de vocales descrita en el paso anterior.

![Diagrama](image)

Figure 2.2: Información sobre la componente harmónica (color rojo claro) y la componente residual (color azul oscuro) con diferentes niveles de intensidad. (a) Envolvente espectral de una vocal /a/ cantada por un cantante masculino (b) Potencia media (c) Ganancia media (d) Pendiente media (e) Frecuencia media de los primeros cuatro formantes (f) Ancho de banda medio del resonador glotal R_{GP} (g) Ancho de banda medio del primer formante R_1 (h) Ancho de banda medio del segundo formante R_2.
2.4.2 Evaluación

Para evaluación se han utilizado 12 pares de vocales cantadas débil-fuerte cantadas por cantantes masculinos y femeninos. De estos 12 pares, 4 han sido sintetizados utilizando el software Vocaloid.

Utilizando una variación de intensidad de +/-10, se ha comparado el resultado obtenido en las transformaciones débil-a-fuerte y fuerte-a-débil con el producido por Melodyne Editor y por Vocaloid (para el caso de las vocales sintéticas). Esto da un lugar a un total de 48 pares a evaluar.

Posteriormente, cuatro músicos aficionados han escuchado el resultado de cada transformación, indicando en un cuestionario cómo de similar a un cambio real de intensidad han escuchado el procesado resultante.

2.4.3 Resultados y discusión

En la figura 2.3 se muestra el resultado de los cuestionarios siguiendo el método de evaluación descrito.

![Diagrama de cuestionario](image.png)

Figure 2.3: Similitud percibida media a un cambio real de intensidad. Cada combinación de cantante / vocal se ha evaluado con varios métodos, mostrados con diferentes colores.
Como conclusión, el método propuesto ofrece resultados mejores que Melodyne Editor y Vocaloid para manipular la intensidad de voz cantada, obteniendo resultados especialmente buenos para transformaciones fuerte-a-débil. Esto puede deberse a que las vocales fuertes requieren formantes bien definidos, y cualquier error en este proceso es fácilmente percibido. La desventaja del método propuesto es que requiere intervención manual para procesar los audios, pero provee de observaciones prometedoras para conseguir un sistema más práctico en futuras investigaciones.

2.5 Reducción de disonancia en audio polifónico

En esta sección se resume el contenido de la sección 3.5 de la Tesis completa, que corresponde con la publicación [Molina et al., 2014a], donde se propone un método para la reducción automática de disonancias en acordes aislados. El enfoque propuesto se basa en un esquema análisis-resíntesis, y se divide en tres bloques: análisis, reorganización harmónica y síntesis.

La etapa de análisis realiza un modelado sinusoidal-más-residual de la señal musical, para poder manipular la componente sinusoidal del acorde sin afectar al resto del sonido. En esta etapa, además, se utiliza un algoritmo para estimación de múltiples f_0s, ya que dicha información se usa en etapas posteriores para determinar la versión consonante del acorde de entrada.

A continuación, las múltiples f_0s estimadas se desplazan hasta el acorde consonante más cercano (según unos criterios musicales parametrizables por el usuario) y se recalan las frecuencias de cada componente sinusoidal de este nuevo acorde afinado. Posteriormente, cada componente sinusoidal del acorde disonance se desplaza para ajustarse a las frecuencias del nuevo acorde afinado.

Además de esta reorganización harmónica, se aplica una reducción de batidos de amplitud y frecuencia de cada componente sinusoidal, ya que es uno de los efectos que tiene la suma de sinusoides con amplitudes y frecuencias similares pero no iguales (algo frecuente en acordes disonantes). Esta reducción se basa en la reducción del rizado en la envolvente temporal de la componente sinusoidal, así como de la estabilización de la frecuencia de la componente.

Por último, las componentes sinusoidales desplazadas se resintetizan y se combinan con la componente residual inicialmente estimada. En la figura 2.4 se muestran los diferentes pasos del proceso.
2.5. REDUCCIÓN DE DISONANCIA EN AUDIO POLIFÓNICO

Figure 2.4: Espectrogramas de picos de frecuencias en varias etapas del sistema para un acorde desafinado La mayor tocado con una guitarra acústica. (a) Acorde original (b) Acorde tras etapa de reducción de batidos (c) Acorde tras etapa de reducción de batidos y reorganización harmónica. (d) Acorde de La mayor tocado con una guitarra afinada real.
2.5.1 Evaluación

La evaluación publicada en [Molina et al., 2015] se ha llevado a cabo mediante cuestionarios que han sido respondidos por 31 músicos expertos, que han puntuado la consonancia percibida de 18 acordes instrumentales. Además, en esta Tesis se ha llevado a cabo una evaluación extra de 9 acordes vocales cantados por un cuarteto de barbería. En este caso la consonancia percibida ha sido evaluada por 12 músicos expertos.

Los acordes instrumentales evaluados en el cuestionario son:

1. Do mayor tocado con 6 tonos sintéticos complejos. Notas: Do4, Mi4 + 11 cents, Sol4 - 21 cents, Do5 + 30 cents.
2. Do menor tocado con 6 tonos sintéticos complejos. Notas: Do4, Mib4 + 13 cents, Sol4 + 17 cents, Do5 - 32 cents.
3. La mayor tocado con una guitarra acústica real. Notas: La2 - 33 cents, Mi2 - 33 cents, La3 + 27 cents, Do#4 + 16 cents, Mi4 - 20 cents.
4. Re mayor tocado con una guitarra acústica real. Notas: Re3 - 30 cents, La3 + 28 cents, Re4 + 15 cents, Fa#4 + 3 cents.
5. Sib mayor tocado con un cuarteto de viento real. Notas: Sib2, Fa3 - 44 cents, Sib3 - 50 cents, Re5 + 31 cents.
6. Do mayor tocado con un cuarteto de cuerda real. Notas: Do3 - 6 cents, Mi3 - 7 cents, Do4 + 30 cents, Sol4 - 73 cents.

Los acordes vocales evaluados en el cuestionario son:

1. Reb mayor cantado por un cuarteto de barbería. Notas: Reb2 - 18 cents, Lab2 - 44 cents, Reb3 + 31 cents, Fa3 + 35 cents.

De cada uno de estos acordes se han evaluado tres versiones diferentes:

a) Acorde sin procesar
b) Procesado con el enfoque propuesto
2.5. REDUCCIÓN DE DISONANCIA EN AUDIO POLIFÓNICO

c) Procesado con Melodyne Editor.

Tal y como se ha comentado, un grupo de músicos expertos ha puntuado las siguientes cuestiones:

- Consonancia media percibida μ_c
- Desviación estándar de la consonancia percibida σ_c
- Cantidad de veces que este acorde ha sido elegido como la mejor opción para un contexto musical.

Las respuestas de los cuestionarios se han promediado para el grupo de músicos entrevistados, obteniendo tres valores por cada uno de los audios:

2.5.2 Resultados y discusión

Los resultados obtenidos se muestran en las tablas 2.5 y 2.6.

Los resultados muestran que el enfoque propuesto mejora sustancialmente la consonancia percibida con respecto a los acordes sin procesar, y obtiene mejores resultados que Melodyne Editor para la mayoría de casos. Especialmente notable es el caso de la guitarra acústica, por el buen resultado obtenido en este instrumento tan habitual en el mundo de la producción musical moderna. En el caso del cuarteto de viento, Melodyne tiene un mejor comportamiento que el enfoque propuesto debido a que la reducción de batidos disminuye notablemente la naturalidad del sonido final. En los casos 7 y 9, sin embargo, Melodyne no consigue estimar correctamente las frecuencias del acorde y no consigue resolver correctamente la disonancia, obteniendo una puntuación mucho peor que el enfoque propuesto. En este sentido, el enfoque propuesto ofrece la gran ventaja de ser robusto a fallos leves en la detección de las F0 del acorde.
<table>
<thead>
<tr>
<th>Acorde version</th>
<th>Consonancia percibida [1-10]</th>
<th>Escogido como mejor resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A Original</td>
<td>(\mu_c = 3.48 \quad \sigma_c = 1.48)</td>
<td>3.2%</td>
</tr>
<tr>
<td>1.B Enfoque propuesto</td>
<td>(\mu_c = 6.64 \quad \sigma_c = 2.05)</td>
<td>77.4%</td>
</tr>
<tr>
<td>1.C Melodyne</td>
<td>(\mu_c = 5.48 \quad \sigma_c = 1.80)</td>
<td>19.35%</td>
</tr>
<tr>
<td>2.A Original</td>
<td>(\mu_c = 2.67 \quad \sigma_c = 1.30)</td>
<td>6.45%</td>
</tr>
<tr>
<td>2.B Enfoque propuesto</td>
<td>(\mu_c = 5.35 \quad \sigma_c = 2.25)</td>
<td>74.2%</td>
</tr>
<tr>
<td>2.C Melodyne</td>
<td>(\mu_c = 3.96 \quad \sigma_c = 1.87)</td>
<td>19.3%</td>
</tr>
<tr>
<td>3.A Original</td>
<td>(\mu_c = 4.61 \quad \sigma_c = 1.89)</td>
<td>3.2%</td>
</tr>
<tr>
<td>3.B Enfoque propuesto</td>
<td>(\mu_c = 7.19 \quad \sigma_c = 1.86)</td>
<td>83.9%</td>
</tr>
<tr>
<td>3.C Melodyne</td>
<td>(\mu_c = 5.83 \quad \sigma_c = 2.35)</td>
<td>9.7%</td>
</tr>
<tr>
<td>4.A Original</td>
<td>(\mu_c = 4.32 \quad \sigma_c = 1.81)</td>
<td>3.2%</td>
</tr>
<tr>
<td>4.B Enfoque propuesto</td>
<td>(\mu_c = 7.09 \quad \sigma_c = 1.68)</td>
<td>71%</td>
</tr>
<tr>
<td>4.C Melodyne</td>
<td>(\mu_c = 6.19 \quad \sigma_c = 1.99)</td>
<td>25.8%</td>
</tr>
<tr>
<td>5.A Original</td>
<td>(\mu_c = 2.19 \quad \sigma_c = 1.27)</td>
<td>0%</td>
</tr>
<tr>
<td>5.B Enfoque propuesto</td>
<td>(\mu_c = 4.03 \quad \sigma_c = 2.33)</td>
<td>32%</td>
</tr>
<tr>
<td>5.C Melodyne</td>
<td>(\mu_c = 4.64 \quad \sigma_c = 2.38)</td>
<td>68%</td>
</tr>
<tr>
<td>6.A Original</td>
<td>(\mu_c = 1.54 \quad \sigma_c = 0.80)</td>
<td>0%</td>
</tr>
<tr>
<td>6.B Enfoque propuesto</td>
<td>(\mu_c = 5.54 \quad \sigma_c = 2.15)</td>
<td>77.4%</td>
</tr>
<tr>
<td>6.C Melodyne</td>
<td>(\mu_c = 4.77 \quad \sigma_c = 1.96)</td>
<td>22.6%</td>
</tr>
</tbody>
</table>

Tabla 2.5: Resultados de cuestionarios para acordes instrumentales. \(x.A \): Acorde original; \(x.B \): Acorde procesado con enfoque propuesto; \(x.C \): Acorde procesado con Melodyne Editor.
2.5. REDUCCIÓN DE DISONANCIA EN AUDIO POLIFÓNICO

Table 2.6: Resultados de cuestionarios para acordes vocales.

<table>
<thead>
<tr>
<th>Acorde version</th>
<th>Consonancia percibida [1-10]</th>
<th>Escogido como mejor resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.A Original</td>
<td>$\mu_c = 6.09$ $\sigma_c = 1.7$</td>
<td>0%</td>
</tr>
<tr>
<td>7.B Enfoque propuesto</td>
<td>$\mu_c = 8.36$ $\sigma_c = 1.12$</td>
<td>100%</td>
</tr>
<tr>
<td>7.C Melodyne</td>
<td>$\mu_c = 4.54$ $\sigma_c = 1.81$</td>
<td>0%</td>
</tr>
<tr>
<td>8.A Original</td>
<td>$\mu_c = 3.90$ $\sigma_c = 1.22$</td>
<td>0%</td>
</tr>
<tr>
<td>8.B Enfoque propuesto</td>
<td>$\mu_c = 7.09$ $\sigma_c = 1.04$</td>
<td>36%</td>
</tr>
<tr>
<td>8.C Melodyne</td>
<td>$\mu_c = 6.63$ $\sigma_c = 1.02$</td>
<td>64%</td>
</tr>
<tr>
<td>9.A Original</td>
<td>$\mu_c = 3.36$ $\sigma_c = 1.62$</td>
<td>0%</td>
</tr>
<tr>
<td>9.B Enfoque propuesto</td>
<td>$\mu_c = 6.0$ $\sigma_c = 2.04$</td>
<td>73%</td>
</tr>
<tr>
<td>9.C Melodyne</td>
<td>$\mu_c = 3.63$ $\sigma_c = 2.37$</td>
<td>27%</td>
</tr>
</tbody>
</table>

x.A: Acorde original; **x.B:** Acorde procesado con enfoque propuesto; **x.C:** Acorde procesado con Melodyne Editor.
Sección 3

Conclusiones y líneas futuras

En esta sección, se presentan algunas conclusiones sobre el trabajo expuesto a lo largo de esta Tesis, y se remarcan los aspectos más importantes de los resultados obtenidos. Además, se enumeran las contribuciones de esta Tesis (sección 3.1) y se exponen algunas sugerencias para continuar con esta línea de investigación en el futuro (sección 3.2).

En esta Tesis, se ha propuesto un conjunto variado de técnicas y aplicaciones en el ámbito del procesado de voz cantada. Específicamente, los objetivos presentados al inicio de esta disertación cubren los tres temas siguientes: transcripción de voz cantada (a nivel de nota, y de curva de tono), evaluación de la interpretación vocal, y transformación de sonido (concretamente: procesado del timbre vocal, y modificación de tono en audio polifónico). Por supuesto, el éxito en estos objetivos pasa por un estudio profundo de las tecnologías existentes y del estado del arte en cada uno de los temas asociados.

Estudio del estado del arte

En primer lugar, se ha presentado un estudio del estado del arte cubriendo todos los temas abordados en esta Tesis (capítulo 2 de la Tesis completa). En él se refleja el conocimiento adquirido durante nuestra investigación, y es útil para contextualizar los resultados obtenidos. Los temas cubiertos por este estudio son: producción de voz cantada, estimación de tono (monofónico, extracción de melodía y en polifonía), transcripción de voz cantada, alineamiento temporal dinámico, evaluación automática de interpretación vocal, procesado de timbre y síntesis basada en modelado espectral.
Análisis comparativo de estimadores de tono para sistemas de búsqueda musical por canto o tarareo

En la sección 3.1 de la Tesis completa, se ha presentado un estudio comparativo de varios estimadores de tono del estado del arte en el contexto de la búsqueda de música por canto o tarareo. Específicamente, se han comparado 8 de los mejores estimadores de tono existentes en 2 de los mejores sistemas de emparejamiento melódico existentes, así como en un sencillo sistema open source. Tres conclusiones se han obtenido de este estudio. Primero, los tres sistemas de emparejamiento melódico obtienen los mejores resultados con los mismos estimadores de tono. Esto sugiere que un sistema simple de emparejamiento melódico puede usarse con éxito para comparar la bondad de un estimador de tono para este caso de uso. Segundo, que el método pYIN para estimación de tono [Mauch, 2014] tiene un sorprendente buen comportamiento en entornos ruidosos. Por último, que la forma en la que los estimadores de tono son evaluados en la literatura no es totalmente representativa de su bondad para su uso en búsqueda musical por canto o tarareo. Esto es debido a que no sólo importa la cantidad de errores cometidos en la estimación, sino la naturaleza de estos errores.

Transcripción de voz cantada

En esta Tesis, se ha propuesto un sistema de transcripción de voz cantada basado en un proceso de histéresis definido en la curva tono-tiempo (sección 3.2.1 de la Tesis completa). Este método aplica un transformación basada en histéresis a las salidas del algoritmo Yin: F0, aperiodicidad y energía, para convertirlas en una secuencia de notas. Los resultados demuestran que este enfoque, que es simple de comprender e implementar, consigue una precisión comparable a otros métodos del estado del arte más complejos.

Además, se ha presentado una aplicación en Matlab para la evaluación de algoritmos de transcripción de voz cantada (sección 3.2.2 de la Tesis completa). Esta aplicación permite visualizar detalles sobre la transcripción, computar métricas de evaluación, y además incluye un base de datos anotada manualmente. Las métricas de evaluación incluidas en esta aplicación reporta información detallada acerca del tipo de errores cometidos por el transcriptor estudiado. Esta aplicación se ha utilizado en varios artículos recientes sobre transcripción de voz cantada (e.g. [Mauch et al., 2015]), y contribuye a la publicación de resultados reproducibles en el ámbito de la transcripción de voz cantada.
Evaluación automática de la interpretación vocal

En la sección 3.3 de la Tesis completa, se han propuesto y comparado dos enfoques diferentes para evaluación automática de interpretación vocal: (1) uso de alineamiento temporal dinámico para comparar la curva de tono de la interpretación del usuario y una referencia (e.g. partitura), (2) medida de similitud a nivel de notas usando transcripción de voz cantada. Ambos enfoques requieren una referencia, la cual se considera la interpretación ideal. Esta interpretación ideal puede ser un fichero MIDI de la canción original, o una interpretación de un músico de referencia (e.g. profesor). El sistema se ha evaluado analizando la correlación entre la puntuación proporcionada por el sistema, y la puntuación proporcionada por músicos expertos. Los resultados de esta comparación demuestran que la comparación de la curva de tono utilizando alineamiento temporal dinámico es un método sencillo y efectivo para la evaluación de interpretación de tono y de ritmo, y que el uso de transcripción a nivel de nota introduce complejidad sin una clara ventaja.

Análisis y procesado de timbre

En la sección 3.4. de la Tesis completa, se ha propuesto un método para modelar las variaciones de la envolvente espectral en función de la intensidad en voz cantada. Este método se basa en un modelo paramétrico de la envolvente espectral, cuyos parámetros se ajustan automáticamente para simular variaciones realistas de intensidad en voz cantada. Tres son las contribuciones principales de esta investigación: (1) un modelo paraéntico de la envolvente espectral basada en filtros de 4 polos para modelar formantes, (2) una herramienta software para notar vocales cantadas usando dicho modelo paramétrico, y (3) un método para manipular los parámetros de dicho modelo paramétrico automáticamente con el fin de producir variaciones realistas de intensidad. Se ha observado que dos parámetros son los principales responsables en la percepción de intensidad: pendiente de la envolvente espectral, y ancho de banda de los formates. El método propuesto se ha comparado contra Melodyne Editor y Vocaloid 3.0, mediante un cuestionario contestado por cuatro músicos aficionados. Los resultados demuestran que el método propuesto mejora significativamente el realismo de las transformaciones en comparaciones con los otros dos métodos, especialmente para el caso de transformaciones debil-a-fuerte.

Reducción de disonancia en audio polifónico

Por último, en sección 3.5. de la Tesis completa se ha propuesto un método para la reducción automática de disonancia en acordes aislados. Este método realiza una estimación de múltiples F0 para identificar el acorde a ser afinado, y realiza un modelado sinusoidal-más-residual para desplazar la frecuencia de sus parciales.
Estos parciales se desplazan para ajustarse a la estructura armónica de la versión afinada del mismo acorde. La metodología de evaluación se ha basado en tests de audición donde un conjunto de músicos expertos han evaluado la consonancia percibida para un conjunto de acordes antes y después de ser procesados. Los resultados obtenidos demuestran que el método propuesto se comporta en general mejor que Melodyne Editor para mejorar la consonancia de acordes desafinados, en ambos casos, acordes instrumentales y vocales.

3.1 Resumen de contribuciones

En esta sección, se enumeran las contribuciones científicas de esta tesis, junto a los recursos de investigación publicados a lo largo de nuestra investigación.

Contribuciones científicas

- **Estudio de investigación previa:** En el capítulo 2 de la Tesis completa, se proporciona un completo repaso del estado del arte acerca de los métodos y técnicas existentes para procesado de voz cantada. Este repaso cubre los temas siguientes (todas las referencias de secciones se refieren a la Tesis completa): producción de voz cantada (sección 2.1), estimación de tono (sección 2.2), transcripción de voz cantada (sección 2.3), alineamiento temporal dinámico (sección 2.4), evaluación automática de la interpretación vocal (sección 2.5), procesado de timbre (sección 2.6) y síntesis basado en modelado espectral (sección 2.7).

- **Análisis comparativo de estimadores de tono:** Se ha llevado a cabo un estudio comparativo de varios de los mejores estimadores de tono existentes en el contexto de recuperación de música por tarareo. Este estudio ha sido publicado en [Molina et al., 2014d], y ha sido expuesto en la sección 3.1 de la Tesis completa.

- **Método para transcripción de voz cantada:** Un método para transcripción de voz cantada (llamado SiPATH) basado en un ciclo de histéresis en la curva tiempo-tono para segmentación a nivel de nota por intervalos. Este método es simple de implementar, y su precisión es cercana a otros métodos del estado del arte. Ha sido publicado en [Molina et al., 2015], y resumido en la sección 3.2.1 de la Tesis completa.

- **Marco de evaluación para transcripción de voz cantada:** Se ha presentado una comparación de las metodologías de evaluación utilizadas en trabajos previos sobre transcripción de voz cantada, y se ha propuesto un marco de
evaluación (base de datos anotada y aplicación Matlab). Se ha publicado en [Molina et al., 2014b] y se ha expuesto en la sección 3.2.2 de la Tesis completa.

- **Método para la evaluación automática de la interpretación vocal:** Se ha propuesto un método para la evaluación automática del canto basado en alineamiento dinámico automático de la curva de tono. Se ha publicado en [Molina et al., 2013] y se ha expuesto en la sección 3.3 de la Tesis completa.

- **Método para procesado de timbre:** Se ha presentado un modelo paramétrico de envolvente espectral basado en filtros de 4 polos para modelado de formates, así como un estudio sobre las variaciones de estos parámetros en función de la intensidad del canto. De esta forma, se ha propuesto un método para realizar transformaciones realistas de intensidad en voz cantada. Este método ha sido publicado [Molina et al., 2014c] y se ha expuesto en la sección 3.4 de la Tesis completa.

- **Método para la reducción de disonancia en música polifónica:** Se ha propuesto un método para la reducción de disonancia en acordes desafinados utilizado reorganización armónica. Se ha publicado en [Molina et al., 2015] y se ha resumido en la sección 3.5 de la Tesis completa.

Recursos de investigación

- **Sistema básico para recuperación por tarareo:** Se proporciona un sistema Matlab para recuperación por tarareo basado en alineamiento temporal dinámico. Este sistema puede utilizarse como un punto de partida para empezar a desarrollar sistemas más complejos, o para evaluar la bondad de estimadores de tono para el caso de uso de recuperación por tarareo. Puede encontrarse en el siguiente enlace:
 www.atic.uma.es/ismir2014qbsh

- **Herramienta para la anotación de envolvente espectral:** Herramienta Matlab (con interfaz gráfica) para anotar los parámetros del modelo de la envolvente espectral en vocales cantadas mantenidas. Más detalles pueden encontrarse en la sección 3.4 de la Tesis completa, y puede ser descargada en el enlace:
 www.atic.uma.es/icassp2014singing

- **Herramienta para evaluar algoritmos de transcripción de voz cantada:** Herramienta Matlab (con interfaz gráfica) para visualizar y evaluar transcripciones melódicas, junto a una base de datos anotada consistente en
38 melodías (1154 segundos), cantadas por cantantes adultos y niños amateur, anotados por músicos expertos a nivel de nota. Más detalles pueden encontrarse en la sección 3.2.2 de la Tesis completa, y se puede descargar desde el enlace:

www.atic.uma.es/ismir2014singing

3.2 Sugerencias para investigación futura

Además del material publicado, muchas otras observaciones e ideas han aparecido a lo largo de nuestra investigación. Algunas de estas consideraciones merecen la pena ser mencionadas porque podrían solucionar debilidades específicas de los enfoques propuestos, o podrían ser incluso prometedoras alternativas para solucionar los problemas abordados. En esta sección se discuten estas ideas y se proponen sugerencias específicas para investigación futura.

Transcripción de voz cantada

- **Mejora del marco de evaluación:** La utilidad del marco de evaluación propuesto en la sección 3.2.2 de la Tesis completa podría mejorarse añadiendo más datos anotados. La anotación manual puede llevarse a cabo eficientemente utilizando el reciente software Tony [Mauch et al., 2015]. En un momento dado, si la cantidad de datos es suficientemente grande, podría definirse una tarea de transcripción de voz cantada en MIREX. Además, las métricas de evaluación propuestas podrían integrarse en el paquete de python mir_eval [Raffel et al., 2014] para hacerlas disponibles es un formato estandarizado. Finalmente, este marco de evaluación podría incluir no sólo métricas indendientes del contexto de uso (e.g. precisión de transcripción de notas), sino otras métricas definidas para contextos de uso específicos (e.g. respondiendo a: ¿cómo de bien funciona tu transcriptor para el caso concreto de recuperación de música por tarareo?).

- **Transcripción de voz cantada utilizando modelos ocultos de Markov (HMM) y descriptores de timbre:** Se propone el uso de HMM con descriptores de timbre (e.g. MFCC) para transcripción de voz cantada. Esta idea se basa en tres hechos principalmente: (1) numerosos sistemas de transcripción de voz hablada se basan en esta tecnología con éxito, (2) el problema de transcripción de voz hablada parece compartir una naturaleza similar al...
problema de transcripción de voz hablada (especialmente cuando hay letra),
y (3) algunos sistemas de transcripción de voz cantada ya están exitosamente
basados en HMM, aunque no se ha encontrado ningún trabajo que utilice
descriptores de timbre en este proceso.

Evaluación de interpretación vocal

- **Alineamiento robusto de curva de tono:** El alineamiento de la curva de
tono entre la referencia y la interpretación del usuario es la base del enfoque
propuesto para evaluación automática de interpretación vocal. Sin embargo,
en ocasiones es difícil conseguir un buen alineamiento, sobre todo cuando el
usuario comete muchos errores. Para solucionar este problema, se propone
realizar un alineamiento audio-audio usando no sólo información de tono,
sino también de energía, aperiodicidad, o incluso tímbrica.

- **Evaluación de la interpretación vocal de forma independiente a la
canción:** El uso de melodías de referencia tiene una clara desventaja: es
necesario preparar mucho material para poder llevar a cabo una evaluación
adequada con una gran cantidad de canciones. Sin embargo, tal y como indica
[Nakano et al., 2009], la calidad de una interpretación vocal puede a menudo
ser evaluada por un humano de forma independiente a la canción que esté
siendo cantada. Inspirado por este hecho, un sistema que sea independiente
de la canción cantada puede ser más adecuado para una aplicación comercial
realista, por lo que se recomienda explorar esta vía de investigación.

Procesado de timbre

- **Enfoque alternativo para modificación automática de intensidad uti-
lizado adaptación de los polos del modelo LPC:** El método propuesto
para modificación automática de intensidad en voz cantada (ver sección 3.4 de
la Tesis completa) se basa en un modelo paramétrico de envolvente espectral.
Se observó que dos parámetros son clave para la percepción de intensidad:
pendiente de la envolvente y ancho de banda de los formantes. En vista de
este resultado, se sugiere explorar la transformación de polos del filtro LPC
para procesar voz cantada, ya que es computacionalmente más sencillo y puede
incluso derivar en aplicaciones a tiempo real.
• Eliminación de la etapa de seguimiento sinusoidal para procesado de audio polifónico: Nuestro enfoque para reducción de disonancia en música polifónica (ver sección 3.5 de la Tesis completa) usa modelado sinusoidal más residual, y sigue cada sinusoide a lo largo del tiempo para identificar los parciales del sonido, como propone [Serra, 1989]. Sin embargo, esta etapa de seguimiento es computacionalmente costosa y sus beneficios podrían no merecer la pena, así que se sugiere explorar la eliminación de esta etapa para trabajar a nivel de ventana directamente.
Bibliography

BIBLIOGRAPHY

