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Abstract—The power consumption foreseen for 5G networks
is expected to be substantially greater than that of 4G systems,
mainly because of the ultra-dense deployments required to meet
the upcoming traffic demands. This paper deals with a multi-
objective formulation of the Cell Switch-Off (CSO) problem,
a well-known and effective approach to save energy in such
dense scenarios, which is addressed with an accurate, yet rather
unknown multi-objective metaheuristic called MOCell (multi-
objective cellular genetic algorithm). It has been evaluated over
a different set of networks of increasing densification levels.
The results have shown that MOCell is able to reach major
energy savings when compared to a widely used multi-objective
algorithm.

Index Terms—Energy saving, cell switch-off, multi-objective
optimization, metaheuristics, cellular genetic algorithm.

I. INTRODUCTION

The demands of data traffic in cellular networks has grown
steadily since the very beginning of the first telecommuni-
cation systems, and it will continuing doing so in the future.
Indeed, a recent report from Ericsson states that “Total mobile
data traffic is expected to rise at a compound annual growth
rate (CAGR) of 42 percent” [1], being smartphones the source
of 90% this traffic. In order to accommodate such a traffic
demands, vendors and operators are currently developing the
next generation of mobile networks, the fifth (5G). A widely
recognized key enabler technology of 5G systems is network
densification, i.e., the deployment of a large number of small-
scale base stations (BSs) of different types (Heterogeneous
Networks or HetNets) [2]. Ultra Dense Network (UDN) [3]
deployments allows for a major spectrum reuse, thus enhanc-
ing the system capacity.

The point is that a major energy efficiency issue raises
in UDN deployments in low traffic periods, in which the
entire system is fully operating, but underutilized. A promising
approach proposed recently to reduce this waste of power
consumption lies in switching off a subset of the base sta-
tions of the network [4], [5]. This combinatorial optimiza-
tion problem, called the Cell Switch-Off (CSO) problem, is
known to be NP-complete [6], as the search space grows
exponentially with the number of BSs. Given the expected
sizes of the envisioned UDNs, addressing this problem with
exact optimization algorithms is discarded due to the time
required to compute the optimal solution. Our approach here

is to rely on metaheuristics [7]. In particular, the problem has
been formulated as a multi-objective optimization problem as
two conflicting quality criteria are optimized at the same time
and, as a consequence, multi-objective metaheuristics have
been considered. Several quality criteria have been proposed in
the literature for addressing the CSO problem [8] and, among
them, we have used the minimization of the number of BSs
switched on and the maximization of the total capacity the
network is capable of providing to the User Equipments (UEs).
This problem has been addressed with two multi-objective
evolutionary algorithms, NSGA-II [9] and MOCell [10]. The
former is the de facto standard in the multi-objective domain,
and already used for solving the CSO problem. It will serve
as the baseline algorithm in this study. To the best of our
knowledge, MOCell has never been used before in the context
of the CSO problem. The two algorithms have been evaluated
over different UDN scenarios with increasing densities of
both BSs and UEs. The results have shown that MOCell is
able to outperform NSGA-II, specially in highly dense UDNs.
Therefore, the contributions of this work are:

1) As to the system model, we have modelled the service
area with a set of regions that have different propagation
conditions and four types of cells with fairly different
propagation features (macrocells, microcells, picocells,
and femtocells).

2) We have addressed the CSO problem with MOCell for
the very first time, showing it is able to outperform
NSGA-II, a well known algorithm already used for this
problem.

3) The reported results shows that, in the studied scenarios,
it is possible to keep only a small subset of the BS
switched on (below 15% of the total BSs deployed) to
provide maximum capacity to the UEs present in the
network, thus making the UDNs highly sustainable in
terms of power consumption.

The rest of the paper is organized as follows. The next
section details how the UDN has been modeled. Section III
frames the experiments conducted, briefly describing the algo-
rithms used, the methodology, and a discussion of the results
obtained. Finally, the main conclusions drawn as well as the
lines for future research are given in Sect. IV.



TABLE I: Model parameters for cells and users

Cell Parameter LL LM LH ML MM MH HL HM HH

macro Gtx 14
f 2 GHz (BW = 100 MHz)

m
ic

ro
1 Gtx 12

f 3.5 GHz (BW = 175 MHz)
λmicro1
P [BS/km2] 100 100 100 200 200 200 300 300 300

m
ic

ro
2 Gtx 10

f 5 GHz (BW = 250 MHz)
λmicro2
P [BS/km2] 100 100 100 200 200 200 300 300 300

pi
co

1 Gtx 5
f 10 GHz (BW = 500 MHz)
λpico1P [BS/km2] 500 500 500 600 600 600 700 700 700

pi
co

2 Gtx 7
f 14 GHz (BW = 700 MHz)
λpico2P [BS/km2] 500 500 500 600 600 600 700 700 700

fe
m

to
1 Gtx 4

f 28 GHz (BW = 1400 MHz)
λfemto1
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

fe
m

to
2 Gtx 3

f 66 GHz (BW = 3300 MHz)
λfemto2
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

UEs λUE
P [UE/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

II. SYSTEM MODEL

This section is devoted to detailing the UDN model used.
We have a target service area of 500 × 500 square meters,
which has been discretized using a grid of 100 × 100 points
(also called “pixels” or area elements), each covering 25 m2

where signal power is assumed to be constant. Ten different
regions have been defined with different propagation condi-
tions. In order to compute the received power at each point,
Prx[dBm], the following model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (1)

where, Prx is the received power in dBm, Ptx is the trans-
mitted power in dBm, and PLoss are the global signal
losses, which depend on the given propagation region, and
are computed as:

PLoss[dB] = GA+ PA (2)

where GA are the total gain of both antennas, and PA are the
transmission losses in space, computed as:

PA[dB] =

(
λ

2 ∗ π ∗ d

)K
(3)

where d is the Euclidean distance to the BS, K is the exponent
loss, which ranges randomly in [2.0, 4.0] for each of the 10
different regions. The signal to interference plus noise ratio
(SINR) for UE k, is computed as:

SINRk =
Prx,j,k[mW ]∑M

i=1 Prx,i,k[mW ]− Prx,j,k[mW ] + Pn[mW ]
(4)

where Prx,j,k is the received power by UE k from BS j, the
summation is the total received power by UE k from all the
BSs operating at the same frequency that j, and Pn is the
noise power, computed as:

Pn = −174 + 10 log10BWj (5)

being BWj the bandwidth of BS j, defined as 5% of the BS
operating frequency (see Table I below). Finally, the capacity
of the UE k is:

Ck[bps] = BW j
k [Hz] ∗ log2(1 + SINRk) (6)

where BW j
k is the bandwidth assigned to UE k when con-

nected to BS j, assuming a round robin scheduling, that is:

BW j
k =

BWj

Nj
(7)

where Nj is the number of UEs connected to BS j, and UEs
are connected to the BS with the highest SINR, regardless of
its type.

In order to model a HetNet, four different types of cells
of decreasing size are considered: femtocells, picocells, mi-
crocells, and macrocells. Two subtypes of femto, pico and
microcells are also defined, summing up 7 cell types. Their
serving BSs all have a Ptx = 750mW , so their actual
coverage is defined by their operating frequencies and the
subsequent losses they induce when computing the SINR. The
BSs are deployed using independent Poisson Point Processes
(PPP) with different densities (defined by λBSP ). UEs are also
deployed using a PPP (defined by λUEP ), but using social
attractors (SAs), following the procedure defined in [11]. This
deployment scheme uses two factors, α and µβ , that indicates
how strong BSs attract SAs and how SAs attract UEs. They
have been set to α = µβ = 0.25.

The detailed parametrization of the nine scenarios addressed
is included in Table I. The names in the last nine columns,
XY, stand for the deployment densities of BSs and UEs, re-
spectively, so that X = {L,M,H}, meaning either low, medium,
or high density deployments (λBSP parameter of the PPP), and
Y = {L,M,H}, indicates a low, medium, or high density of
deployed UEs (λUEP parameter of the PPP), in the last row of
the table. The parameters Gtx and f of each type of cell refers



to the transmission gain and the operating frequency (and its
available bandwidth) of the antenna, respectively.

In this context, the way of computing the problem objectives
is as follows. The number of BSs switched on (first objective)
consists of just summing up the active BSs in the candidate
solution proposed by the metaheuristics. In order to compute
total capacity of the system, the UEs are first assigned to the
BSs that provides the highest SINR, the available BW of the
BSs is then shared between the users connected (if any) and,
finally, the capacity is computed (Eq 6) and aggregated.

III. EXPERIMENTATION

This section elaborates on the experimentation conducted
to show the performance of both NSGA-II and MOCell when
addressing the nine UDN scenarios detailed above. First, a
brief description of the algorithms is included; second, the
methodology used in the experiments is presented; and, finally,
we undertake the analysis of the results obtained.

A. Algorithms

The Non-dominated Sorting Genetic Algorithm II, NSGA-
II, was proposed by Deb et al. [9]. It is a genetic algorithm
based on generating a new population from the original one
by applying the typical genetic operators (selection, crossover,
and mutation); then, the individuals in the new and old
population are sorted according to their rank, and the best
solutions are chosen to create a new population. In case of
having to select some individuals with the same rank, a density
estimation based on measuring the crowding distance to the
surrounding individuals belonging to the same rank is used to
get the most promising solutions.

The Multi-Objective Cellular Genetic Algorithm, MOCell,
is a cellular genetic algorithm (cGA) [10]. Like many multi-
objective metaheuristics, it includes an external archive to
store the nondominated solutions found so far. The archive
is bounded and uses the crowding distance of NSGA-II to
keep diversity in the Pareto Front. The selection is based on
taking an individual from the neighborhood of the current
solution and another one randomly chosen from the archive.
After applying the crossover and mutation operators, the new
offspring is compared to the current one, replacing it if better;
if the solutions are nondominated, the worst individual in the
neighborhood is replaced by the current one. In these two
cases, the new individual is added to the archive.

The BSs of the UDNs are numbered, what allows both
NSGA-II and MOCell to use a binary string representation in
which each bit i indicates whether BS i is either activated or
deactivated. The two algorithms share the same representation
and the genetic operators, specifically, Two Point Crossover
with a crossover rate of 0.9, and Bit Flip mutation with a
mutation rate of 1/L, where L is the number of BSs of the
UDN. Binary tournament is the selection operator and the
stopping condition is to compute 100000 function evaluations.

B. Methodology

As metaheuristics are stochastic algorithms, 30 independent
runs for each algorithm and each UDN scenario have been
performed. Each run addresses a random instance, that is, the
scenarios are randomly generate for each run, but with the
same 30 seeds, so as to guarantee that the two algorithms
tackled the same random instances. In order to measure the
performance of NSGA-II and MOCell, two indicators have
been used: the hypervolume (HV) [12] and the attainment
surfaces [13].

The HV is considered as one of the more suitable indica-
tors in the multi-objective community. Higher values of this
metric are better. Since this indicator is not free from an
arbitrary scaling of the objectives, we have built up a reference
Pareto front (RPF) for each problem composed of all the
nondominated solutions found for each problem instance by
all the algorithms. Then, the RPF is used to normalize each
approximation prior to compute the HV value.

While the HV allows one to numerically compare different
algorithms, from the point of view of a decision maker, it gives
no information about the shape of the front. The empirical
attainment function (EAF) [13] has been defined to do so.
EAF graphically displays the expected performance and its
variability over multiple runs of a multi-objective algorithm.
Informally, the 50%-attainment surface in the multi-objective
domain, which is the chosen here, is analogous to the median
value in the single-objective one.

C. Results

Let us start by analyzing the results of shown by the
attainment surfaces, which are displayed in Fig. 1. There is
one plot for each of the nine UDN scenarios, and each of
the three rows corresponds to the three densities of BSs of
Table I (i.e., L, M and H), with an increasing UEs density
within each row. There are common findings to all the figures.
First, the higher the number of UEs, the higher the total
capacity delivered by the UDN. This is a clear consequence
of densification, as a large number of BSs are available in
the UDN, and the algorithms then just explore solutions that
switch on more of them. Second, in all the scenarios, a number
of active BSs exists for which the capacity hardly increases.
This value strongly depends on the position of UEs, the UEs-
to-BS association scheme used (i.e., best SINR), and the round
robin policy at BSs that shares the bandwidth equally between
the connected UEs. And, third, as to the comparison between
NSGA-II and MOCell, it can be observed that the differences
are very tight in the easier instances, that is, those networks
with a low number of BSs and a low number of UEs, but
they become remarkable in the more dense UDNs (Figs. 1g
to 1i). It can be seen that the attained points of MOCell
clearly dominates those of NSGA-II (i.e., minimize the number
of active BSs and maximize the capacity at the same time).
Their solutions are, therefore, more efficient both in power
consumption and spectrum reuse. This is precisely the target
UDNs that are expected to be deployed in 5G systems [2], so
we consider that the results are very relevant.
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Fig. 1: Attaiment surfaces of NSGA-II and MOCell for the nine different UDN scenarios

Elaborating a bit more on the results obtained, we would
like to recall that the average number of BSs deployed for
each of the L, M, and H scenarios are, respectively, 800, 1400
and 2000, i.e., the sum of all the λP values of each cell type,
divided by four, as these values are given in [BS/km2]. In
this context, it can be seen in the attainment surfaces that the
algorithms are able to switch off, on average, around 90%
of the BSs, i.e., 700, 1260, and 1800, respectively, while
providing full capacity to the UEs. This will make 5G systems
sustainable and clearly establishes the activation/deactivation
of BSs as a key strategy to save energy and match the defined
requirements for 5G.

In order to corroborate the visual inspection of attainment
surfaces, Table II includes the average HV values of the 30
approximated Pareto fronts reached by NSGA-II and MOCell.
The grey colored background in the table indicates a better

TABLE II: Results of the HV indicator

UDN NSGA-II MOCell

LL 0.4172 0.4307
LM 0.4662 0.4592
LH 0.4435 0.4260

ML 0.2791 0.3036
MM 0.3586 0.3641
MH 0.3062 0.2949

HL 0.0769 0.2298
HM 0.0608 0.1587
HH 0.1474 0.2172

(higher) value of the indicator. The conclusions drawn with
the data shown are clear: MOCell outperforms NSGA-II in
six out of the nine scenarios, specially in all the UDNs with



the more dense BS deployments (H{L,M,H} settings). In these
later cases, the improvements of MOCell are very significant
(recall that the approximated fronts are normalized before HV
is computed), while those of NSGA-II are, in general, very
tight.

Finally, it is worth noting that, as the algorithms share all
the genetic operators, the difference in the solutions reached
comes from the different search engines that explore the
search space in a fairly different way. As a consequence,
MOCell seems to be a promising approach for solving the
CSO problem, specially when handling highly dimensional
problems.

IV. CONCLUSION

This work addresses the problem of switching off cells in
the context of the upcoming 5G ultradense network deploy-
ments, with the aim of reducing the power consumption of
the entire system while providing the UEs with maximum ca-
pacity. The problem has been formulated as a multi-objective
optimization problem with these two objectives (minimizing
the number of active BSs and maximizing the aggregated
capacity of all the UEs). It has been addressed with two multi-
objective metaheuristics, a classical well-known one, NSGA-
II, used previously in similar formulations of the problem, and
a rather novel, yet accurate (but not that well known) proposal
called MOCell. The two algorithms have been evaluated over
a set of nine different UDN scenarios, which incorporates
different density levels of both BSs and UEs. The results
have shown that MOCell is able to ouperform NSGA-II in six
out of these nines scenarios, specially in those with the more
dense deployments. The two algorithms have been configured
so that they share all the underlying search operators, so the
differences in the results are provoked by the different ways
of exploring of the search space of the CSO problem.

As future works, we are working on the line of enhancing
the problem modeling, by considering a power control strat-
egy in the BSs to increase the SINR and, thus, the overall
capacity of the network, as well as using different UEs-to-BS
assignment policies. On the algorithmic side, we are devising
new search operators and evaluating recent multi-objective
metaheuristics for the CSO problem.
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