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The talk

We propose a measure nonlinearity for time series based
on the analysis of the autocorrelation of the magnitude of
the series

We apply it to series of interbeat intervals (RR-intervals)
recorded during rest and exercise
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Why nonlinearity of heartbeat time series?

A periodic heart is just the
opposite to a healthy heart

Peng et al. (1993): heartbeat
series have 1/f power-spectrum

In Physics 1/f ⇒ non equilibrium, complexity, fractals, etc.
Ivanov et al. (1999): heartrate is multifractal ⇒ nonlinear

Lack of nonlinearity ⇒ PROBLEMS

C. K. Peng, et al.: Long-range anti-correlations and non-Gaussian behavior of
the heartbeat. Phys. Rev. Lett. 70, 1343 (1993).

P. Ch. Ivanov, et al.: Multifractality in human heartbeat dynamics. Nature
399(6735), 461-465 (1999).

4/ 14



Introduction Correlations in the magnitude Linear Gaussian Noise Heartbeat data

Why nonlinearity of heartbeat time series?

A periodic heart is just the
opposite to a healthy heart

Peng et al. (1993): heartbeat
series have 1/f power-spectrum

In Physics 1/f ⇒ non equilibrium, complexity, fractals, etc.

Ivanov et al. (1999): heartrate is multifractal ⇒ nonlinear

Lack of nonlinearity ⇒ PROBLEMS

C. K. Peng, et al.: Long-range anti-correlations and non-Gaussian behavior of
the heartbeat. Phys. Rev. Lett. 70, 1343 (1993).

P. Ch. Ivanov, et al.: Multifractality in human heartbeat dynamics. Nature
399(6735), 461-465 (1999).

4/ 14



Introduction Correlations in the magnitude Linear Gaussian Noise Heartbeat data

Why nonlinearity of heartbeat time series?

A periodic heart is just the
opposite to a healthy heart

Peng et al. (1993): heartbeat
series have 1/f power-spectrum

In Physics 1/f ⇒ non equilibrium, complexity, fractals, etc.
Ivanov et al. (1999): heartrate is multifractal ⇒ nonlinear

Lack of nonlinearity ⇒ PROBLEMS

C. K. Peng, et al.: Long-range anti-correlations and non-Gaussian behavior of
the heartbeat. Phys. Rev. Lett. 70, 1343 (1993).

P. Ch. Ivanov, et al.: Multifractality in human heartbeat dynamics. Nature
399(6735), 461-465 (1999).

4/ 14



Introduction Correlations in the magnitude Linear Gaussian Noise Heartbeat data

Why nonlinearity of heartbeat time series?

A periodic heart is just the
opposite to a healthy heart

Peng et al. (1993): heartbeat
series have 1/f power-spectrum

In Physics 1/f ⇒ non equilibrium, complexity, fractals, etc.
Ivanov et al. (1999): heartrate is multifractal ⇒ nonlinear

Lack of nonlinearity ⇒ PROBLEMS

C. K. Peng, et al.: Long-range anti-correlations and non-Gaussian behavior of
the heartbeat. Phys. Rev. Lett. 70, 1343 (1993).

P. Ch. Ivanov, et al.: Multifractality in human heartbeat dynamics. Nature
399(6735), 461-465 (1999).

4/ 14



Introduction Correlations in the magnitude Linear Gaussian Noise Heartbeat data

Nonlinear time series

Generated by nonlinear dynamical equations
There exist correlations beyond the autocorrelation
function (i.e. beyond lineal correlations)

Cx(`) =
〈xi · xi+`〉 − 〈xi 〉〈xi+`〉

σ2
x

Multifractality
Non-random Fourier phases (Schreiber & Schmitz, 2000)
Correlations in the magnitude series

T. Schreiber & A. Schmitz: Surrogate time series. Physica D 142, 346382 (2000)
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Correlations in the magnitude

Given a time series {yi}, i = 1, ...,N its magnitude series
(also called volatility) is given by:

|xi | = |yi+1 − yi |

Correlations in |xi | → Related to nonlinearity

The decomposition into magnitude and sign has
Physiological meaning (e.g. heartbeat fluctuations)

Such correlations are quantified using DFA (Detrended
Fluctuation Análysis)

Y. Ashkenazy, et al.: Magnitude and Sign Correlations in Heartbeat Fluctuations.

Phys. Rev. Lett. 86, 1900-1903 (2001).
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Detrended Fluctuation Analysis

Indirect measure of correlations (actually it measures
fluctuations)
Smooths out the noise in the autocorrelation function.
Is it always good?
Only when autocorrelation function is a power law the
results can be properly interpreted
Even having power laws there are problems with
correlations in the magnitude (Carpena et al. 2017)

We propose here a direct study of
the autocorrelation function of the magnitude

P. Carpena et al.: Spurious Results of Fluctuation Analysis Techniques in

Magnitude and Sign Correlations. Entropy 19(6), 261 (2017)
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Model for linearity ⇒ Linear Gaussian Noise

Let {xi} be a series of N (0, 1) random variables with only linear
correlations

If we denote by Cx(`) its autocorrelation function at distance `, the
autocorrelation function of its magnitudes, C|x|(`), is given by:

C|x| =
2
[
Cx arcsinCx − 1 +

√
1− C 2

x

]
π − 2

C|x|(`) ≥ 0 y C|x|(`) = 0⇔ Cx(`) = 0

For small values of Cx , we have: C|x| = 1
π−2C

2
x +O(C 4

x )

M. Gómez-Extremera et al.: Correlations in magnitude series to assess

nonlinearities: Application to multifractal models and heartbeat fluctuations.

Physical Review E 96(3) 032218 (2017)
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Examples of C|x | vs. Cx for Gaussian Noises
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Theoretical curve

fGn with  H = 0.05

fGn with H = 0.95

The magnitude of a linear noise can be correlated

C|x | 6= 0 6=⇒ Nonlinearity

The deviation from the theoretical curve can be a
measure of nonlinearity
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Heartrate during exercise
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Heartrate increases and
heartrate variability is
reduced

Power spectrum is reduced,
specially at low frequencies
(respiration rate dominates)

Sample entropy is reduced

Short-range correlations are
reduced (Not clear)

Multifractal spectrum
disappears (?)

In general:
Complexity is reduced
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¿What about nonlinearity?

More lineal ⇒ less complex

Measure of nonlinearity:
deviation from linear
Gaussian expectation

∆ =
`max∑
`=1

δC (`)2

where:

δC (`) = C|x|(`)− C|x|,linear [Cx(`)]

There’s no assumption of
scaling or fractality in the
autocorrelation function
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Rest vs. exercise for football players
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Amateur football players
Rest vs. warming up running

Amateurs:
10 males 22.1 ± 3.4 y/o

Exercise: running
for 20 min at
warming up pace

Resting for 10 min
on football court

We choose `max = 10 beats

Prior to the analysis data is converted into Gaussian

For all subjects ∆ is greater for rest, this is also true for group
average.

Higher nonlinearity during REST for professional football
players (statistically significant p = 0.047)
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Permanent effects of exercise on HR nonlinearity
(cardio vs. strength training)
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Football players vs. bodybuilders
10 minutes rest

Bodybuilders

31 males 28.0 ± 6.1 y/o

Soccer players

22 males 23.0 ± 4.1 y/o

Higher nonlinearity during rest for football players

(statistically significant p = 7.6× 10−4)

Is aerobic training better for the heart?
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Thank you for your attention
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