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Abstract— Multi-beam lidar (MBL) scanners are compact,
light, and accessible 3D sensors with high data rates, but they
offer limited vertical resolution and field of view (FOV). Some
recent robotics research has profited from the addition of a
degree-of-freedom (DOF) to an MBL to build rotating multi-
beam lidars (RMBL) that can achieve high-resolution scans
with full spherical FOV. In a previous work, we offered a
methodology to analyze the complex 3D scan measurement
distributions produced by RMBLs with a rolling DOF and no
pitching. In this paper, we investigate the effect of introducing
constant pitch angles in the construction of the RMBLs with
the purpose of finding a kinematic configuration that optimizes
scan homogeneity with a spherical FOV. To this end, we propose
a scalar index of 3D sensor homogeneity that is based on the
spherical formulation of Ripley’s K function. The optimization
is performed for the widely used Puck (VLP-16) and HDL-32
sensors by Velodyne.

I. INTRODUCTION

In the last few years, multi-beam lidar (MBL) rangefind-
ers, like those developed by Velodyne, are becoming increas-
ingly applied in robotic vehicles, such as in urban scene
understanding [1], emergency response robots [12], off-road
ground vehicles [8], and mobile manipulators [2]. These
sensors can be considered as a hybrid between 2D and 3D
scanners, as they consist on a spinning structure that holds a
number of independent laser transceivers to scan planes with
different elevation angles within a fixed vertical field of view
(FOV).

With the decreasing cost of MBL sensors [14], rotating
multi-beam lidars (RMBL) built by adding a degree of
freedom (DOF) to a commercial MBL may arguably become
a common solution to obtain affordable rapid full-3D high
resolution scans in the close future. This idea is supported
by recent examples reported in the literature. The first so-
lutions incorporated Velodyne HDL-64E lidars on tilting (or
nodding) mechanisms for robotic mapping vehicles in mines
[7] and tunnels [3]. Lighter MBL devices, like the Velodyne
Puck, have favored more compact tilting systems [8][5].
Furthermore, a complete spherical FOV can be achieved
by mounting the MBL on a continuous rotation mechanism
[6][2].

In contrast to rotating single-beam 2D lidars, whose non-
homogeneous measurement distributions can be character-
ized by constant vertical and horizontal angular resolutions
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[16], overlapping beams in RMBLs provoke much more
complex scan patterns. Understanding these patterns is cru-
cial for effectively building and applying customized 3D
sensors. In a recent work [5], we proposed a methodology
based on a spherical formulation of Ripley’s K function
[10] to analyze the distribution of 3D range measurements
projected on a hollow sphere. This methodology was applied
to an RMBL configuration where the vertical axis of the
constituent MBL is perpendicular to the rotation axis (i.e.,
zero pitch angle), as in [7][3][8][2]. However, as indicated
by Neumann et al. [6], rotating a Velodyne Puck with a
constant pitch inclination can improve measurement density
distribution.

In this paper, we investigate the effect of pitch angles
in RMBL measurement distributions in order to find a
kinematic configuration that optimizes scan homogeneity and
with a full-sphere FOV. With this purpose, the originality of
this work with respect to [5] is threefold: (i) we consider a
more general build configuration where the Velodyne sensor
is not perpendicular to the axis of the rolling DOF but can
have a constant pitch angle; (ii) we define a new scalar index
to assess the homogeneity of 3D sensor data distribution
based on the spherical formulation of Ripley’s K function;
and (iii) we optimize the pitch angle that maximizes the
homogeneity for RMBLs based on the Puck VLP-16 and
the HDL-32.

The rest of the paper is organized as follows. Section II de-
fines a general RMBL that includes a pitch angle. Section III
reviews the application of the spherical extension of Ripley’s
K function to analyze 3D scan measurement distribution and
proposes a scalar homogeneity index. Section IV analyzes the
effect of the pitch angle and discusses optimal configurations
for rotating the Puck and the HDL-32 rangefinders. Finally,
Section V offers the conclusions.

II. GENERAL RMBL DEFINITION
Let us define the local frame XvYvZv of an MBL with

its origin in the optical center, its Yv axis in the forward
direction and Zv pointing upwards. This is illustrated in
Fig. 1 for the case of the Puck sensor. An MBL scans
points in spherical coordinates (R,ω, α), which correspond
to Cartesian coordinates (xv, yv, zv) for each measured point:

xv = R cos(ω) sin(α), (1)
yv = R cos(ω) cos(α), (2)
zv = R sin(ω). (3)

The local frame XY Z of the RMBL resulting from the
addition of a rotating mechanism to the MBL is illustrated in
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Fig. 1. Local frame for a MBL, illustrated for a Puck sensor.

Fig. 2. Let us consider that the rotation axis is parallel to one
of the MBL axes; in this case, without loss of generality, the
rotation axis is considered to be Y . Then, when the rotation
angle γ is null, Xv is parallel to X . The case of RMBL
sensors where the vertical axis of the constituent MBL (i.e.,
Zv) is perpendicular to the rotation axis [7][3][8][2] was
considered in [5] and is represented as XvY

′
vZ
′
v in Fig. 2. In

this work, we consider a more general configuration where
the MBL can be installed with a constant pitch angle β about
its Xv , which is the angle between Zv and the XZ plane.
Furthermore, in practice, the rotation axis Y can be at some
small constant distance d from the MBL origin.

With this frame definition, the computation of Cartesian
coordinates (x, y, z) for a point in the frame of an RMBL
with kinematic parameters d and β from a MBL measure-
ment (R,ω, α) is as follows:

x = R cos(ω + β) sin(α) cos(γ) (4)
+ R sin(ω + β) sin(γ) + d sin(γ),

y = R cos(ω + β) cos(α), (5)
z = R sin(ω + β) cos(γ)

− R cos(ω + β) sin(α) sin(γ) + d cos(γ). (6)

III. HOMOGENEITY ASSESSMENT OF 3D SCAN
DATA

This section reviews the application of the spherical exten-
sion of Ripley’s K function to analyze 3D scan measurement
distribution. Based on this formulation, we propose a scalar
index to evaluate data homogeneity.

A. Spherical 3D Scan Data Analysis with the K Function

The original Ripley’s K function [9] is a spatial statistics
tool for analyzing data homogeneity of points in the plane. A
set of points is considered homogeneous if the same number
of points occurs in any circular region of a given area. The
comparison between the K function for the point set and the
K function for complete spatial randomness (CSR), denoted
as Kcsr, allows determining whether points have a random,
dispersed or clustered distribution over a range of distances
[13].

In particular, a positive value of the difference (K −Kcsr)
for a given distance indicates clustering, i.e., that the average
number of neighbor points for that particular range of dis-
tances is higher than the average for the whole distribution,
whereas negative values indicate dispersion.
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Fig. 2. Frames for a generalized RMBL sensor. The MBL frame is depicted
in blue; the RMBL frame is in red; the additional DOF γ is in black; constant
kinematic parameters d and β are in green.

Simulating measured points from the center of a hollow
sphere is a common approach to evaluate 3D scan data
density distributions [16][4][11]. Because of this, using a
variation of the K function for spherical surfaces [10] is
proposed in [5]. The K function for spherical CSR is given
by:

Kcsr(ρ) = 2πR2(1− cos(ρ)) (7)

where R is the radius of the sphere and ρ = r/R represents
great-circle distance r normalized in the [0, π] interval.

Given a set of n sphere points p1, . . . , pn the estimation
of the K function for points on a sphere can be computed
as:

K̂(ρ) =
8πR2

n(n− 1)

n∑
i=1

n∑
j=i+1

I(θ(pi, pj) ≤ ρ), (8)

where θ(pi, pj) represents the angle corresponding to the
great-circle distance between pi and pj , and I(·) is the
indicator function.

B. Definition of a Scalar Homogeneity Index

The difference K̂(ρ)−Kcsr(ρ) computed from (8) and (7)
results in a curve that allows analyzing the point distribution
for all normalized great circle distances ρ.

However, a scalar cost function that indicates overall
homogeneity is required to optimize the kinematic parameter
β of a customized RMBL configuration. With this purpose,
let us define index η for a given pitch angle β as:

η(β) =

∫ π

0

|K̂(ρ;β)−Kcsr(ρ)|dρ (9)



which weighs clustering and dispersion equally. This index
is a measure of inhomogeneity that has to be minimized to
optimize homogeneity in 3D scan measurement distributions.

IV. ANALYSIS AND OPTIMIZATION OF THE
PITCH ANGLE FOR VELODYNE-BASED RMBLS

A. Velodyne sensors

In this analysis we consider two representative examples of
commercial multi-beam sensors usually found in robotics ap-
plications: the VPL-16 Puck and HDL-32 by Velodyne. The
manufacturer specifications for these MBLs are summarized
in Table I. The major differences between these two sensors
concerning scan data distribution lie in the number of laser
transceivers and the vertical FOV. The Puck has 16 individual
laser/detectors arranged in a 30◦ FOV, which yields a vertical
resolution of 2.0◦, whereas the HDL-32 has 32 transducers
within a FOV of 40◦ with a vertical resolution of 1.29◦.
Furthermore, the Puck FOV is symmetrical with respect to its
horizontal plane, whereas the HDL-32 has an asymmetrical
FOV with a downward shift.

B. Hollow Sphere RMBL Sampling

Hollow sphere measurements have been obtained by sim-
ulating a full rotation of the roll angle from γ = 0◦ to
γ = 360◦. Cartesian points have been computed with (4)-(6)
and R = 10 m. For the sake of simplicity, it will be assumed
that the sphere radius is large enough to make the deviation
between the center of the sphere (i.e., the RMBL’s origin)
and its optical center negligible (i.e., d ≈ 0). Besides, for
generalization, no shadows or other FOV limitations due to
a particular mechanism are considered. The scan resolution
is determined by the angular velocity of γ.

Fig. 3 illustrates the resulting data distribution for an
RMBL based on the Puck sensor, with a rotation speed of
dγ/dt = 300◦/s, for four different values of pitch angle β.
From a qualitative standpoint, the case of an aligned sensor
(i.e., β = 0) shown in Fig. 3(a) has focal points with a higher
density in the rotation axis as well as distinctive stripes
of unsampled spots [5]. As the Puck FOV is symmetrical,
β = 0 makes that the center of this FOV is aligned with the

TABLE I
MANUFACTURER SPECIFICATIONS FOR THE PUCK AND HDL-32

SENSORS [15].

Puck (VLP-16) HDL-32
Channels 16 32
Range 1m to 100m 1m to 70m
Accuracy ±3cm ±2cm
Data Distance / Distance /

Calibrated reflectivities Calibrated reflectivities
Data Rate 300,000 points/s 700,000 points/s
Vertical FOV 30◦ : [−15◦,+15◦] 40◦ : [−30◦,+10◦]
Vertical Res. 2.0◦ 1.29◦
Horiz. FOV 360◦ 360◦
Horiz. Res. 0.1◦ to 0.4◦ (progr.) 0.08◦ to 0.35◦ (progr.)
Rotation Rate 5Hz to 20Hz 5Hz to 20Hz
Size 103mm x 72mm 85.3mm x 149.9mm
Weight 0.83Kg 1.3Kg

(a) (b)

(c) (d)

Fig. 3. Hollow sphere patterns for the Puck: (a) β = 0◦, (b) β = 14◦,
(c) β = 22◦, and (d) β = 35◦.

(a) (b)

(c) (d)

Fig. 4. Hollow sphere patterns for the HDL-32: (a) β = 10◦, (b) β = 20◦,
(c) β = 31◦, and (d) β = 35◦.

rotation axis, which causes the maximum density in the focal
points. The rest of the spheres in the figure indicate that with
increasing values of β, density becomes lower in the focal
points and unsampled stripes tend to disappear. However, the
case with the highest value of β in Fig. 3(d) (i.e., β = 35◦)
shows a significant reduction of FOV around the rotation
axis. An extreme case would be β = 90◦, where the rotation
axis would be redundant with the Puck spinning axis and the
FOV of the RMBL would be the same as that of the Puck.



Examples of spheres computed for the HDL-32 are given
in Fig. 4, where a higher density due to a doubled number
of beams can be appreciated. In this case, the asymmetrical
FOV of the HDL-32 implies that the highest density of the
focal points is obtained when the center of the FOV is aligned
with the rotation axis (i.e., β = 10◦, as shown in Fig. 4(a)).
Apart from that, the qualitative behavior of increasing β is
similar to the Puck case. The main difference is the resulting
reduction of the FOV around the rotation axis in Fig. 4(d),
which is smaller due to the wider FOV of the HDL-32.

All in all, Figs. 3-4 evidence the complexity of the
measurement patterns produced by the RMBLs.

C. K-Function Analysis and Homogeneity Optimization

The estimation of the K function in (8) is applied with
discretized angle increments ∆ρ in the interval [0, π]. A value
of ∆ρ = π/151 is suitable for the Velodyne sensors, since
it allows that all bins contain a representative number of
samples.

The deviation indicated by K̂(ρ)−Kcsr(ρ) using (8) and
(7) with the points in the simulated RMBL spheres allows a
spatial distribution analysis of sensor measurements for the
whole range of normalized great circle distances ρ.

The curves computed for the RMBL based on a Puck
sensor for configurations from −35◦ to 35◦ with 1◦ in-
crements are presented in Fig. 5. Due to the symmetric
FOV of the Puck, all curves represent both β and −β.
The configuration with β = 0◦, emphasized as a bold red
line in the figure, has the highest deviation from CSR. In
this case, clustering is maximum around ρ = π/4 rad and
dispersion (i.e., negative values in the curve) appears when
great circle distances become larger. This result is explained
by the concentration of measurements in focal points about
the roll axis. On the other hand, pronounced pitching of the
Puck (e.g., β = ±35◦), which yields unsampled regions in
the poles, causes that the largest mean number of neighbors
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Fig. 5. Puck-based RMBL: K̂ − Kcsr for β from −35◦ to 35◦ with
1◦ increments. Bold lines indicate β = 0◦ (red), β = ±14◦ (blue), and
β∗ = ±22.1◦ (green).

appears within distances around ρ = 1.95 rad. In this case,
the curve is always positive, meaning that there is some
degree of clustering for all possible great circle distances.

The intermediate pitch value β = ±14◦ proposed by
Neumann et al. [6] makes that the lowest beam of the
Puck’s FOV is almost aligned with the roll axis, which avoids
the appearance of unsampled regions (i.e., it maintains the
optimal FOV) while reducing the data density in the focal
points, as seen in Fig. 3(b). The spatial analysis curve for
this value has been emphasized as a bold blue line in Fig. 5.
The shape of this curve is closer to CSR than β = 0◦, but
significant clustering and dispersion appear at similar ranges
of ρ distances.

The computation of index η in (9) for different pitch
inclinations of a Velodyne Puck is summarized in Fig. 6,
where β = 0◦ reaches the highest, i.e., most inhomogeneous,
value (η = 0.576). This value is clearly improved by
β = ±14◦, with η = 0.406. The configuration with the
optimum pitch angle β∗ (with the minimum η = 0.267)
is β∗ = ±22.1◦. From a qualitative standpoint, Fig. 3(c)
corroborates that even if small unsampled regions appear at
the poles, the overall homogeneity of this configuration is
quite good, with a larger spread of focal areas around the
poles and diffumination of the stripes of unsampled spots.
Increasing pitch inclination above the optima reduces the
FOV at the poles (Fig. 3(d)), which causes a slight increase
of η, as appreciated on both extremes of Fig. 6. The spatial
analysis curve for β∗ has been highlighted as a bold green
line in Fig. 5. This distribution avoids dispersion and has a
moderate clustering, which is maximum around ρ = 1.15.
Furthermore, this optimal configuration is very close to
CSR, with practically no clustering and no dispersion, for
normalized great circle distances over ρ ≈ 2.

The corresponding spatial analysis curves for a RMBL
based on the Velodyne HDL-32 are given in Fig. 7. The
major differences with the Puck are due to its asymmetric
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Fig. 6. Puck-based RMBL: Representation of the homogeneity index η
for different β angles.
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Fig. 7. HDL-32-based RMBL: K̂ − Kcsr for β from −15◦ to 35◦

with 1◦ increments. Bold lines indicate β = 0◦;β = +20◦ (red), and
β∗ = −11.2◦;β∗ = +31.2◦ (green).
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Fig. 8. HDL-32-based RMBL: Representation of the homogeneity index
η for different β angles.

and wider FOV. The asymmetry causes an effect similar to an
implicit pitch rotation. For this reason, the curve for β = 0◦

is the same as for β = 20◦ (emphasized as a bold red line
in the figure). Thus, in this case, the most inhomogeneous
curve corresponds to β = 10◦, which gets the highest η
value in Fig. 8 (η = 0.511). For this sensor, the optima are
reached for β∗ = −11.2◦ and β∗ = 31.2◦, which achieve
η = 0.267. The spatial distribution curve for these pitch
values (emphasized as a green bold line in Fig. 7) is very
similar to the Puck optima. However, in the HDL-32, the
optima does not have unsampled regions in the poles due to
the wider FOV, as can be appreciated in Fig. 4(c).

D. Effect of other RMBL Parameters

This section discusses the effect of other operational
parameters in the homogeneity of RMBL sensor data: the
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Fig. 9. Optimal Puck and HDL-32 configurations for different angular
velocities.

roll speed and the distance between the optical center of the
MBL and the rotation axis.

The angular velocity of γ determines the 3D scan reso-
lution of the RMBL. In the analysis performed above, the
rotation speed was set to dγ/dt = 300◦/s, as in [6]. In
general, the spatial distribution of scan measurements is not
affected by this roll speed [5]. Nevertheless, some effect can
be appreciated in the spatial analysis for the case of very
fast scans (i.e., lower resolution). Fig. 9 presents the optimal
Puck and HDL-32 configurations against angular velocity.
Even if the variations are small, it may be of interest to
consider them if the sensor is designed to operate normally
with very fast rotation speeds.

As for the distance between the optical center of the
MBL and the rotation axis (d, as seen in Fig. 2), this has
been considered null in the preceding analysis, because it
is usually very short (a few centimeters) in relation with
target distances. Furthermore, this assumption makes the
spatial distribution analysis independent of the radius R of
the hollow sphere (i.e., a particular target distance). Fig. 10
shows the homogeneity index η for different values of d and
β for RMBL sensors based on both a Puck and a HDL-
32 rotated at dγ/dt = 300◦/s inside a hollow sphere of
R = 20 m. It can be appreciated that the optimal β∗ is
modified slightly for non-null values of d, as shown by the
red line. Nevertheless, the optimal β∗ for d = 0, shown as a
dashed magenta line, remains as a quasi-optimum due to the
flat shape of the homogeneity index surface near the optima.

V. CONCLUSIONS

Rotating a multi-beam lidar (MBL) with a servo mecha-
nism is an effective solution to achieve high resolution and
fast 3D scans with full spherical field of view (FOV), as
indicated by recent published examples. However, a rotating
multi-beam lidar (RMBL) yields complex scan patterns due
to overlapping beams. In this paper, we have extended [5]
to analyze the spatial data distribution provoked by placing
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Fig. 10. (a) Puck-based RMBL and (b) HDL-32-based RMBL: Homo-
geneity index η for different values of d and β and a hollow sphere with
R = 20 m. The optimum is depicted as a red line; and the quasi-optimum
(i.e., assuming d = 0) as a dashed magenta line.

the MBL in the RMBL mechanism with a fixed pitch angle
β with respect to the rotation axis, as proposed in [6].

Moreover, we have defined a new scalar index to assess
the homogeneity of 3D data distribution on a hollow sphere
by integrating the absolute difference of the K function
with complete spatial randomness (CSR) for all great circle
distances. Using this index as a cost function, we have
optimized the pitch angle that maximizes data homogeneity
for RMBLs based on the Puck VLP-16 and the HDL-32.

The analysis has revealed that placing the MBL with
no pitch angle, which is the most common configuration
found in published works, produces inhomogeneous scans
characterized by oversampled focal points and distinctive
stripes of unsampled spots. The optimized configurations are
β = ±22.1◦ for the Puck, and β = −11.2◦ or β = 31.2◦

for the HDL-32. In the Puck, the optimal pitch angle causes
a small unsampled region at the poles which is not present
in the HDL-32 due to its larger FOV. The K function for
these optima shows moderate clustering but also achieves
coincidence with CSR for the larger third of normalized great
circle distances.

The paper has also evaluated the effects of the roll speed
(i.e., scan resolution) and the distance between the optical

center of the MBL and the rotation axis. These do not
have a substantial effect on the optimized pitch angles,
but it is interesting to note some variation of the spatial
measurement distribution for very fast scans (i.e., faster than
about 550◦/s).

These results are relevant for building customized high-
resolution 3D sensors in applications demanding a full FOV
with a quasi-homogeneous scan resolution. Future work will
be necessary to identify the effects of shadows introduced by
actual rotation mechanisms. Moreover, it will be interesting
to test the applicability of existing calibration methods to the
rotation of multiple beams.
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