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Fast HUB Floating-point Adder for FPGA
Julio Villalba, Javier Hormigo and Sonia González-Navarro

Abstract—Several previous publications have shown the area
and delay reduction when implementing real number computa-
tion using HUB formats for both floating-point and fixed-point.
In this paper, we present a HUB floating-point adder for FPGA
which greatly improves the speed of previous proposed HUB
designs for these devices. Our architecture is based on the double
path technique which reduces the execution time since each
path works in parallel. We also deal with the implementation of
unbiased rounding in the proposed adder. Experimental results
are presented showing the goodness of the new HUB adder for
FPGA.

Index Terms—Floating-point (FP), field-programmable gate
array (FPGA), half-unit biased (HUB) format, addition, unbiased
rounding.

I. INTRODUCTION

When specific Floating-Point (FP) is needed for some
applications, Field-Programmable Gate Array (FPGA) design
allows to meet the required features. Thus, nowadays many
systems are not implemented in ASIC but using FPGAs [1].
Traditionally FPGA implementations use fixed-point arith-
metic mainly because many of the Digital Signal Processing
(DSP) applications tolerate error precision providing low-cost
implementation at the same time. However, in the last years a
fast growth of floating-point implementations and studies has
been seen in the literature [2], [3], [4], [5]. There are more
DSP applications implementing complex algorithms which
require extended dynamic range and higher precision. The
drawback is that the implied implementations on FPGA are
costlier than their fixed-point counterparts. However, there are
some promising researches proposing designs of adders and
multipliers (key units on most DSP applications) which use
other format than the IEEE-754 standard for binary floating
point with lower cost [6], [7], [8], [5]. Specifically the imple-
mentations on FPGA of an adder and multiplier are analyzed
in [5] having simultaneously less area and delay (compared to
conventional implementations). In this brief, we use the same
format as that used in [5] named HUB format.

HUB is the acronym of Half-Unit-Biased format and it is
based on shifting the standard numbers by half unit in the last
place (ULP). Some of its important features are that the two’s
complement is carried out by bit-wise inversion, the round-
to-nearest is performed by simple truncation, and requires the
same number of bits for storage as its conventional counterpart
for the same precision [9]. Thanks to those characteristics, it
is possible to eliminate the rounding logic which significantly
reduces both area and delay [9], [5].
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A floating-point HUB number, x, has a similar representa-
tion as the binary floating-point standard [10]. The difference
between both representations is in the mantissa. A normalized
HUB mantissa, Mx, has both a value 1 < Mx < 2 and an
implicit least significant bit (ILSB) which equals one [9].

The efficiency of using HUB formats for floating-point
approach has been demonstrated in several works, such as [9]
and [5]. In [9], the authors analyze the benefits of using HUB
format for floating-point adders, multipliers, and converters
from a quantitative point of view for ASIC implementation.
The HUB adder proposed in [9] is optimized for FPGA devices
in [5] achieving excellent results. In this paper we present new
architectures based on the double-path technique that speed
up the previous results of HUB addition in FPGA devices
presented in [5]. Moreover, the problem of bias when rounding
in the previous architectures is overcome by adapting the
proposal in [11].

The rest of the paper is organized as follows: in Section II
we deal with the design of the proposed adder. Next in
Section III, we show how to improve the architecture to
include unbiased rounding. The implementation results are
presented in Section IV. Finally, in the last section, we give
the summary and conclusion.

II. FLOATING-POINT HUB ADDER BASED ON
DOUBLE-PATH

The simple design of floating-point HUB adder (a single-
path architecture) presented in [9] and studied for FPGA in [5]
is shown in Fig. 1. This architecture carries out the addition
of two floating-point HUB numbers with rounding-to-nearest
and tie-away-from-zero (i.e. when the result is exactly in
the middle of two exactly representable numbers, the higher
magnitude is selected). In comparison with the counterpart
floating-point architecture for conventional numbers, the HUB
architecture does not use the round-to-nearest circuit as well
as the circuits required for calculating sticky bit, since the
HUB round-to-nearest is carried out simply by truncation. As
a consequence, an important reduction both in area and delay
is achieved as proved in [5] and [9].

In this section, we propose a new HUB adder architecture
using the double path approach to improve the speed of
the HUB adder of Fig. 1 when implemented on FPGA.
In the single-path HUB architecture the critical path goes
through two variable shifters (shadowed in Fig. 1). It is a
well known fact that variable shifters perform very poorly in
FPGA [6], [7], [8], being responsible for from 25% to more
than 50% of the total delay. Therefore, if at least one of the
variable shifter is removed from the critical path, the gain on
speed may be very significant. This is accomplished using a
double-path approach [12]. The double-path approach sepa-
rates these variable shifters so that they belong to two parallel
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Fig. 1. Floating-point HUB adder proposed in [9]

disjoint paths [13], and therefore, a significant reduction of
the latency is expected. On the other hand, using two disjoint
paths implies duplicating some logic (such as the mantissa
adder) and increasing control logic. As a consequence, an area
increase is also expected.

The proposed double-path HUB adder is presented in Fig.
2. It has a global structure similar to that of the classic
double-path implementation (see [13]), except that the circuits
required for rounding have been eliminated to handle floating-
point HUB numbers. The left adder forms the Close path, and
the right adder forms the Far path, both including only one
variable shifter (R-SHIFTER in the Far path and L-SHIFTER
in the Close path, shadowed in Fig. 2). The variable right
shifter, R-SHIFTER of Fig. 1, is now placed in the Far path
and the variable left- and one-bit right shifter L/R1-SHIFTER
of Fig. 1 is now placed in the Close path.

Apart from the aforementioned differences, when compar-
ing the double-path approach (Fig. 2) with the previous single-
path approach (Fig. 1) we can see that the comparator of Fig.
1 has been prevented and the inversion of one of the operands
(if required) is performed before shifting in the double-path
architecture (Fig. 2). We can also see that there is a fixed
R1-SHIFTER in the Close path and a fixed L1/R1-SHIFTER
in the Far path. These modules are explained later and the
logic needed to implement them is very simple (similar to
one multiplexer).

Before entering in Close and Far path, the swap module
of Fig. 2 places the mantissa of the highest exponent in
the left output depending on the sign of the difference of
exponents (d). This ensures that the mantissa of the greatest
number is located at the left output of the swap module except
when the difference of exponent is 0 (d = 0), in which
case the position of the greatest operand is unknown. The
top conditional inverter of Fig. 2 inverts the operand if the
Effective Operation (Eop) is a subtraction only. Next, the
operands arrive to both the Close and Far paths.

Note that in both paths the Implicit Least Significant Bit
(ILSB) of the operands is incorporated as the Least Significant
Bit (LSB) of the operation in the suitable modules in the
architecture (R1-SHIFTER, R-SHIFTER and both adders).
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Fig. 2. Double-path HUB adder

Note, as well, that sign extension (bit 0) is incorporated in
the top conditional inverter and at the second input of the two
adders.

Let us deal with the Close and the Far paths separately:

• The Close path. The Close path is intended for effective
subtraction of two floating-point HUB numbers with a
difference between the exponents less than two (d = 0, 1).
In this case, aligning the input operands is almost not
required, but normalizing the results may required large
left shifting. The R1-SHIFTER module in the Close path
of Fig. 2 is used when d = 1 to perform a fixed shift of
one position to the right (if d = 0 it allows the data to
go through without shifting).
The output c of the adder is suitably shifted by the
variable left-shifter, L-SHIFTER. The number of bits to
be shifted is calculated by the module LZOD which
detects the leading 0 or 1 depending on the sign of the
output c. Note that the prevention of the comparator of
Fig. 1 makes a negative output c possible. This happens
when the input operands have the same exponent (d=0)
and the swap module place the mantissa of the lowest
operand in the left output. Thus, a conditional inverter
is required at the end of the Close path (Cond. Inverter
module in the bottom of Fig. 2). The left shift is filled
with 0’s (for implementation of the unbiased rounding for
the tie case this pattern changes slightly as we will see
in Section III).

• The Far path. This path covers the rest of the cases
(i.e. subtraction with d > 1 and addition). In this case,
aligning the input operands may be required but, at
most, one-bit shifting may be required for normalization.
Therefore, a variable shifter is required at the input of the
adder for alignment (R-SHIFTER in the Far path of Fig.
2). The final L1/R1-SHIFTER module corrects a possible
overflow in the addition operation (one-bit right shift) or
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the case of having a pattern 0.1xxx in the result of a
subtraction operation (one-bit left shift). Note that for the
subtraction of the mantissas of two HUB numbers, it is
not necessary to calculate the sticky bit since it is always
one due to the ILSB of the second operand (the right-
shifted operand), and thus, it always involves an incoming
carry to the adder (sticky=1).

After the Close and Far paths, the final multiplexer of Fig. 2
selects the result of either the Close or the Far path depending
of the effective operation (Eop) and the difference of exponents
(d).

III. UNBIASED ROUND-TO-NEAREST

When the result of an operation is just in the middle of
two exactly representable numbers (tie case), rounding may
be performed in any direction. However, the careless election
of this direction may produce a statistical bias in the results. To
avoid annoying statistical anomalies of some applications due
to this bias, we should round either up or down with similar
probability for the tie case. In [11] a deep analysis of the three
source of bias for HUB-FP addition is presented. A bias can
be produced under any of the next operations [11]:

1) aligned addition (d = 0),
2) aligned subtraction (d = 0),
3) subtraction with difference of exponents of one (d = 1).

In [11] the algorithms to reduce, or even, prevent the bias
for the tie case are also proposed. Next, we introduce this
solution to our double-path architecture.

The first source of bias (aligned addition) occurs only in
the Far path (which is devoted to perform subtractions with
d > 1 and additions), whereas the other two always happen
in the Close path (which is devoted to perform subtractions
with d = 0, 1). Hence, the adaptation of the solution proposed
in [11] to our architecture is almost straightforward. Fig. 3
shows the modifications required in the architecture of Fig. 2
to support the unbiased solution. The differences with Fig. 2
are the two modules entitled ”unbiased” (shadowed in Fig. 3).
These modules involve a very simple logic such that the
hardware cost and the penalty time are very small as can
be seen in the experimental results presented in Section IV
(details of the logic of these modules can be found in [11]).

On the one hand, the logic to prevent the bias for the aligned
addition is included at the output of the Far path. On the other
hand, the bias for the aligned subtraction is, in fact, prevented
in the original double-path architecture and only the logic
to eliminate the bias for the third source is needed. In this
case, depending on the LSB of the result, the pattern 0111...
is inserted in the left shifting (more details can be found in
[11]).

We should note that in the simple HUB adder of [5] (Fig. 1)
it is possible to prevent the bias only for the case of aligned
addition (if the corresponding logic is appended). To eliminate
the other two sources of bias a negative results at the output
of the adder is required [11]. This is not possible in the
simple path approach due to the fact that the comparator in the
architecture of Fig. 1 ensures a positive result at the output.
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Fig. 3. Unbiased Double-path HUB adder

IV. FPGA IMPLEMENTATION RESULTS

In this section, we analyze and compare the main results
of the FPGA implementation of the new floating-point HUB
double-path adder (denoted as DPath in the sequel) with the
ones corresponding to the HUB-FP single-precision adder
(denoted as SPath in the sequel) presented in [5]. All our
implementations were described in VHDL such that the bit
widths of the mantissa and exponent were configurable. To
facilitate the comparison, all designs are fully combinational
but they do not support special cases or subnormal. All the
architectures have been synthesized using Xilinx ISE 14.3
targeting Xilinx Virtex-6 FPGA xc6vlx240t-1 for a wide range
of formats. Specifically, we have synthesized all FP formats
with the size of the mantissa ranging from 10 to 60 bits and
the size of the exponent from 6 to 12 bits (as in [5]).

Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show the analysis per-
formed over the two studied adder architectures (without bias
prevention) controlling when the mantissa bit width varies.
Each architecture uses lines printed in the same color and
line style, whereas each exponent bit width is represented in
lines with different color intensity. The label ”DpathX” (in
the legends of the figures) represents the architecture with
double-path and the number X indicates the bit width of the
exponent. Similarly ”SpathX” corresponds to the basic single-
path architecture [5]. To facilitate the comparison, the mean of
all exponent bit width for each architecture is also shown using
the corresponding line stile but with red color. Fig. 4 shows
the delay of the critical path for the analyzed architectures. It
is easily observed that the influence of the exponent bit width
is much more important in the single-path architectures than
in the double-path ones. Consequently, the delay reduction is
very significant in all cases, specially when the exponent bit
width rises.

Fig. 5 shows the area in LUTs for all the analyzed architec-
tures. In this case the exponent bit width has less influence in
both architectures. As expected, the double-path architecture
requires significantly more area than the single-path one.

Fig. 6 and Fig. 7 provide, respectively, the power and energy
to perform one calculation for all the analyzed architectures.
Both power and energy have been estimated using Xilinx
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Power Estimator (XPE) considering the maximum achievable
frequency. As expected, the power of ”DpathX” adders is
significantly greater than that of the ”SpathX” adders. The
increase in energy of ”DpathX” is very low for short mantissas
and increases slowly for larger mantissas (up to 20%). We can
also observe that the shape of the curve of Fig. 7 is similar
to that of the area (Fig. 5), but the relative increase in energy
(13% on average) is less than the relative increase in area (26%
on average). Thus, the energy consumption shows a very good
behaviour.

To facilitate the comparison between both approaches, Fig. 8
represents some typical rates. Fig. 8a shows the speedup when
using the proposed double-path architecture. It has a significant
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Fig. 7. Energy of adders: double-path (DPath) and simple-path [5] (SPath)

variability, but in general the speedup increases when the
exponent bit width increases and asymptotically decrease
when the bit width of the mantissa increases. Considering all
implemented combination of bit width, the speedup ranges
from 80% to 10% with a mean of 34%. For a typical 24-
bit mantissa, the speedup ranges from 25% to 50%. On the
other hand, considering the mean of all exponent, the speedup
ranges from 65% for 10 bits and 20% for 60 bits. Similarly,
Fig. 8b represents the increment of area required by the
double-path architecture respect to the single-path one. In this
case the variation when changing the exponent bit width is
irrelevant. The area increment ranges between 35% and 21%
with a mean of 26%. Finally, Fig. 8c shows the Energy-Delay-
Product (EDP) in relative terms (Dpath/Spath). The EDP is
a fused metric used to compared low power designs. The
lower the EDP is, the better. In Fig. 8c, it is observed that the
ratio is generally lower than one, which means our proposal
performs better. Thus, in general, the area and energy cost of
the proposed double-path architecture is very reasonable (26%
and 13% on average, respectively) related to the gain in speed
(34% on average) which means good EDP decrease (15 % on
average).

Nonetheless, we must point out that the changes in the
global results of a system when the proposed double-path
adder replaces the single-path one may vary drastically since
it depends on many factors (such as the relative weight of the
adder in the maximum delay and global area, percentage of
resources utilized in the device, etc.). Hence, the convenience
of using the proposed adder should be analyzed on each case.
The ideal case would be when the adder is on the critical path
and slightly influences on the area of the system. Then, an
important delay reduction with a negligible cost is expected.
However, if adders have a great influence on the global area
and the initial system has a high occupancy of the device, the
resulting delay may be even worse than the original one due
to routing problems.

We have also studied the cost of implementing the unbiased
rounding described in Section III. The architecture Dpath+
refers to the elimination of the bias only in the far path
whereas, Dpath++ refers to the elimination of all sources of
bias [11]. Fig. 9 shows the relative cost of implementing this
logic in the proposed double-path architecture. To facilitate
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Fig. 8. Speedup, area and EDP ratios between the double-path adder and the
simple-path adder [5]

the comprehension of the plot, we only show the mean value
among the different exponent bit width. Fig. 9a represents
the delay increment, in relative terms, for both Dpath+, and
Dpath++ respect to the Dpath architecture. It is clear that the
delay increase of Dpath+ is negligible. For Dpath++ is below
3% for most of the cases, with a maximum of 12% and a mean
of 1.8%. The area is a little more affected as we can observe in
Fig. 9b. For Dpath++ the area increase ranges between 10.6%
and 2.4% with a mean of 5%. This increase is much lower for
Dpath+ which is below 1% for most of the cases.

V. CONCLUSION

In this paper, we design a double-path based HUB-FP adder
to speed up the computation on FPGA devices. Compared to
the single-path adder implementations shown in [5], the cost
in area and energy of the double-path approach is reasonable,
giving a substantial speedup, especially for short bit-width
mantissas. In addition, we analyze the impact of adding
the hardware required to produce unbiased addition in the
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Fig. 9. Delay and area increase when adding the logic for unbiased rounding
to the double-path adder

proposed architecture. In this case, with a slight increment
in the delay and area, the new architecture prevents the three
sources of bias.
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