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ABSTRACT 

Systemic approaches are needed and useful for the study of the very complex issue of cancer. 

Modeling has a central position in these systemic approaches. Metabolic reprogramming is 

nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could 

contribute to a better understanding of cancer metabolic reprogramming and to identify new 

potential ways of therapeutic intervention. Herein, I review several alternative approaches to 

metabolic modeling and their current and future impact in oncology. 
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1. Introduction 

Globally cancer represents one of the greatest challenges of the 21st century biomedicine, since 

cancer is one of the three main causes of death in the developed world. In fact, it is estimated 

that up to almost a half of population will develop some kind of cancer along life (World Health 

Organization cancer factsheet, www.who.int/mediacentre/factsheets/fs297/en/). Nonetheless, 

cancer is a very complex system, since the term "cancer" integrates around two hundred 

different diseases with very different etiology, evolution, diagnosis, prognosis and treatments 

loosely coupled by the emerging and integrating concept of hallmarks of cancer (Hanahan and 

Weinberg, 2000, 2011). Furthermore, every kind of cancer is an intrinsically heterogeneous and 

complex disease at different scales (Burrell et al., 2013). Firstly, in spite of the popular clonal 

theory of the origin of cancer, not all the tumor cells within a tumor mass have the same genetic 

landscape or exhibit the same biological behavior. For instance, within a cancer mass there are 

many highly proliferative tumor cells but also a small subpopulation of undifferentiated cancer 

stem cells with very low proliferative potential and exhibiting the property of self-renewal 

(Kaiser, 2015). On the other hand, in a tumor mass with a diameter greater than a few mm, the 

biological and metabolic behaviors of tumor cells within its core are extremely different from 

those exhibited by tumor cells at the surface of the tumor mass (Floor et al., 2012). Secondly, it 

is frequent that most of the cells within a tumor mass are not cancer cells, but a complex set of 

accompanying non-tumor cells, including endothelial cells, fibroblasts, T cells and 

macrophages, among other, linked by complex signaling and metabolic cross-talks supporting 

the properties of the so-called cancer microenvironment (Vaupel et al., 1989; Quesada et al., 

2007; Balkwill et al, 2012; Hanahan and Coussens, 2013; Ghesquière et al., 2014). Third, 

cancers grow within the context of specific tissues and organs of the host and complex inter-

relationships between cancer cells and the host are key not only in the carcinogenesis process 

but also in cancer progression, invasion and metastasis (Medina, 2014; Ruiz-Pérez et al., 2014; 

Ocaña et al., 2017). 

Therefore, cancers as a whole are complex systems amenable to the systemic approaches 

provided by modern systems biology (Oltvai and Barabasi, 2002; Medina, 2013). Systems 
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biology understands the emergence of complex cellular, tissue and organismic functions as 

systems-level properties that arise from the dynamic interactions of many biomolecules, both 

gene-derived products and their low molecular weight substrates, ligands and modulators 

(Alberghina and Westerhoff, 2005). As a matter of fact, it has been proposed that cancer cell 

properties can be redefined from a systems biology approach (Alberghina et al., 2012). The aim 

of this and other systems biology approaches is to get insight of the behavior of the studied 

system as a whole. 

 

2.  Modeling at the heart of systems biology 

From its beginning, the efforts to build a conceptual framework for systems biology have 

assumed that the study of a biological system as a whole entails the goals established by Kitano 

(Kitano, 2002), namely, to know the structure and the dynamics of the system, to identify the 

design principles that can justify both the structure and the dynamics of the system and to 

identify the rules governing the regulation of the behavior of the system. This conceptual 

framework places the modeling process at the heart of systems biology and, in general, at the 

center position in bioscience research (for a recent review, see Torres and Santos, 2015). From 

this systemic viewpoint, the main activities involved in the process are observation and 

experimentation, followed by modeling, simulation, analysis and optimization, leading back to 

observation and experimentation. According to Torres and Santos (2015), this spiral-wise 

procedure to build useful models follows three steps of conceptualization, formalization and 

management and optimization. There are many types of models, but all of them -explicitly or 

implicitly- involve mathematical formalizations, although with many alternative approaches. 

 

3. Metabolic reprogramming as a pervading hallmark of cancer 

Traditionally metabolism was understood as the whole set of biochemical reactions within a cell 

allowing the transformation of certain metabolites in others. This view is no longer acceptable, 

since a modern view of metabolism also integrates the whole set of physicochemical processes 

ACCEPTED M
ANUSCRIP

T



 4 

allowing the exchange of matter (transport) and energy (bioenergetics) of every cell or alive 

being with their environment as an open thermodynamic system. 

During the first half of the 20th century, an important part of the research efforts to elucidate the 

biological basis of cancer was centered on the particular features of cancer metabolism (Shapot, 

1980), as clearly illustrated by the identification by Otto Warburg of aerobic glycolysis as a 

common feature of many types of tumors (Warburg, 1956). Later on, along the second half of 

the 20th century this metabolic approach to the basic study of cancer became old-fashioned with 

"genocentric" approaches dominating the scientific efforts to understand the molecular biology 

of cancer (Weinberg, 2014). This explains -at least, partially- that the first description of the 

hallmarks of cancer in 2000 ignored a role for metabolism (Hanahan and Weinberg, 2000). In 

contrast, when the same two authors revisited the concept of hallmarks of cancer eleven years 

later the previous list of 6 hallmarks of cancer was extended to 10 (Hanahan and Weinberg, 

2011), one of the "new" ones being the so-called metabolic reprogramming of cancer cells. This 

is currently understood as a pervading hallmark of cancer involving changes in the metabolic 

fluxes through carbohydrate, lipid and nitrogen compound metabolic pathways, as well as 

through the tricarboxylic acid cycle and OXPHOS (Medina, 2014; Ruiz-Pérez et al., 2014). 

 

4. Mathematical modeling of metabolism: bottom-up and top-down approaches 

As other tasks within the systems biology framework, mathematical modeling can be carried out 

by either top-down or bottom-up approaches. According to Shahzad and Loor (Shahzad and 

Loor, 2012), the top-down approach involves a workflow in five stages: i) Sample collection 

and laboratory experiments to obtain the initial set of data. ii) High-throughput "omic" assays to 

expand the set of data to be analyzed. iii) Statistical analysis of the collected data. iv) The use of 

bioinformatics application for functional enrichment and modeling. v) The final critical step of 

data interpretation and extraction/inference of new discovered knowledge. In this top-down 

approach, there is a directional flow of information from "omes" (transcriptome, proteome, 

metabolome...) to flux-balanced metabolic pathways. On the other hand, the bottom-up 

approach is a four step bioinformatics-driven process that makes use of detailed information 
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extracted from biochemical, kinetic and metabolic databases, from literature searches 

("bibliomics"), and new results from biochemical assays as the input set from which in the first 

stage a draft reconstruction of the model is carried out. After an extensive work of manual 

curation in the second stage, the third stage converts the curated set into mathematical models. 

Finally, in the fourth step the model should be validated or refined leading to a final 

computational model. These mathematical models of metabolism can be built at different scales 

with different degrees of detail, form very detailed models of defined metabolic pathways based 

on the acquired detailed knowledge of the kinetic data of each individual reaction taking part in 

the pathway, to not so detailed middle scale models based on fluxomics (with the use of flux 

balance analysis), to global genome-scale metabolic models.   

An example of a mathematical model of a metabolic pathway based on detailed kinetic 

information is the model of mammalian polyamine metabolism (Rodríguez-Caso et al., 2006).  

This model captured the main features of this bicyclic pathway and the predictions from its 

simulations regarding the key regulatory and regulated enzymes of the pathway were later 

confirmed by other groups in experiments with transgenic mice and with pharmacological 

intervention (Marques et al., 2008; Agostinelli et al., 2010). In addition to these expected 

observations that confirmed what was previously known on the regulatory features of the 

polyamine bicycle, the model unveiled unexpected new knowledge on the key regulatory roles 

of acetyl-CoA/CoA recycling and S-adenosyl methionine availability for polyamine 

metabolism. Shortly after the publication of this model, the use of mice with genetically altered 

expression of spermidine/spermine N1-acetyltransferase allowed to experimentally confirm the 

prediction on the key role assigned to acetyl-CoA/CoA recycling (Jell et al., 2007).  The 

prediction regarding the role of S-adenosyl methionine availability had already been confirmed 

experimentally by the same research group (Kramer et al., 1988). These predictions and 

observations have important implications for cancer metabolism and reinforce the option of 

targeting polyamine metabolism as an anticancer strategy (Murray-Stewart et al., 2016). 

Furthermore, a recent integrative metabolomics study has uncovered the regulation of S-
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adenosyl methionine decarboxylase downstream mTORC1 to reprogram prostate cancer 

metabolism (Zabala-Letona et al., 2017). 

An alternative approach for the kinetic modeling of metabolic pathways is based on the use of 

the coefficients and theorems of metabolic control analysis theory (Fell, 1997). With this 

approach, the metabolic adaptations of carbon metabolism underlying K-Ras transformation 

have been modeled (De Atauri et al., 2011). 

Kinetic modeling of cancer metabolic pathways assisted with fluxomics (Cascante and Marín, 

2008) is relatively frequent, as well illustrated by the kinetic model of glycolysis in HeLa tumor 

cells (Marín-Hernández et al., 2011). This model allowed for the simulation of different steady-

state conditions (including low glucose concentration and hypoxic conditions), as well as the 

identification of the potentially best drug targets by enzyme titration simulations. At the 

mesoscale, a combination of transcriptomics and fluxomics allowed for the formulation of a 

metabolic model describing how K-Ras decouples glucose and glutamine metabolism to support 

cancer growth (Gaglio et al., 2011). 

A first global reconstruction of the human metabolic network based on a combination of 

"bibliomic" and genomic data known as Recon 1 was made available ten years ago (Duarte et 

al., 2007). Several years later, a systems biology roadmap integrating conventional biochemical, 

molecular biology and post-genomic analyses along with different types of mathematical 

models was proposed as an efficient procedure for drug discovery in connection with cancer cell 

metabolism (Alberghina et al., 2014). More recently, Recon 2 was launched as a community-

driven "consensus reconstruction" of human metabolism (Thiele et al., 2013). The main findings 

and importance of this Recon 2 paper has been reviewed elsewhere (Swainston et al., 2013). 

Very recently, genome scale metabolic modeling of cancer has been critically reviewed, 

stressing the requirements for successful flux-balance analysis simulations of cancer 

metabolism and discussing the similarities of the methods used for the modeling of both cancer 

and microbial metabolism (Nilsson and Nielsen, 2017). 
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5. The modularity of metabolism 

Network science offers new approaches that have become increasingly popular and have 

demonstrated to be useful within the framework of systems biology. Metabolism is the 

paradigm of a biological network. The metabolic network has been shown to be hierarchical and 

modular (Ravasz et al., 2002). The modularity of metabolism opens the possibility to "grow" 

mathematical models of metabolic pathways by connecting independent model of pathways 

sharing at least a metabolite or a biochemical reaction. Such an approach was used to integrate 

the polyamine metabolism model with those of methyl cycle and sulfur amino acid metabolism 

(Rodríguez-Caso et al., 2006; Reed et al., 2008; Reyes-Palomares et al., 2012). This combined 

model illustrates the usefulness and convenience of bottom-up approaches for the construction 

of kinetic metabolic models. Furthermore, this model could predict the importance of S-

adenosyl methionine availability on liver polyamine metabolism in pathophysiological 

situations, such as hepatocellular carcinoma. However, this “growing” of mathematical models 

of metabolic pathways based on the modularity of metabolism is far from being a simple task 

and in many cases may fail due to incompatibilities of the original models, the absence of 

critical data for integration or even the lack of sufficient modularity. 

 

6. Tools and data sources 

An ever-increasing number of biocomputational tools are made available to help researchers in 

the task of metabolic modeling. They include BioPP (Viswanathan et al., 2007), CellDesigner,  

(Funahashi et al., 2003), COPASI (Hoops et al., 2006), Payao (Matsuoka et al., 2010), sycamore 

(Weidermann et al., 2008), SBMM Assistant (Reyes-Palomares et al., 2009) and WikiPathways 

(Kutmon et al., 2016), among many others. There are also several useful databases containing 

valuable data regarding metabolic pathways, such as UNIPROT, KEGG, CHEBI, BRENDA 

and SABIO-RK. The CellML model repository is part of the international Physiome Project, 

containing hundreds of models covering a wide range of cellular processes (Lloyd and Yu, 

2013). Biomodels is a very popular free, centralized database of curated, published kinetic 

models (Le Novère et al., 2006). With another different approach, JWS Online is a popular 
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systems biology tool for the construction, modification and simulation of kinetic models, 

serving additionally as a database for the storage of curated models (Olivier and Snoep, 2004). 

Many of these tools and databases were commented elsewhere (Navas-Delgado et al., 2010). 

Recently, kpath, a database that integrates information related to metabolic pathways that also 

provides a navigational interface for the building of metabolic networks, has been launched 

(Navas-Delgado et al., 2015). 

Most of the tools mentioned in this section work under the Systems Biology Markup Language 

(SBML) standard. They and many other tools are listed in and available from the SBML URL 

(http://www.sbml.org). 

 

7. Modeling metabolic interchanges in tumor microenvironment and other future 

challenges 

As mentioned above, tumor cells are in a continuous exchange with other cell types within its 

microenvironment. The metabolic features of these cells are being studied extensively in the last 

few years, as reviewed elsewhere (De Bock et al., 2013; Ghesquiére et al. 2014; Ho et al., 

2016). A number of models of tumor microenvironment signaling and biological features are 

already currently available (for instance, see Hartung et al., 2014; Norton and Popel, 2014; 

Shirinifard et al., 2009; Tran et al., 2011). In contrast, a bibliomic search clearly shows that 

there is an essential lack of models of the metabolic interchanges in tumor microenvironment. 

This should be a priority challenge for the near future. 

When detailed kinetic data are not available, it has been shown that S-system analysis is a 

robust mathematical approach to model metabolism (Voit, 2000). This mathematical approach 

was introduced in the sixties by Michael Savageau. (Savageau, 1969). One of the advantages of 

this approach is that takes into account very naturally the key point of metabolic regulation. It 

could be expected that this blind approach could also be useful for modeling cancer metabolism 

and metabolic interchanges in tumor microenvironment. 

Mathematical models of global metabolic landscapes exhibiting differential metabolic features 

of different types and subtypes of cancer will contribute with very useful supplementary 
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information to that provided by genetic and epigenetic landscape studies, such as those boosted 

by the cancer genome atlas initiative (TCGA, URL: cancergenome.nih.gov ). 

Much more effort should be devoted to the analysis of, and the potential correlations associated 

with, metabolic changes during cancer progression and metastasis. 

Finally, other challenges for the future should be the implementation of models to simulate the 

metabolic interaction between cancer stem cells and non-stem tumor cells, as well as those able 

to simulate the complex metabolic interchanges between the cancer mass and tissues and organs 

of the host. 
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