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ABSTRACT 

Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor 
metabolism is again in the spotlight of cancer research. Many studies have been carried 
out and many possible therapies have been developed in the last years. However, tumor 
cells are not alone. A series of extracellular components and stromal cells, such as 
endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and 
tumor-infiltrating T cells, surround tumor cells in the so-called tumor 
microenvironment. Metabolic features of these cells are being studied in deep in order 
to find relationships between metabolism within the tumor microenvironment and tumor 
progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host 
metabolism and homeostasis, so that tumor microenvironment is not the whole story. 
Importantly, the metabolic switch in cancer is just a consequence of the flexibility and 
adaptability of metabolism and should not be surprising. Treatments of cancer patients 
with combined therapies including anti-tumor agents with those targeting stromal cell 
metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as 
promising therapeutics. 
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acid oxidation; FAS, fatty acid synthase; G6PDH, glucose-6-phosphate dehydrogenase; 
GLS, glutaminase; GS, glutamine synthetase; HBP, hexosamine biosynthesis pathway; 
HIF-1α, hypoxia inducible factor 1α; HK, hexokinase; IDO, indoleamine-2,3-
dioxygenase; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; 
MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; NO, nitric 
oxide; ODC, ornithine decarboxylase; OXPHOS, oxidative phosphorylation; PCK1, 
phosphoenolpyruvate carboxykinase 1; PD-1, programmed death 1 receptor; PDH, 
pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PFK1, 6-
phosphofructokinase; PFKFB3, phosphofructokinase-2/fructose-2,6-bisphosphatase 3; 
PHD: prolyl hydroxylase; PK, pyruvate kinase; PPP, pentose phosphate pathway; ROS, 
reactive oxygen species; TAMs, tumor-associated macrophages; TCA, tricarboxylic 
acid cycle; TDO, tryptophan-2,3-dioxygenase; TILs, tumor-infiltrating lymphocytes; 
TME, tumor microenvironment; uPA, urokinase-type plasminogen activator; VEGF, 
vascular endothelial growth factor. 
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1. INTRODUCTION 

Otto Warburg started studying tumor metabolism in the first years of the 20th
 century 

and 30 years later it was proposed what we now call the “Warburg effect”.1,2 During the 
next years, cancer metabolism was an emerging issue in biological research, although 
there was a fall of interest for some years because of the boom of Molecular Biology, 
thought to be able to give meaningful answers to almost all questions.3 However, many 
studies have been performed in the last decade due to a renewed interest in tumor 
metabolism, so that nowadays reprogramming energy metabolism has been considered a 
new hallmark of cancer.4 By means of both classical and modern techniques, many new 
relevant features of metabolism of cancer cells have been discovered. Moreover, tumor 
cells are not alone, since a complete set of stromal and immune cells meet in the so 
called “tumor microenvironment” (TME), along with extracellular matrix (ECM), 
which provides more than an inert playground for this game.5 These cells include 
endothelial cells (ECs) (vascular or lymphatic) and associated pericytes, cancer-
associated fibroblasts (CAFs), and immune cells, such as tumor-infiltrating lymphocytes 
(TILs) (T cells, B cells and NK cells), tumor-associated macrophages (TAMs) and mast 
cells.6 Studies have been usually focused on tumor and ECs metabolism. However, in 
the last years the metabolism of immune cells, mainly macrophages and T cells, has 
attracted the interest of scientific community, along with that of CAFs, due to their 
contribution to tumor growth. However, little is known about mast cells metabolism, 
and that of pericytes still remains a mystery. 

Increasing knowledge about metabolism of cells of the TME will allow for the 
design of new therapies for cancer patients. Many compounds have already been tested 
for the inhibition of tumor cell metabolism, either aerobic glycolysis, glutaminolysis or 
other metabolic targets.7-13 New approaches for therapy are also being developed using 
metabolism of stromal and immune cells as a target.14-17 

There are many published works about metabolism of stromal and immune cells in 
the TME and their relationship with tumor progression. A recent review collected the 
effects of tumor metabolism in the TME.18 Nevertheless, to our knowledge the relation 
between metabolism of the different cells of the microenvironment and tumor 
progression has not been well documented in a single review so far (see Supplementary 
Table 1). This review will try to shed light on the remarkable metabolic features of 
different cells of the TME and their relation with tumor progression, as well as 
proposing feasible therapies based on possible metabolic targets that would help in the 
inhibition of tumor growth and metastasis. 

 

2. TUMOR CELLS METABOLISM: BEYOND WARBURG EFFECT 

The experiments carried out by Otto Warburg in the mid-twenties of the 20th century 
were just the beginning of an advanced knowledge in cancer metabolism. As early as 
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1925, he observed a huge amount of lactic acid in rat carcinoma even when oxygen was 
available, a process known as aerobic glycolysis.1 This contradicted the well-established 
Pasteur effect, based on the inhibition of glycolysis in the presence of oxygen.19 
Warburg also observed that malignant tumors produced more lactic acid than benign 
tumors.1 Nowadays we know that the glycolytic rate can be a sign of tumor 
aggressiveness. For example, the non-invasive MCF7 breast cancer cell line has a lower 
rate of aerobic glycolysis than the highly invasive MDA-MB-231 breast cancer cell line, 
corresponding to lower levels of lactate dehydrogenase-A (LDH-A) and to the oxidative 
source of the great majority of the ATP produced by MCF-7 cells.3,20,21 However, 
aerobic glycolysis is not just a sign of tumor aggressiveness, since some proliferating 
non-transformed cells show this metabolic characteristic too.22 30 years after initial 
Warburg’s seminal observations, when many metabolic routes had been already 
discovered, he noticed that cancer cells could obtain similar amounts of energy by 
aerobic glycolysis and by oxidative phosphorylation (OXPHOS), in spite of the lower 
efficiency in ATP yielded per molecule of glucose provided by glycolysis.2,23 At that 
moment, it was difficult to find an explanation for this fact, since high rates of tumor 
cell proliferation would require the production of great amounts of energy in the form of 
ATP molecules, and OXPHOS was the obvious road to fulfill this purpose. Now we 
know that, due to that high proliferation, cancer cells have a large demand of the 
precursors for the new daughter cells generated by mitosis, in form of nucleotides, 
amino acids and lipids. Thus, glucose would be diverted to the formation of acetyl-CoA 
for fatty acid synthesis, glycolytic intermediates for non-essential amino acids, and 
ribose for nucleotides.24 This explains why many types of cancer cells switch their 
glucose metabolism towards aerobic glycolysis. Extracellular flux analyzers are 
currently very popular tools for measuring basic metabolism, since they are able to 
estimate OXPHOS through oxygen consumption rate (OCR) and aerobic glycolysis 
through extracellular acidification rate (ECAR). Nevertheless, studies with isolated 
tumors from mice showed that although progressive tumors have higher ECAR levels 
than regressive ones, their proliferation rates are similar, demonstrating that 
proliferation is not the only reason for aerobic glycolysis in tumor cells.25 

The increased glucose consumption by many cancers is the basis for the use of the 
glucose analogue 2-[18F]-fluoro-2-deoxy-D-glucose for tumor diagnostic and treatment 
follow-up by using positron emission tomography (PET).26 In high contrast with the 
affirmation that all tumor cells rely mostly on aerobic glycolysis, there is ample 
evidence that not all cancer cells obey this rule. For example, glutamine is the major 
energy source for cervix adenocarcinoma HeLa cells, and Gentric et al. have reported 
some examples of oxidative tumors.27,28 Furthermore, oxidative and glycolytic cancer 
cells can co-exist within the same tumor, and a lactate shuttle is established between 
both of them. 29 Lactate uptaken by oxidative cancer cells (either from other cells or 
from the circulation) can provide carbon skeletons to be incorporated to the 
tricarboxylic acid cycle (TCA) in order to obtain energy.30 We would like to emphasize 
that in the next sections and figures of this review we will not make a distinction 
between oxidative and glycolytic tumor cells for the sake of simplicity. It should be 
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taken into account that different metabolic events here represented in the same tumor 
cell might be occurring in different cancer cells, though. 

Nonetheless, other substrates different to glucose are also differentially consumed by 
tumors as well. In particular, glutamine, the most abundant circulating amino acid in 
blood, has a major role regarding tumor growth, as glucose can only provide carbon 
skeletons for scaffolds of new molecules and glutamine would serve as a nitrogen 
source.31 In fact, glutamine is a non-essential amino acid for non-transformed human 
cells but it turns into an essential amino acid for tumor cells.12 Moreover, a host to 
tumor net flux of glutamine has been confirmed in mice inoculated with Ehrlich ascites 
tumor cells, enabled by an increased contribution made by the host tissues to circulating 
glutamine during tumor development.32,33 We will discuss this issue in a later section of 
this review. 

Almost 30 years ago, our group found out that Ehrlich ascites tumor cells, grown 
under steady state conditions, utilize both glucose and glutamine, producing two moles 
of lactate per mole of glucose, and one of glutamate and ammonia per mole of 
glutamine consumed.34 That means that cancer cells are able to use glucose and 
glutamine in a completely dissipative way. Both nutrients are important, as they lead to 
ATP production and provide intermediates for macromolecular synthesis. The roles of 
glutamine in intermediary metabolism have already been revised.35 Additionally, 
glutamine can be used for synthetizing the non-essential amino acids alanine, serine, 
arginine and proline and also fatty acids, although glucose is the major lipogenic 
substrate, as seen in glioblastoma cells.36,37 It is important to remember that glutamine 
can lead to lactate production through glutaminolysis. So, aerobic glycolysis is not the 
only way a tumor cell possesses to produce lactate, whose excretion out of the cell was 
first thought to be a mechanism to eliminate the pyruvate excess.23 However, lactate 
would have many roles in benefit of tumor progression that will be discussed in other 
sections of the present review. Likewise, ammonia was also thought to be just a toxic 
waste product. Nevertheless, it has been recently shown that this metabolite can be 
recycled to generate amino acids through glutamate dehydrogenase (GDH) activity, 
providing a nitrogen source to the tumor.38 

Metabolic profiling depends on cell distribution, as cancer cells within the 
oxygenated periphery may consume and oxidize the lactate resulting from aerobic 
glycolysis by cells in the hypoxic area.39 Besides, cancer metabolic phenotypes are 
usually defined by the origin of the tissue, epigenetic drivers, aberrant signaling, and the 
TME.40 Indeed, genetics, epigenetics and metabolism interact with one another and, as a 
result, tumor heterogeneity is the overall result of all these changes at different levels.41 
A previous review of tumor metabolism contributed by our group focused its attention 
in the genetic regulation of tumor metabolism. The key roles played by c-myc, K-Ras 
and p53 are well documented. For example, c-myc oncogene promotes expression of 
LDH-A, the glutamine transporter SLC1A5 and GLS glutaminase (associated to tumor 
malignancy), and K-Ras stimulates glucose uptake, lactate production and canalization 
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of glutamine carbons to the Krebs cycle, whereas tumor suppressor gene p53 induces 
GLS2 glutaminase expression (typical of non-proliferative cells), OXPHOS and fatty 
acid oxidation (FAO), and diminishes expression of glucose transporters and some of 
the key glycolytic enzymes.42 

Epigenetics plays also a role in tumor metabolism. For example, 2-hydroxyglutarate 
(2-HG), a product of the reaction catalyzed by a mutated isocitrate dehydrogenase 1 

(IDH1), inhibits the binding of α-ketoglutarate (α-KG) to tet methylcytosine 
dioxygenase 2 (TET2) and lysine demethylase 3A (KDM3A), two epigenetic enzymes, 
impairing their function.43 Another example is nitric oxide (NO), also able to drive 
epigenetic modifications related with tumorigenesis.44 

Less attention has been paid to studying the role of fatty acids in tumor growth, since 
glucose and glutamine are considered the major sources of energy in these cells. A 
relationship between glycolysis and FAO has been found in tumors, since highly 
glycolytic cell lines present a low lipid oxidation and vice versa.45,46 Some tumors lack 
carnitine palmitoyltransferase 1a (CPT1a) activity, a rate-limiting enzyme of FAO.47 In 
various tumor cell lines, rates of oxidation of glucose higher than those of palmitate 
have been documented.48 However, it has been shown that highly proliferative cancer 
cells have a strong lipid avidity, increasing the uptake of exogenous lipids or promoting 
lipogenesis and cholesterol synthesis.49 Fatty acid synthase (FAS) is overexpressed in 
several types of cancer.50–52 Transcription factors SREBP1 and SREBP2, involved in 
fatty acid and cholesterol biosynthesis, are also overexpressed in many tumors.53 On the 
other hand, prostate tumors display a low rate of glucose utilization; they rather have a 
high rate of fatty acids uptake and overexpress some β-oxidation enzymes.53 It has been 
shown that leukemia cells require this metabolic route for proliferation and survival.54 
Additionally, there is some controversy about the role of fatty acids on metastasis and 
invasiveness. A published study found an inverse relationship between expression of 
CD36, a known transporter of long fatty acids, and the metastatic potential of tumors, 
whereas the authors of a more recent paper postulate a positive role of CD36 in 
metastasis.55,56 

Other metabolites could also play essential roles in tumor metabolism. The role of 
asparagine in cell survival has been well-known for many years, and several studies are 
being carried out nowadays regarding the importance of this amino acid. The presence 
of asparagine is essential for maintaining cell viability in glutamine-depletion 
conditions, and inhibition of asparagine synthetase (ASNS), an enzyme that catalyzes 
the conversion of aspartate and glutamine into asparagine, leads to cell death even in a 
glutamine-rich media.57 Therefore, depleting asparagine and inhibiting ASNS 
expression seems to be a way to stop tumor growth. Treatment with the enzyme 
asparaginase, which is able to undermine asparagine levels in the media, has been 
carried out in leukemia and lymphomas since the discovery of its anti-cancer effect in 
1963.58 Later, it would be known that asparaginase treatment was effective due to the 
null or low expression of ASNS in these tumors.59,60 Nevertheless, most solid tumors 
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present ASNS expression and therefore depletion of glutamine is also important for 
asparaginase-dependent therapy in ASNS-expressing tumors.61,62 Indeed, a study 
determined that glioblastoma cells that are not sensitive to glutamine deprivation are 
also insensitive to asparaginase treatment, but the treatment affected glioblastoma cells 
sensitive to deprivation of this amino acid.63 This may be due to the fact that most 
asparaginases also present glutaminase activity. 

There are other amino acids that are essential for tumor growth and progression as 
well. Serine can be synthetized from glycolytic intermediates and later converted into 
glycine. Both amino acids are necessary for protein, nucleic acid and lipid synthesis. 
Serine can contribute to the formation of other metabolites by anaplerosis, being 
necessary for proliferation. Glycine, which may also derive from threonine, is related to 
folate metabolism (essential for tumor progression), to DNA methylation, and to the 
redox balance maintenance.64,65 Indeed, expression of PHGDH (phosphoglycerate 
dehydrogenase), the first enzyme in serine synthesis, is normally upregulated in triple-
negative breast cancer, evidencing the importance of this amino acid for these tumors.66 
In contrast, metabolism of other amino acids can be toxic for tumor cells. For example, 
proline oxidase (PRODH), the first enzyme in the catabolism of proline, is induced by 
p53.67 Expression of PRODH leads to cell cycle arrest and apoptosis in tumors, and it 
has been seen that c-myc inhibits its function.68 

In addition to all this, other metabolites are also important for tumors. NO is the 
product of the enzymatic reaction catalyzed by nitric oxide synthase (NOS), which uses 
arginine as substrate, as well as NADPH. Thus, the pentose phosphate pathway (PPP) 
would provide the reducing agent necessary for synthetizing NO. In hypoxic tumors, 
hypoxia inducible factor 1α (HIF-1α) interacts with IFN-γ thus inducing the expression 
of inducible NOS (iNOS).69 NO produced and secreted by tumor cells reprograms 
stromal cells to support tumor progression, although high concentrations has been 
shown to induce apoptosis, and it also helps drug resistance and migration of cancer 
cells.70-72 Moreover, NO modulates metabolism of tumor cells, inhibiting prolyl 
hydroxylase 2 (PHD2) and OXPHOS, hence promoting a glycolytic metabolism.73,74 
Furthermore, S-nitrosylation is a mechanism of posttranslational protein modification 
mediated by NO and implied in modulating the activity of several oncogenic signaling 
cascades and metabolic enzymes.69 

Last but not least, polyamine synthesis has been known to be essential for tumor 
progression since the late sixties.75 High levels of intracellular polyamines have been 
shown to increase cell proliferation, decrease apoptosis, enhance expression of genes 
affecting tumor invasion and metastasis, and they are also related to angiogenesis.76 The 
synthesis of these macromolecules requires conversion of arginine to ornithine through 
arginase activity. Then, ornithine is decarboxylated to produce putrescine, the first 
polyamine, in a reaction catalyzed by ornithine decarboxylase (ODC), and spermidine 
and spermine are synthetized using decarboxylated S-adenosylmethionine (dcSAM) as 
an aminopropyl group donor.77 ODC was described as a proto-oncogene as soon as 
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1992, and ODC levels are higher in tumors than in non-proliferating tissues.78,79 
Moreover, several oncogenes, such as myc and K-Ras, are responsible for augmented 
polyamine synthesis and decreased polyamine catabolism, thus promoting tumor 
progression.80–82 Interestingly, NO is able to inhibit ODC by nitrosylation.83 Polyamine 
synthesis in tumors has been classically suppressed by treatment with 
difluoromethylornithine (DFMO), an inhibitor of ODC.84 Recent research has found 
that mammalian target of rapamycin complex 1 (mTORC1) sustains polyamine 
synthesis in tumors through overexpression of S-adenosylmethionine decarboxylase 1 
(AMD1), the enzyme responsible for SAM decarboxylation.85 

The different metabolic features of tumor cells mentioned here are collected in 
Figure 1. Taking into account all this information, it cannot be said that all tumor cells 
rely just on aerobic glycolysis for its growth and progression. In fact, this depends more 
on the kind and stage of the tumor, as well as on its microenvironment. Metabolism of 
different cells of this TME will be presented throughout this review, along with a 
recapitulation of the feasible reasons and/or consequences of those metabolic features in 
cancer disease. 

 

3. METABOLISM OF CELLS AT THE TUMOR 
MICROENVIRONMENT  

3.1. Endothelial cells 

ECs are the most studied stromal cells in the TME, since they are responsible for the 
angiogenic process. Angiogenesis is the formation of new blood vessels from the pre-
existing vascular bed. Pathological activation of angiogenesis in tumors (a process 
called tumor angiogenesis) allows them to grow and metastatize. This angiogenic 
switch is controlled by pro- and anti-angiogenic molecules secreted from different cells 
of the TME.86 As we discuss throughout this review, metabolic pathways regulate some 
of these angiogenic molecules, representing promising targets to modulate tumor 
angiogenesis. Therefore, targeting metabolism to inhibit tumor proliferation could be 
also a way to modulate the angiogenic process. 

Regarding EC metabolism, there are some discrepancies among published data. Back 
in 1991, Spolarics et al. determined that rat liver ECs rely predominantly on aerobic 
metabolism rather than glycolysis, with 45% of total ATP produced by oxidation of 
palmitate, and 26% derived from glutamine.87 Three years before, Leighton and 
colleagues measured glutaminase activity in bovine pulmonary ECs, and found that it 
was almost 20-fold higher in comparison with that of rat lymphocytes, giving a major 
importance to glutamine metabolism in these cells. They also recognized some 
relevance to FAO, since CPT1a showed an elevated expression. However, in contrast 
with the results from Spolarics’s group, their data showed high activity of some key 
glycolytic enzymes, such as hexokinase (HK), 6-phosphofructokinase (PFK1) and 
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pyruvate kinase (PK), suggesting that glycolysis could play an important role in EC 
metabolism.88 Indeed, other groups found glycolysis to be predominant in bovine 
cavernous, rat coronary and human umbilical vascular ECs (HUVEC) even in the 
presence of oxygen.89-91 From these and other data, it has been proposed that ECs rely 
on glutamine and fatty acid metabolism when the supply of glucose decreases.92 Most 
of these differences observed in bibliography could be probably due to different 
isolation and culture conditions of ECs, affecting their proliferation rate and their 
metabolism. 

The interest on EC metabolism was pushed into background for some years, until 
2013, when Peter Carmeliet’s laboratory found interesting data regarding the role of 
phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) activity in EC 
metabolism and angiogenesis. In their experiments, they observed that ECs isolated 
from several tissues were highly glycolytic, >200 fold-higher compared to oxidation of 
glucose, glutamine or fatty acids in the same cells, generating up to 85% of the total 
cellular ATP content only through this pathway.93 In addition, a reported low OCR in 
HUVEC may indicate that they rely more on glycolysis than on OXPHOS.94 These 
observations agree with previous results from other groups and disagree with other 
available data, as seen above.87-91 

PPP is also important for ECs, since it leads to the formation of reduction equivalents 
as NADPH, induces the synthesis of NO, a pro-angiogenic factor, and prevents the 
formation of reactive oxygen species (ROS). Indeed, studies in ECs have shown that an 
overexpression of the limiting enzyme of the PPP, glucose-6-phosphate dehydrogenase 
(G6PDH), results in an increase of NO synthesis, whereas its downregulation drives to 
an elevation in ROS levels.95 On the other hand, a part of the glucose metabolic flux is 
derived to the hexosamine biosynthesis pathway (HBP), essential for the N-linked 
glycosylation process. HBP may play a role in angiogenesis switch on, since VEGFR2, 
the key vascular endothelial growth factor (VEGF) receptor involved in tumor 
angiogenesis, has to be N-glycosylated to become fully functional.96 Regarding tumor 
progression, glycolysis-derived lactate has also an important role on the angiogenesis 
process (see section 4.2 below).  

In spite of the rediscovered importance on endothelial glycolysis, glutamine 
metabolism is still considered to have an essential role in EC survival, as well as in 
angiogenesis.97-99 However, glutamine helps EC proliferation but not migration.100 A 
part of the importance of glutamine metabolism in EC survival and angiogenesis could 
be due to the role of this amino acid in the synthesis of polyamines, considered to be 
essential to EC proliferation and angiogenesis, as well as for cell survival.101,102 In fact, 
in some EC lines about a 26% of ornithine, the precursor for polyamine synthesis, is 
formed from glutamine.103,104 In addition, glutamine is also essential for asparagine 
synthesis through ASNS activity, as seen above. A recent study showed that asparagine 
can be uptaken from the media or synthetized by ASNS in ECs, and this amino acid has 
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an important role in protein synthesis, mTOR activation and endoplasmic reticulum 
(ER) stress suppression due to glutamine deprivation.99 

As mentioned above, Spolarics et al. suggested that fatty acids could be important 
fuels for ECs, in high contrast with previous observations from other group.87,105 A 
recent study from the same group that underestimated the use of fatty acids in ECs, 
showed later that FAO is essential for angiogenesis by promoting the de novo synthesis 
of nucleotides, thus allowing ECs to proliferate.93,106 In fact, inhibition of CPT1a 
impaired angiogenesis in HUVEC.106 One of the long chain fatty acids transporters in 
ECs is CD36. Inhibition of CD36 has been shown to reduce angiogenesis, but it is not 
clear whether this effect is due to fatty acid uptake inhibition or not.107 

Metabolism of ECs is summarized in Fig. 1. For additional information, we 
encourage our readers to visit some recent reviews on EC metabolism summarizing 
what is known about glucose, glutamine and fatty acid fate in these cells.107–110 

 

3.2. Cancer-associated fibroblasts 

CAFs are the most abundant cells within tumor stroma. They are recruited by tumor 
cell-secreted platelet-derived growth factor (PDGF).111 It is well known that CAFs 
promote tumor growth and invasion, although recently published works showed 
contradictory results regarding intestinal tumorigenesis.112–114  

Although from now on we will assume the classical view, it should be clear that 
metabolism and signaling pathways are complex and probably there is not an absolute 
truth. Bearing this in mind, it has been shown that CAFs resemble myofibroblasts, as 
they express smooth muscle cell markers and produce transforming growth factor β 
(TGF-β) and stromal cell-derived factor 1 (SDF1). Additionally, CAFs express the 
migration stimulating factor (MSF), whose overexpression leads to Akt pathway 
activation, which in turn induces the mTOR signaling pathway.115 CAFs expressing 
MSF showed elevated lactate secretion.115 Since mTOR is known to enhance glycolysis, 
it could be proposed that MSF increases the glycolysis rate in CAFs through mTOR 
signaling. This high lactate secretion by CAFs is supported by the upregulation of 
MCT4, a lactate exporter, observed in these cells.116 Zhang and colleagues demonstrated 
that IDH3α, a TCA enzyme, is downregulated in CAFs, and this situation leads to HIF-
1α stabilization, resulting in a switch from OXPHOS to glycolysis.117 As we will see 
below, tumor cells could as well induce this glycolysis activation. Moreover, CAFs are 
also able to take up lactate (secreted by tumor cells) through MCT1, a lactate importer, 
and to oxidize it.118,119 

It has been shown that CAFs have a metabolic activity higher than that of other 
fibroblasts, since they present higher expression levels of glutamine synthetase (GS), of 
several glycolysis, TCA cycle and ETC gene products, and aspartate and asparagine 
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(both required for glutamine synthesis in these cells) transporters.120 A summary of 
CAFs metabolism is presented in Fig. 1. The importance of glutamine and fatty acid 
synthesis by CAFs in the TME will be discussed later. 

 

3.3. Tumor-associated macrophages 

Macrophages are a population of immune cells originated from bone marrow-derived 
monocytes (BMDM) and exhibiting a great heterogeneity in phenotype and functions. 
These cells help tumors to grow and invade other tissues, promoting tumor progression 
also by stimulating angiogenesis and inhibiting the immune response. As in the case of 
CAFs, the energetic metabolism of non-tumoral macrophages has been more studied 
than that of TAMs. 

According to the activation pathway, there are two main subtypes of macrophages: 
M1 macrophages, activated by the canonical pathway in response to IFN-γ and LPS 
stimulation, and M2 macrophages, activated by an alternative pathway in response to 
interleukins IL-4, IL-10 and IL-13. M1 macrophages secrete pro-inflammatory 
cytokines and have an anti-tumoral activity, while M2 macrophages have anti-
inflammatory properties. Some authors maintain that TAMs share many, but not all, 
features of M2 phenotype, whereas others did not find M2 markers in TAMs.122-125 
However, IL-4 is sufficient for TAM polarization after monocyte recruitment by 
cytokines such as CCL2 and CSF-1.121 Moreover, a transcriptome study determined that 
TAMs shared genes with both M1 and M2 macrophages.126 

It is well-established that M1 macrophages rely largely on aerobic glycolysis, maybe 
regulated by itaconate.127 M2 macrophages have not remarkable glucose consumption 
rates. In contrast, high FAO and OXPHOS have been found in these cells. On the other 
hand, M1 macrophages were found to have enhanced expression of PFKFB3 
isoenzyme, whereas alternatively-activated macrophages express it at low rates.128 Since 
PFKFB3 is a signal of high glycolytic rates, as happened in ECs, it can be said that M2 
macrophage energy metabolism does not rely on this route.93 Another finding suggests 
that succinate could be a possible indirect modulator of glycolysis. Succinate is able to 
inhibit PHD, leading to an increased HIF-1α stabilization, as seen before in other types 
of cells.129,130 This high stabilization of HIF-1α might have two major consequences at 
the transcriptional level: i) HIF-1α can be translocated into the nucleus, together with 
the glycolytic enzyme PKM2. In the nucleus, HIF-1α forms a complex with HIF-1β and 
other regulatory proteins, thus acting as a transcription factor able to activate the 
expression of key glycolytic enzymes, such as glucose transporter GLUT-1, pyruvate 
dehydrogenase kinase-1 (PDK1) and LDH-A.131 ii) The same transcription factor 
complex can bind to the pro-inflammatory cytokine IL-1β promoter gene and activate 
its transcription too.132 In summary, succinate would have a role enhancing aerobic 
glycolysis and the Warburg effect, and promoting IL-1β production. Both 
characteristics are typical features of classically-activated macrophages. Succinate may 
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proceed from the anaplerotic use of glutamine, or be accumulated due to a truncated 
TCA cycle. Since M2 macrophages obtain energy mainly by means of FAO and 
OXPHOS, they do not increase succinate levels and the glycolytic pathway is not 
enhanced in these cells. HIF-1α can also be activated through the mTOR signaling 
pathway. Cytokines IL-4 and IL-13, responsible for the alternative activation of 
macrophages, inhibit mTOR via activation of the negative regulators TSC1 and 
TSC2.133 Therefore, M2 macrophages are predisposed to oxidative metabolism through 
a glycolysis inhibition via mTOR/HIF-1α inactivation. 

Since M1 macrophages have an anti-tumoral activity, it should be expected that 
TAMs have a metabolic profile more similar to that of M2 macrophages.134 However, 
recent evidence reveals a high glycolytic rate in TAMs.135,136 Moreover, an elevated 
eicosanoid production has been found in these cells  and, on the other hand, inhibition 
of β-oxidation did not affect cytokine production in thyroid cancer-induced 
macrophages, showing the importance of FA synthesis rather than catabolism in 
TAMs.135,137 Regarding amino acid metabolism, TAMs from glioblastoma or exposed to 
glioblastoma cells present an enhanced expression of genes related to glutamate 
transport and metabolism (Fig. 1).138 

Serine has been shown to be an allosteric activator of PKM2.28 Therefore, it could 
seem unlikely that M2 macrophages depend on serine utilization because their 
metabolism does not rely on an enhanced aerobic glycolysis. However, serine 
metabolism has been reported as an enriched pathway in M2 macrophages by using 
LC/MS-based metabolomics.139 These last authors also found that Akt/mTORC1 
pathway plays a role in increasing glucose metabolism in M2 macrophages as seen by 
both elevated OCR and ECAR.139 Therefore, there are some contradictory results from 
different groups. However, to our knowledge there is not available data about serine 
metabolism in TAMs. It would be interesting to further investigate the metabolic 
phenotype of these cells as well as the signaling pathways that govern them. 

 

3.4. Tumor-infiltrating lymphocytes 

T cells represent the most abundant lymphocyte population involved in the adaptive 
immune system. There are two major types of T cells: CD4+ and CD8+, which are 
classified into different subtypes. CD8+ T cells often differentiate into cytotoxic T cells 
(CTLs), characterized by inducing apoptosis in targeted cells. CD4+ naïve T cells can 
become regulatory or suppressor T cells (Treg cells), which have immunosuppressive 
functions, or helper T cells (Th cells), a type of effector T cells that participate in the 
immune response. There are many subtypes of Th cells, including pro-inflammatory 
(Th1 and Th17 cells) and anti-inflammatory (Th2 cells) lymphocytes, according to the 
cytokines secreted by them. Therefore, effector T cells include CTLs and Th cells. Most 
of tumor-infiltrating lymphocytes (TILs) are Treg cells. 
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There is clear evidence that activation of T cells requires a metabolic switch similar 
to that undergone by many tumor cells, thus exhibiting the Warburg effect and an 
elevated aerobic glycolysis.141 Something similar happens in the innate immune 
system.142 Nevertheless, this metabolic switch in T cells and tumor cells is based on 
different causes: for T cells, this is a physiological adaptation process, whereas for 
tumor cells it depends on a series of intrinsic genetic mutations and external responses 
to the TME.143 On the other hand, Treg and memory CD8+ T cells rely on FAO and 
OXPHOS for its survival and differentiation. Additionally, it has been reported that de 
novo lipogenesis is required for Treg differentiation from Th17 lymphocytes (Fig. 1).144  
Effector T cells, nonetheless, can survive utilizing OXPHOS in case of glucose 
depletion, although cytokine production is diminished under these conditions.145 

Phosphoenolpyruvate (PEP) has been related to the T cell receptor (TCR) activation 
through Ca2+ flux. Ho et al. observed that overexpression of phosphoenolpyruvate 
carboxykinase 1 (PCK1), the enzyme that catalyzes the conversion of oxaloacetate into 
PEP, restored PEP levels and Ca2+ flux in glucose-deprived T cells. This can be 
explained by the fact that PEP undermines the activity of SERCA, an ER calcium 
ATPase. Under these conditions, Ca2+ escapes from ER to cytosol, increasing TCR-
induced Ca2+ flux and effector function. Moreover, TCR is able to activate glucose 
metabolism enhancing PKM2 activity, which in turn could contribute to PEP 
accumulation.146  Thus, T cell effector function would be partially controlled by PCK1 
activity. 

As for other cell types, mTOR plays a crucial role in T cell metabolism. Inhibition of 
mTOR results in an induction of AMPK phosphorylation and, consequently, an increase 
of FAO, leading to differentiation of CD4+ T cells to Treg. Thus, mTOR would guide 
these cells to Th1, Th2 and Th17 phenotypes.147,148 Programmed death 1 receptor (PD-
1), an inhibitory checkpoint receptor present in TILs, has an important role in regulating 
glycolysis through mTOR signaling pathways. This issue will be clarified in sections 
below. 

Dang et al. demonstrated that HIF-1α is able to induce Th17 differentiation through 
transcriptional activation of RORγt. HIF-1α also binds to Foxp3, targeting it for its 
degradation and impairing this molecule to promote Treg development.149 Therefore, 
HIF-1α would promote a glycolytic cell phenotype (by activating Th17 cells) while 
inhibiting oxidative metabolism (via Treg impairment).  

However, glycolysis is not the only pathway necessary for T cell activation. c-Myc-
dependent glutaminolysis is also essential for proper T cell effector function, as it leads 
to nucleotide and polyamine synthesis, necessary for supporting cell proliferation.150 In 
addition, glutamine regulates T cell proliferation as well as it increases IL-2 production 
and IL-2 receptor expression.151 Arginine has also been shown to improve survival and 
anti-tumor activity of T cells.152 An overview of TILs metabolism is presented in Fig. 1. 
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3.5 The tumor microenvironment forgotten cells 

There are many different kinds of cells in the TME, and the ones presented here up to 
now are just the more abundant and studied. Tumor-associated mast cells (TAMCs) and 
tumor-associated pericytes are also predominant cells in the TME and have an important 
role in tumor progression. However, their metabolism, as far as we know, have not been 
described to date. 

3.5.1. Tumor-associated mast cells 

TAMCs are recruited to tumors in response to stem cell factor (SCF) from tumor 
cells and other mast cells, as well as to VEGF from tumor cells and immune cells.153 
TAMCs secrete immunosuppressive cytokines such as TGF-β and IL-10, but their more 
important role in tumor progression is promoting and helping the angiogenic process.154 
TAMCs produce pro-angiogenic factors such as basic fibroblast growth factor (bFGF) 
and VEGF, ECM modulators such as matrix metalloproteinases (MMPs) and urokinase-
type plasminogen activator (uPA), as well as chimase, tryptase and histamine.155 
Treatment with compound 48/80, which triggers histamine release, causes an 
angiogenic response in rats and mice.156 Despite the importance of TAMCs in tumor 
progression, their metabolism has not been studied so far. Nevertheless, several studies 
have been carried out in non-tumoral mast cells. 

In 1965, Chakravarty suggested that rat mast cells had higher glycolytic rates than 
oxidative ones, and some years later he and others pointed out the importance of 
glucose metabolism and lactate production for histamine release.157–160 However, 
respiration inhibitors block histamine release, and hence energy is necessary for 
activation and secretion of histamine.161 On the other hand, two different studies 
demonstrated the inverse correlation between glutamine metabolism and mast cell 
function, and tryptophan conversion to kynurenine triggers mast cell degranulation.162-

164 Kynurenine, in turn, promotes tumor invasion, further demonstrating the association 
between mast cell function and tumor progression.165 

More recent works tried to shed some light on the importance of glucose metabolism 
for mast cell function. Sekar and co-workers studied NO metabolism in mast cells. They 
demonstrated that NO induced tyrosine nitration of aldolase A, inhibiting this glycolytic 
enzyme, with the consequent accumulation of fructose 1,6-biphosphate (FBP). This 
accumulation inhibited the degranulation of mast cells.166 Enolase, the ninth enzyme of 
the glycolytic pathway, has been related with mast cell differentiation, and Chakravarty 
saw in his studies that treatment with fluoride, an enolase inhibitor, diminished the 
glucose-supported histamine release.158,167 Moreover, inhibition of pyruvate 
dehydrogenase (PDH), the clue enzyme for the TCA, inhibits mast cell degranulation 
and cytokine secretion.168 These last pieces of evidence indicate a glucose-depending 
mast cell function. However, other works contradict these results. FcεRI is a receptor 
which leads to mast cell degranulation after its ligation with IgE. FcεRI has been shown 
to inhibit PKM2, a process necessary for mast cell degranulation.169 Accumulation of 
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FBP due to the inhibition of this enzyme ceases degranulation of mast cells. 
Nevertheless, these last authors mention that accumulation of FBP leads to re-activation 
of PKM2 and reestablishment of glycolytic normal levels, thus inhibiting mast cell 
function.169 Furthermore, polyamines have been detected in mast cell granules, and 
treatment with DFMO diminishes histamine intracellular storage and increases PKM2 
expression.170 This fact establishes a positive relation between polyamine metabolism 
and degranulation of mast cells with some implication of the glycolytic pathway. 
Further studies should be performed in order to clarify the exact role of glucose 
metabolism in mast cell function and its connection with tumor progression. 

3.5.2. Tumor-associated pericytes 

Pericytes are responsible for morphological and functional abnormalities of tumor 
blood vessels, and interaction between tumor cells and pericytes has been shown to 
improve malignancy of glioblastoma.171,172 Tumor-associated pericytes present greater 
migration and proliferation rates than normal ones, and hence they are loosely attached 
to ECs.173 

Several studies have been carried out in retinal pericytes in the context of diabetic 
retinopathy, but without exploring glucose metabolism in pericytes.174,175 The only work 
about pericyte metabolism performed to our knowledge demonstrated that lung 
pericytes from pulmonary arterial hypertension patients presented higher expression of 
PDK-1, an inhibitor of PDH, than healthy pericytes.176 Therefore, it could be considered 
that normal pericytes display higher rates of OXPHOS than those of glycolysis. 
Nevertheless, metabolism of tumor-associated pericytes and its relation with tumor 
progression are yet to be studied. 

 

4. IMPLICATIONS OF TUMOR AND ACCOMPANYING CELLS 
METABOLISM FOR TUMOR GROWTH AND PROGRESSION 

In the previous sections, we have reviewed the main metabolic features of different 
cells within the TME. However, the complex interplays among these different cells and 
their metabolic features should be also taken into account. It is well-known that tumor 
stroma contributes to tumor progression.177 Several aspects of tumor progression, such 
as immunosuppression and angiogenesis, depend on the metabolic and signaling 
pathways involved in them, also orchestrated by interactions of tumor, stromal and 
immune cells.  

 

4.1. Tumor metabolism and its contribution to immunosuppression 
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Burnet and Thomas formulated the theory of cancer immunosurveillance (also called 
immunoediting), according to which lymphocytes would recognize and eliminate tumor 
cells, thus preventing tumor progression.178,179 Nevertheless, some cancer cells are able 
to escape the immune response by enhancing immunosuppressive activity of immune 
cells.  In fact, escaping immune response has been identified as one of the hallmarks of 
cancer.4 Now we know that this immunosuppression is partially controlled by tumor 
metabolism, and also that of other cells of the TME. 

High glucose uptake and lactate secretion have a major role in immunoediting 
inhibition. As seen above, T cells enhance glycolysis and this improves their effector 
function.145 Many types of tumor cells also present a high glycolytic activity, and 
thereby they avidly consume glucose. As a consequence, low levels of this molecule 
would be available in the extracellular media for T cells consumption (Fig. 2), and then 
effector function would be suppressed.180 An illustrative example is that high HK2 
expression in tumor cells mitigates the transcription of the gene coding for IFN-γ, thus 
contributing to immune response evasion.146 IFN-γ translation is also regulated by 
glycolysis through glyceraldehyde 3-phosphate dehydrogenase (GAPDH). When T cells 
are glucose-restricted, GAPDH becomes available to bind the 3’UTR of IFN-γ mRNA, 
which results in the inhibition of translation of this cytokine. A similar mechanism 
occurs with IL-2 (Fig. 2).181 Furthermore, lactic acid resulting from tumor glycolysis 
suppresses CTL proliferation, as well as the transcription of IL-2 and IFN-γ, leading to a 
diminished cytotoxicity of these cells. Probably, a high extracellular level of lactic acid 
could block the lactic acid export, thus inhibiting further lactate production from 
glycolysis by T cells.182 These observations underscore the relevance of aerobic 
glycolysis for the effector function of T cells. Additionally, Treg cells proliferate in 
response to TGF-β from tumors.183 As a matter of fact, Treg cells are the most abundant 
lymphocytes in the TME. Since their energy metabolism relies on FAO and OXPHOS, 
they are not as vulnerable to glucose deprivation as effector T cells. In turn, Treg 
immunosuppressive activity contributes to overall immunosuppression within the TME. 

PD-1 is an immunoinhibitory receptor expressed by chronically stimulated T cells. 
Ahmadzadeh et al., working with metastatic melanoma lesions, found that PD-1 is 
expressed by TILs at higher levels than those found in normal T cells.183 Expression of 
its ligand, PD-L1, has been reported in several human tumors.185 As PD-1/PD-L1 
interaction inhibits T cell proliferation and cytokine production, it could be proposed 
that TME contributes to a weakened anti-tumor immune response. Different studies 
have shown that PD-1 expression causes a reduction of glycolysis and a switch to FAO 
in T cells by suppression of PI3K/Akt.186,187 Moreover, recent results have shown that 
PD-L1 not only inhibits T cell glycolysis but at the same time is able to enhance this 
pathway in tumor cells through activation of the Akt/mTOR signaling pathway, 
depriving glucose availability in the TME and thus increasing even further the 
glycolysis inhibition in these lymphocytes.25 Therefore, the interaction of PD-1 with its 
ligand PD-L1 results in an inhibition of effector T cell function (Fig. 2). 
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It should be emphasized that an increased tumor glycolysis is not the only way to 
achieve immunosuppression. We have seen that tumors avidly consume glutamine, thus 
depleting it from the media and affecting the immune response (Fig. 2). Moreover, 
many tumor cells show high levels of indoleamine-2,3-dioxygenase (IDO1) and 
tryptophan-2,3-dioxygenase (TDO2), two enzymes that degrade tryptophan to 
kynurenine. As a consequence, this amino acid is depleted from the media and effector 
T cells undergo apoptosis (Fig. 2).188 Kynurenine, as mentioned in another section 
above, promotes invasiveness by tumor cells (Fig. 3).165 On the other hand, expression 
of CD73 in some tumor cells leads to an adenosine accumulation in the extracellular 
media, which impairs T cell function (Fig. 2).189 Additionally, NO production by tumor 
cells leads to anti-tumor immunity, whereas its production by myeloid cells promotes 
this anti-tumor activity.69 Since NOS activity requires arginine as a substrate, we dare to 
ask whether depletion of arginine by tumor cells for the production of NO and 
polyamines could be the cause to the anti-tumor immunity (Fig. 2). However, 
combination of L-NG-nitroarginine methyl ester (L-NAME), a NOS inhibitor, with L-
arginase has been shown to reduce viability of cancer cells.190 

In summary, not just tumor aerobic glycolysis, but also amino acid and nucleotide 
metabolism in tumor cells contribute to the inhibition of a proper T cell function. 

 

4.2. Tumor and endothelial cell metabolism and its role on angiogenesis 

As soon as 1971, Judah Folkman proposed that inhibiting angiogenesis could be a 
new and revolutionary therapy against tumor growth based on his own experimental 
observations from the sixties.191 Almost 40 years later, he reviewed the available 
scientific information regarding a series of different angiogenesis-modulator drugs 
being developed for the treatment of cancer and other angiogenesis-dependent diseases, 
therefore reinforcing his early visionary hypothesis and now proposing that 
angiogenesis could be an organizing principle for drug discovery.192 There are many 
factors that are related to angiogenesis (e.g. VEGF, bFGF, HIF-1α, and many others). 
Many published reviews have already revised this issue along the years.193–195 
Nevertheless, limitations of anti-angiogenic therapies, mainly based on the inhibition of 
EC activation by angiogenic factors, especially VEGF, suggested that alternative anti-
angiogenic strategies might be considered.196 The fact that metabolic reprogramming 
can control angiogenesis opens new horizons to treat this process under pathological 
conditions through a metabolic approximation and not just by targeting pro-angiogenic 
molecules.197 In this section we will focus on the main metabolic features that regulate 
the angiogenic process, but it should be kept in mind that many other factors may 
interplay in this scenario. 

We mentioned before that glycolysis-derived lactate plays a role in angiogenesis. 
Végran et al. showed that nuclear factor-κB (NF-κB) is involved in this regulation 
through PHD inhibition. IL-8 is a pro-angiogenic cytokine expressed by ECs. They 
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observed that lactate could induce IL-8 expression by these cells in a NF-κB-dependent 
manner. A sequence of events leading to this is proposed: lactate would be converted to 
pyruvate by LDH-B, which indirectly inhibits PHD2 by competition with α-
ketoglutarate, with the consequent accumulation of IκB kinase (IKK), which 
phosphorylates inhibitor of kappa B (IκBα), thus liberating the active form of NF-κB 
and allowing IL-8 transcription.97,198 Additionally, PHD inhibition enables the 
stabilization of HIF-1α and regulation of its target genes expression. These target genes 
include those coding for pro-angiogenic effectors such as VEGF and for many 
metabolic enzymes. HIF-1α can also indirectly induce VEGFR2 and bFGF expression. 
Furthermore, all this requires additionally that ECs incorporate extracellular lactate, 
secreted by tumor cells, through MCT1 transporters.199 It has been shown that lactate 
increases the phosphorylation of Akt, thus promoting the angiogenic process.200 VEGF 
plays an additional role, since it promotes fatty acid uptake by ECs, hence contributing 
to ECs proliferation and angiogenesis.201 Therefore, lactate uptake by ECs would induce 
angiogenesis through increased IL-8, VEGF, VEGFR2 and bFGF expression and Akt 
phosphorylation levels (Fig. 4). Furthermore, it has been seen that extracellular lactate 
produced by ECs acts as a vasoactive signal for pericytes.202 It could be possible that 
lactate secreted by tumor cells could also affect pericyte-mediated vasoconstriction and, 
thus, angiogenesis. 

Moreover, recent studies have uncovered the role of nerve-endothelium interaction 
on angiogenesis. ECs express β2-adrenergic receptor (ADRβ2), and its deletion leads to 
inhibition of angiogenesis. More specifically, ADRβ2 blockade in these cells induce a 
“reverse metabolic switch” towards OXPHOS, by regulation of COX10, a gene related 
with a cytochrome IV oxidase (Fig. 4).203,204 

Finally, it has been recently seen that glutamine and asparagine are essential for 
angiogenesis.99,100 Indeed, glutamine deprivation impairs this process, an effect rescued 
by the addition of asparagine and α-ketoglutarate. Consequently, inhibiting GLS1 and 
ASNS activities at the same time seems to be a good anti-angiogenic strategy.99 
Nevertheless, the precise mechanism of these amino acids on the angiogenic switch 
should be further studied. 

 

4.3. Cancer-associated fibroblasts: important assistants for tumor 
invasiveness 

As mentioned above, CAFs rely on enhanced glycolysis. This seems to be due to an 
enhanced production of ROS by cancer cells. Oxidative stress spreads from cancer cells 
to adjacent fibroblasts, which reduce their mitochondrial activity and increase glucose 
uptake, becoming more dependent on aerobic glycolysis (Figs 3 and 4).205 In a clear 
example of cell cooperation within TME, CAFs secrete lactate to the media, and this 
lactate fuels tumor cells, which deliver it to OXPHOS, obtaining energy to sustain their 
high proliferative rates, in a phenomenon known as “reverse Warburg effect” (Fig. 3).206 
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Likely, this enhanced oxidative stress could induce MCT4 expression in CAFs. 
Moreover, co-culture of CAFs with MCF7 cells, which mostly rely on oxidative 
metabolism, results in an increase of MCT1 expression by these tumor cells. Thereby, 
lactate from CAFs would be incorporated by MCF7 cells, via a lactate shuttle between 
the stroma (MCT4 in CAFs) and tumor cells (MCT1 in MCF7), in a kind of tumor-
feeding mechanism.116 Something similar has also been observed in osteosarcoma.207 

Lactate secreted by CAFs could have the same effects as those of lactate produced by 
tumor cells. Romero-Garcia et al. reviewed lactate contribution to the TME. From their 
review, the following should be highlighted: i) lactate ability to induce MMP-9, an 
enzyme involved in migration and invasion of cells during the angiogenic process (Fig. 
4); ii) immunosuppression; iii) expression of pro-angiogenic factors; and iv) activation 
of ECs through MCT1.208 Several of these processes are regulated, at least in part, by 
MSF expression in CAFs, a cytokine related to tumor growth.115 However, some 
authors have suggested that the effects caused by extracellular acidification are specific 
of tumor cells.18,120 It has been reported that lactate from cancer cells induce hyaluronic 
acid production by fibroblasts, contributing to tumor invasiveness (Fig. 3).209 In 
addition to this, CAFs express TGF-β and SDF-1, which confer them their tumor 
phenotype, due to the activation of the transcriptional regulator heat shock factor 1 
(HSF1), as well as pro-angiogenic features.115,210,211 Moreover, since Treg cells 
proliferate in response to TGF-β from tumors, CAF-secreted TGF-β could also help the 
development of immunosuppression (Fig. 2).183 It is well known that CAFs promote 
tumor progression and invasion, in part by secreting multiple molecules involved in 
ECM remodeling (Fig. 4).212,213 Regarding angiogenesis, several available data suggest 
a connection between CAFs and tube formation.214,215 

Nonetheless, lactate is not the only metabolite from CAFs that fuels tumor cells. 
Recent studies have shown that CAFs are able to synthetize glutamine from glutamate, 
aspartate and alanine, and these cells secrete this glutamine, which is used by cancer 
cells (Fig. 3). Again, tumor cells are not passive, but they secrete glutamate from 
glutaminolysis as well as the already mentioned lactate, both contributing to glutamine 
secretion by CAFs.120 This interesting GS/GLS intercellular cycle within the TME 
deserves to be further explored. On the other hand, fatty acids are also synthetized and 
secreted by CAFs and taken up by breast tumor cells (Fig. 3), favoring tumor 
progression.216 Furthermore, NOS-expressing CAFs support growth of breast and 
prostate cancer cells, suggesting the relevance of NO metabolism in these cells for 
tumor progression.217 

In summary, CAFs contribute to tumor progression by fueling cancer cells, 
remodeling the ECM, increasing Treg proliferation and promoting angiogenesis, all in 
all allowing invasiveness. 

 

4.4. Tumor-associated macrophages and tumor progression 
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We have seen that TAMs seem to rely on aerobic glycolysis, secreting large amounts 
of lactate. As a matter of fact, treatment of these cells with 2-deoxyglucose (2-DG) 
inhibits their pro-metastatic phenotype.218 Interestingly, lactate from tumor cells could 
help by inducing aerobic glycolysis in TAMs through the Akt/mTOR pathway (Fig. 
3).135 In addition, tumor cell-derived lactate is able to induce TAM polarization by 
inducing Fizz1, Mgl1 and Mgl2 markers via HIF-1α. Additionally, VEGF and arginase 
1 (Arg1) are upregulated in these cells also via HIF-1α.219 In the first case, TAMs can 
be linked to angiogenesis induction. Indeed, a relationship between TAM number and 
tumor angiogenesis has been documented in breast cancer.220 TAMs also produce other 
molecules involved in the angiogenic process, such as TNF-α, which induces MMP-9 
expression, uPA, IL-1, which, through cyclooxygenase 2 (COX2), upregulates HIF-1α, 
increasing transcription of VEGF in turn, and CCL18.221,222 Therefore, it is likely that 
TAMs help to induce tumor angiogenesis (Fig. 4). This pro-angiogenic effect of TAMs 
has been already seen, along with immunosuppressive features.223 

Regarding metabolism of arginine, Arg1 has an important role in tumor progression, 
and participates in polyamine production, necessary for collagen synthesis, cell 
proliferation and tissue remodeling.219 Indeed, some evidence hint that TAMs could 
contribute to tumor invasion by secreting MMPs.224 There is some controversy 
regarding the presence of iNOS expression in TAMs. iNOS is an enzyme that produces 
NO from arginine. This enzyme is present in M1 macrophages whereas is absent in M2 
macrophages.225 Regarding metabolic features of these cells, iNOS is able to block 
OXPHOS while upregulating the glycolytic rate, and therefore iNOS expression 
corresponds with M1 and TAM metabolic profiles.226 Some authors have found iNOS 
expression in TAMs while others could not.227,228 On the other hand, TAMs could have 
a role in immunosuppression, since depleting extracellular arginine by Arg1 activity 
would deprive T cells of this amino acid, affecting their proliferation.229 Moreover, 
TAMs express high levels of IDO, producing kynurenine (Fig. 3), and this tryptophan 
degradation impairs T cell function.230 These data reflect the immunosuppressive 
capacity of TAMs (Fig. 2), and iNOS has an immunosuppressive (as well as anti-
angiogenic) effect.14 Therefore, additional experiments should be performed in order to 
confirm the involvement of iNOS in these cells. 

Furthermore, these macrophages are unable to produce IL-12, a cytokine required to 
activate the anti-tumor responses mediated by NK cells, Th1 cells and CTLs. Instead, 
they produce IL-10, inducing Th2 polarization, and these Th2 cells secrete IL-4, 
promoting M2 polarization to TAMs in a positive-feedback cycle.122 Th2 cells release 
anti-inflammatory cytokines, so they do not contribute to the anti-tumor immune 
response. IL-10 secreted by TAMs also increases the number of Treg cells present in 
epithelial ovarian cancer (Fig. 2).231 It has been demonstrated recently that IL-10 
inhibits mTOR activation in macrophages, thus leading to a reduction in the glycolytic 
pathway and ROS liberation from damaged mitochondria.232,233 Since mTOR inhibition 
promotes Treg cell differentiation, a relationship between IL-10 from TAMs and mTOR 
in tumor progression may be established.148 
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In addition, as tumor cells, TAMs also express PD-L1, contributing to 
immunosuppression (Fig. 2).234 Lactate secreted by cancer cells is able to increase IL-23 
secretion by TAMs, a tumor-promoting cytokine involved in the generation of Th17 
cells, thus contributing to tumor progression.235 

Fatty acid and glutamine metabolism in TAMs are also important for tumor 
progression. For example, an elevated FA biosynthesis, uptake or storage contributes to 
the pro-tumorigenic profile of these cells.225 On the other hand, TAMs show high levels 
of GS expression, thus liberating glutamine to the media for feeding tumor cells and 
contributing to nitrogen metabolism in these cells, as CAFs do (Fig. 3).138,219 

All these facts indicate that TAMs can help tumor cells to evade the immune 
response, to trigger tumor angiogenesis and to promote invasiveness. 

 

4.5. Other examples of “friendly neighbors” of tumors 

Not mentioned above, ECs are able to help tumor cells within the TME. For 
example, they can extrude mitochondria to tumor cells through tunneling nanotubes and 
thus they can acquire resistance to chemotherapy (Fig. 3).236 However, the already 
mentioned stromal cells are not the only ones able to help tumors to grow. Depending 
on the type of cancer, there can be other cells that feed tumor cells. They could be called 
“friendly neighbors”, as in the title of a comment regarding a letter which described the 
alanine release from pancreatic stellate cells to tumor cells in the pancreas.237,238 Some 
mesenchymal stromal cells have been shown to take up cystine and convert it into 
cysteine, which is released and taken up by tumor cells from chronic lymphocytic 
leukemia (CLL). These cancer cells use this cysteine for glutathione (GSH) synthesis, 
involved in cell survival and resistance to drug cytotoxicity.239 As CAFs and TAMs do, 
adipocytes in pancreatic cancer synthetize and secrete glutamine to the media and thus 
they can feed tumor cells.240 But that is not all: it has been seen in several types of 
cancer that adipocytes release fatty acids that are used as fuels by tumor cells, thus 
contributing to invasiveness, as in the case of CAFs.241–244 Moreover, NO-mediated S-
nitrosylation triggers adipocyte formation, thus providing tumor cells a source of fatty 
acids.245 In addition, adipocytes also secrete arginine that are used by tumor cells to NO 
synthesis, and the resulting citrulline is taken up by adipocytes in a cross-talk between 
both cells (Fig. 3).190 

 

5. HOST METABOLISM ALTERATIONS AFTER TUMOR 
DEVELOPMENT 

We have already revised some features and implications of the metabolism of the 
cells within the TME. However, it should not be forgotten that this TME is just a small 
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part of the organism bearing the tumor. Tumor angiogenesis developed by ECs in the 
TME allows the secretion of several soluble factors to the circulation, which leads to 
pathological endocrine effects and an interaction of this microenvironment with the rest 
of the tissues. So, we cannot just talk about a TME, but a tumor macroenvironment 
should be as well (or even more importantly) considered, since cancer-associated 
systemic syndromes develop in this disease.246 

The concept of the “systemic effect” was firstly proposed by Shapot. He affirmed 
that all malignant tumors alter host homeostasis and metabolism even in the absence of 
metastasis, whereas benign tumors do not share this property.247 He distinguished 
between two manifestations of this systemic effect: i) the alteration of the host 
metabolism by competence of the tumor with host tissues, and ii) a dysregulation of 
endocrine gland activities and, therefore, a diminished sensitivity to hormones.247 
Recently, the concept of solid tumors as systemic metabolic dictators has been 
proposed.248 

The most classical feature of tumors in the context of their interaction with the host is 
the concept of tumors acting as “nitrogen traps”. As early as 1889, Müller observed a 
negative nitrogen balance in patients with malignant tumors.referred in 249 Nevertheless, the 
concept of nitrogen trap was firstly demonstrated by Mider.250 Moreover, because 
glutamine is the most abundant amino acid in blood, some authors consider tumors as 
“glutamine traps”.251 Early results obtained by our group in Ehrlich ascites tumors 
suggested that tumors elicit a specific response from the host tissues, so that the whole 
organism contributes to supply glutamine to the tumor.33 Indeed, glutamine content in 
the host decreases in fast growing tumors due to a flux of glutamine from the host to the 
tumor, low or null GS activity in the tumor and faster transport of glutamine through the 
plasma membrane of tumor cells in comparison with non-tumor cells (Fig. 5).12,252 
There is the exception of some tumors that present a GS upregulation as an adaptation 
to glutamine depletion, a feature that is not specific to tumor cells.253,254 In spite of the 
importance of glutamine for tumors, changes in concentrations of other amino acids are 
also observed in plasma after tumor transplantation due to the host-tumor interaction.255 

This nitrogen trap may have other effects in the organism. For example, it has been 
seen that tumors intercept uridine from lymphoid organs, thus inhibiting RNA synthesis, 
and DNA synthesis is suppressed in the spleen of tumor-bearing mice.256,257 Due to the 
avid host glutamine consumption by the tumor, concentration of glutathione in natural 
killer cells diminishes, with the consequent loss of activity of these cells.258 All these 
data support that tumors acting as glutamine traps also compromise the immune system 
response and, therefore, there is an immunosuppression helped by the alteration of 
nitrogen metabolism in the host (Fig. 5). Some authors have observed that an oral 
supplement of glutamine in the diet can have benefits in tumor-bearing animals and 
cancer patients, although a consensus about this has not been achieved.259,260 

But tumors not only take nitrogen from the diet. They are also able to take it from 
host tissues with the consequent body weight loss.250,261 However, tumor grows to a 
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lesser extent when there is no nitrogen available from the diet.262 This loss in body 
weight leads to cancer-associated cachexia.263 Nitrogen from host tissues proceeds from 
protein catabolism, stimulated by an upregulated production of adrenocortical hormones 
(ACH) resulted from a dysregulation of the endocrine system (Fig. 5).264 This 
dysregulation can lead to other harmful effects in the organism, such us thrombosis  and 
immunosuppression.265,266 Now we know that this upregulation of glucocorticoid 
production is caused by IL-6 secretion from the tumor through inhibition of some 
hepatic functions such as ketogenesis (Fig. 5).267 As a matter of fact, inhibition of IL-6 
diminishes tumor growth and cachexia.268 

It has been seen that IL-6 from lung adenocarcinoma is able to inhibit another 
characteristic of liver metabolome, such as hepatic insulin signaling.269 This insulin 
resistance contributes to protein catabolism and induction of glucogenolisis and 
gluconeogenesis (Fig. 5). Indeed, gluconeogenesis is induced by glucocorticoids after 
tumor transplantation, and lower levels of glycogen are found in the liver of tumor-
bearing animals.249,270 Glucose can be synthetized from gluconeogenic amino acids. 
These amino acids include glutamine, which is used mainly in kidneys, and alanine, 
used almost exclusively by the liver.271 A significant part of this gluconeogenic 
glutamine comes from catabolism of muscle proteins, which reflects the correlation 
between cachexia and gluconeogenesis.272 Very recently, a study of plasma metabolome 
from breast cancer patients revealed a positive correlation between lactate, pyruvate and 
alanine levels, and a negative correlation of pyruvate and alanine with glucose.273 This 
corresponds with the Cori cycle, an inter-system cycle active in tumor patients: lactate 
released from cancer cells, but also from muscles, goes to the liver, as well as alanine 
from muscle, and these metabolites are used in gluconeogenesis in that organ, 
increasing the glucose available for cancer cells and their stroma, and thus enhancing 
tumor malignancy and associated body weight loss (Fig. 5).274 Moreover, the use of 
amino acids for gluconeogenesis limits the protein synthesis in the host, contributing to 
vital organs dystrophy.249 Indeed, a low amount of membrane-bound ribosomes and a 
defect of the small subunit of ribosomes in muscle were found in tumor-bearing 
animals.275,276 

Due to the Warburg effect, many tumors depend on aerobic glycolysis. For that 
reason, tumors can also be considered as “glucose traps”.249 The consequent decrease in 
glucose levels due to its consumption by the tumor is, in part, responsible for the up-
regulated glycogenolysis and gluconeogenesis. But that is not all. Administration of 
additional glucose inhibits fatty acid mobilization in the host, showing a modulation of 
fatty acid metabolism due to glucose depletion caused by the tumor.277 As a matter of 
fact, lipid catabolism in adipocytes promotes cancer-associated cachexia in tumor-
bearing mice.278 This mobilization of fatty acids could also be associated with fatty acid 
synthesis in tumors, as serum levels of fatty acids were found to be lower in tumor-
bearing mice as compared to the controls (Fig. 5).279 
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Interestingly, supplementation of arginine in the diet inhibits body weight loss and 
diminishes tumor growth as well as nitrogen trapped by the tumor. On the one hand, 
increased leucine oxidation due to additional, available arginine leads to a decrease in 
protein catabolism.280 On the other hand, arginine is able to activate the immune system, 
with the consequent reduction of tumor growth.281 Nowadays we know the importance 
of arginine in T cells activity.152 We would like to highlight the use of arginine for 
polyamine synthesis, a process enhanced in tumors that could be hence responsible for 
immunosuppression by depleting extracellular arginine (Fig. 5). 

Other amino acids can be taken up by tumors from host tissues. A flux of several 
essential amino acids, such as valine, leucine, isoleucine, phenylalanine, lysine and 
arginine, as well as the sulfur amino acid methionine, was observed in Ehrlich 
carcinoma-bearing mice.255 Regarding methionine flux, this could be explained by the 
active polyamine biosynthesis in the tumor, also demonstrated by the observation of a 
net flux of ornithine from host to tumor and an increase in ODC activity in the seventh 
day after tumor transplantation in the same animal model (Fig. 5).282 Moreover, tumors 
can take cysteine and incorporate it through CD44 in order to synthetize glutathione. It 
has been seen that CD44 interacts with PKM2, increasing the Warburg effect. 
Therefore, inhibition of this cell marker leads to an increased glucose oxidation and 
reduced glutathione levels in tumor cells, enhancing the oxidative damage in these 
cells.283 

In addition of inducing protein catabolism in the host and hence acquiring amino 
acids, Ras-mutant tumor cells are able to incorporate extracellular proteins (mostly 
serum albumin) by macropinocytosis, and to obtain amino acids from their lysosomal 
degradation for sustaining cell proliferation even in the absent of extracellular 
glutamine.284,285 Indeed, Holm et al observed that the amount of nitrogen excreted in 
colorectal cancer was 10-fold higher than the equivalent amino acid uptake, pointing out 
the possible incorporation of extracellular proteins.286 PIKfyve has been demonstrated 
to promote recovery and redistribution of nutrients from vacuoles after lysosomal 
degradation of engulfed proteins, thus supporting Ras-mutant cell proliferation.287 On 
the other hand, an input of amino acids results in mTORC1 activation, which inhibits 
lysosomal catabolism of extracellular proteins.288 Besides, oncogene Ras does not only 
induce macropinocytosis of extracellular proteins, but it also induces lipid scavenging, 
thus conferring resistance to inhibition of stearoyl-CoA desaturase 1 (SCD1), a key 
enzyme in fatty acid metabolism.289 Novel therapeutic strategies are emerging based on 
these discoveries. For example, drug conjugation with albumin (e.g. paclitaxel) 
increases intratumoral drug concentration and enhances anti-tumoral activity.290,291 
mTORC1 inhibitors have sometimes failed in suppressing tumor growth. Combination 
of mTORC1 inhibitors with blockade of extracellular proteins macropinocytosis or 
PIKfyve inhibitors could be a promising combined strategy for Ras-mutant 
tumors.287,288 
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In summary, host-tumor interactions and the presence of extracellular substrates are 
of great importance for tumor progression, and metabolism plays an essential role. 
Despite the relevance of host metabolism in tumors, just a few studies have been 
performed in the last years, and the vast majority of research regarding this issue is 
previous to the present century. Therefore, more research would be necessary in order to 
improve treatment for cancer patients taking into account the whole organism 
homeostasis. 

 

6. TARGETING METABOLISM OF TUMOR 
MICROENVIRONMENT CELLS FOR CANCER THERAPY  

The “re-discovery” of the Warburg effect and increased glutaminolysis and the 
identification of tumor metabolism reprogramming as a hallmark of cancer renewed the 
interest in cancer metabolism after decades of oversight and has led to a renewed 
interest in targeting tumor metabolism in the last two decades. Many compounds 
targeting cancer metabolism have been tested in vitro, in vivo and in clinical trials. 
These compounds include glycolysis inhibitors like 2-DG, lonidamine, 3-
bromopyruvate and dichloroacetate and inhibitors of GLS such as 968, BPTES and 
other glutamine analogues, including DON, acivicin and azaserine, among many 
others.7,11-13 However, the search for anti-glutamine cancer therapies, despite good 
results in in vivo models, was soon forgotten.292 A renewed interest in these agents has 
been recently triggered by the observation that GLS inhibitors may help to overcome 
acquired resistance to anti-tumor drugs in ovarian and non-small-cell lung cancer.293–296 
Inhibiting polyamine metabolism has also been shown to decrease tumor growth, and its 
targeting is considered of great relevance for cancer therapy.85,297 Additionally, 
treatment using asparaginase has been proved to be useful against leukemia. Moreover, 
this enzyme has a well-known immunosuppressor role, that can be explained by an 
almost undetectable ASNS activity in lymphoid tissues and the glutaminase activity 
presented in most asparaginases.298-300 Therefore, since treatment with asparagine 
inhibits T cell activation as well as cytokine production and proper function of M1 
macrophages, it should be taken into account that targeting asparagine metabolism in 
tumors could also affect the immune system.301,302  

Furthermore, the concept of “oncometabolites” has opened a new window for tumor 
treatment. We could define the term oncometabolite as a molecule from normal 
metabolism that is able to allow tumor progression through its accumulation due to a 
metabolic dysregulation. The best and first known oncometabolite is 2-HG, which 
causes changes in gene function in tumors by epigenetic regulation.43 One of the 
consequences of the accumulation of 2-HG to limit the production of chemokines 
CXCL9 and CXCL10, so preventing CD8+ T cell recruitment to the tumor, for 
example.303 In the last years, efforts to inhibit the newly gained function of the mutant 
IDH enzymes (IDH1 and IDH2) have led to the development of IDH inhibitors which 
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are already in clinical trials.304–306 Other molecules are also considered as 
oncometabolites, and their targeting should also be researched.307,308 

However, in the last years alternatives have emerged with the new understanding of 
the complex metabolic interactions within the TME. As we have shown above, overall 
TME metabolic features are sometimes determined by cytokines or pro-angiogenic 
factors production. In fact, chemoresistance is sometimes enhanced due to interactions 
with stromal cells and components of the ECM.309 On the other hand, it is known that 
non-tumor cells are genetically more stable than tumor cells, and thus it is less likely 
that these cells could develop adaptive mutations to treatments.224 Therefore, targeting 
metabolism of TME stromal cells, instead of tumor cell metabolism or in addition to it, 
could be a promising strategy against tumor progression. 

Since metabolism and angiogenesis are related, it could be expected that metabolic 
modulators were also able to affect different steps of the angiogenic process. Among 
other examples, 3-bromopyruvate, an inhibitor of hexoquinase, and α-cyano-4-
hydroxycinnamic acid (CHC), which blocks MCT lactate transporter, inhibit 
angiogenesis in HUVEC.310 2-DG, the most well-known glycolytic inhibitor, inhibits 
angiogenesis in vitro and in vivo.311 The glycolytic pathway is not the only possible 
target. For instance, acivicin, a glutamine analogue, disrupts angiogenesis in vivo, and 
chloroquine, a GDH inhibitor, enhances the anti-angiogenic effect of sunitinib.312,313 In 
addition, some statins, HMG-CoA reductase inhibitors that affect metabolism of 
cholesterol, and DFMO, an inhibitor of ODC, involved in polyamine metabolism, are 
capable of suppressing the angiogenic process.314-316 

Recently, three articles simultaneously published in Cell Reports have demonstrated 
that the induction of metabolic symbiosis could be responsible for acquired resistance to 
anti-angiogenic drugs.317-319 Treatment with inhibitors of angiogenesis, including 
sunitinib, may give rise to an extensive vascular collapse that will produce hypoxic and 
normoxic regions in the tumor. In the hypoxic cancer cells, HIF-1α induction will 
upregulate GLUT1 and MCT4, leading to high levels of lactate secretion. This lactate 
will be imported by the normoxic cancer cells, which express the lactate transporter 
MCT1, and catabolized with consequent induction of mTOR signaling to promote 
tumor metabolism. In this way, normoxic cancer cells save glucose for the hypoxic cells 
and use the lactate produced by hypoxic cells in conjunction with glutamine.317 
Targeting metabolic symbiosis may therefore be a new strategy to overcome the 
resistance development to anti-angiogenic therapy in patients. 

Targeting EC metabolism could be, as well, a way to inhibit tumor angiogenesis.197 
Inhibition of PFKFB3 and pharmacological blockade of MCT1 disrupt angiogenesis in 
vitro and in vivo, and LDH-A inhibition impairs proliferation of pulmonary 
microvascular ECs.93,199,320 Indeed, taking EC metabolism as a target for modulating 
pathological angiogenesis may improve chemotherapy, as seen for a PFKFB3 inhibitor, 
3-PO, which impairs metastasis without affecting proliferation of tumor cells.321 After 
uncovering the importance of fatty acid metabolism in ECs, targeting fatty acid 
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synthesis and oxidation is emerging as a novel therapeutic approach to inhibit EC 
metabolism and angiogenesis.106,322 Furthermore, etomoxir, a CPT1a inhibitor, represses 
angiogenesis.106 Glutamine and asparagine metabolism are also emerging targets for 
inhibition of the angiogenesis process.99,100 

Many anti-angiogenic compounds are available and already approved for their use in 
patients.192,323 Moreover, a combinatory strategy is also being explored, since 
sometimes anti-angiogenic therapy may be not enough to treat tumors.5 This anti-
angiogenic therapy could result in i) the recovery of the normal perfusion in tissue, with 
the consequent reduction in hypoxia and an improvement of the immunosupportive 
immune system, ii) no change or iii) excessive pruning of the vasculature, with a 
decrease in blood flow and an increase in hypoxia.324 Therefore, its combination with 
metabolic modulators or with immunotherapy could improve the treatment.324–326 

The use of inhibitors of lactate transport and production could be a good strategy to 
target the reverse Warburg effect in stromal cells, and not just lactate metabolism in 
tumor cells. An inhibitor of MCT1 (AZD3965) is already in phase I trials to this aim.327 
Similarly, metformin can also be used to target stromal cells in addition of tumor cells. 
It has been shown that this drug can block lipid accumulation in ovarian cancer cells 
adjacent to adipocytes, and reverse the malignant phenotype of CAFs by restoring 
caveolin-1 expression in these cells.328,329 Other possibilities are targeting GS in CAFs, 
as well as GLS in tumor cells, in order to avoid glutamine transfer from CAFs to cancer 
cells.120 Other suggested therapies based on targeting stromal cell metabolism (such as 
CAFs and CAAs) are collected in the bibliography.330 

The denominated checkpoint blockade therapy using antibodies against PD-L1 has 
emerged as a strategy to restore glucose in the TME and recover T cell effector function 
in order to suppress tumor progression.25 Since tumor and T cells share many metabolic 
features, targeting their metabolism can have undesired effects. For example, 
administration of mTOR inhibitors can either promote effector T cells or inhibit them. 
Furthermore, blocking glycolysis could affect T cell metabolism and lead to a poor 
prognosis of cancer. However, the use of glycolytic inhibitors before the induction of an 
immune response may allow T cells to enter a TME with higher glucose concentration, 
favoring a proper anti-tumor immune response.15 Combining an anti-metabolic strategy 
with a checkpoint blockade therapy could improve the T cell function and cancer 
prognosis. For example, it has been reported that targeting CD73 in tumors enhances the 
efficacy of anti-PD-1 and anti-CTLA-4 treatments.331 

Anti-tumor T cell function can be also partially recovered by inhibiting Arg1 with 
tadalafil.14 Inhibitors of IDO have been proposed to restore T cell proliferation and 
cytokine production, and dimethylfumarate (DMF), an anti-angiogenic compound, is 
able to inhibit IDO activity in human immune cells.17,332,333 Moreover, very recently an 
inhibitor of IDO, erianin, has also been shown to inhibit tumor angiogenesis.334 
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In summary, targeting stromal cell metabolism and development of immunotherapy 
with metabolism as a target may improve cancer therapies by inhibiting angiogenesis 
and recovering anti-tumor immune response, leading to tumor regression. Several 
compounds able to modulate metabolic features with proved anti-tumor activity are 
collected in Table 1. However, it is always important to be careful with secondary 
effects and to make sure that normal metabolism is not affected by the treatment. 
Further research will be necessary to progress on cancer treatment via inhibition of the 
TME metabolism. 

 

7. CONCLUDING REMARKS AND OUTSTANDING QUESTIONS 

In this review we have tried to explore metabolism within the TME and how it 
affects tumor growth and progression. Four major kinds of cells have been analyzed: 
ECs, TILs, CAFs and TAMs, apart from tumor cells. Summarizing, all these cells rely 
mainly on aerobic glycolysis with the exception of Treg cells, which mainly depend on 
an oxidative metabolism. Lactate production by tumor cells would contribute to 
promote tumor angiogenesis via NF-κB and HIF-1α stabilization. TAMs and CAFs also 
collaborate by secreting pro-angiogenic factors. During tumor progression a process 
termed immunosuppression occurs, by which T cells are unable to exert a proper anti-
tumor immune response. Tumor cells, by glucose competition and lactate secretion, as 
well as other metabolic features of these and other cells, are responsible for this. PD-
1/PD-L1 interaction is also a way to immunosuppression, in which tumor cells, T cells 
and TAMs are implicated. CAFs also fuel tumor cells by a phenomenon called reverse 
Warburg effect and by glutamine synthesis and secretion, along with TAMs and CAAs. 

Although in this review we have focused on the changes regarding metabolism in the 
TME, metabolism is considered a complex and dynamic network able to adapt in 
response to shifts and metabolic demands.330 Therefore, cancer metabolic 
reprogramming is just an example of the flexibility and adaptability of metabolism. 
Circadian rhythms, hypoxia, exercise, hibernation period and many other factors are 
able to modulate gene expression and metabolic features of healthy cells.335-338 The 
lactate shuttle between tumor cells and other cells of their microenvironment is also 
present in healthy tissues, such as muscle and brain.339-342 Moreover, it has been 
recently demonstrated that there are also changes in metabolism during developmental 
progression and not just during differentiation, and a loss of metabolic flexibility could 
lead to pathologies associated to metabolic syndrome.343 Actually, this metabolic 
flexibility is not only found in animals, but in all organisms. Plants, for example, are 
able to modify their metabolism in response to environmental stress.344,345 Due to this 
metabolic flexibility, tumors can modulate the metabolism of the tissues in the so-called 
systemic effect. Therefore, not only metabolism of the sole TME, but also the changes 
in the metabolism of the whole organism triggered by the tumor should be studied. 
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In conclusion, although it is obvious and well-documented that there is a metabolic 
switch during tumor progression, these kinds of changes also take place in healthy 
tissues as a normal process or under particular situations and they should not be 
considered as surprising. All in all, cancer metabolic reprogramming ought to be studied 
as an ordinary and expected feature of metabolism. Regarding possible therapies, 
targeting the metabolic features of the different cells of the TME, or putting the target in 
the angiogenic process or the immune system, will allow us to design new strategies to 
fight cancer in combination with classical metabolic approaches. 

We could take into consideration the next remarkable aspects: i) aerobic glycolysis is 
upregulated in different cells of the TME, except for Treg cells; ii) tumor cells should be 
classified as oxidative and glycolytic ones, even within the same tumor; iii) due to 
different metabolic modulations, cells of the TME help to tumor progression, affecting 
invasiveness, angiogenesis and immunosuppression; iv) tumor macroenvironment 
should not be rotten in oblivion, and more research should be performed in order to 
improve treatments; v) metabolism regulates and is linked to many other physiological 
characteristics, being part of an interconnected network; vi) the concept of metabolic 
switch is not specific of cancer, but an example of the global flexibility of metabolism. 

Finally, we bring together some questions that remain up in the air waiting for being 
elucidated: i) Is there any glucose competition between tumor and ECs? And between 
tumor, CAFs and TAMs? ii) What is the exact mechanism by which lactate undermines 
T cells glycolytic metabolism? iii) What is the exact role of arginine in the immune 
system? iv) Which metabolic features characterize TAMCs and tumor-associated 
pericytes? What is their role in tumor progression? Further investigation will be needed 
to solve these inquiries. 

 

NOTES ADDED IN PROOF 

During the revision period of this article a study showing an interaction between 
metabolic reprogramming and transcriptional regulation has been published. Dasgupta 
et al. have shown that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 4 (PFKFB4) regulates transcriptional programming by activating the 
oncogenic steroid receptor coactivator-3 (SRC-3) through its phosphorylation at serine 
857. An active glucose metabolism allows this phosphorylation, which leads to 
upregulation of some of the key enzymes of the pentose phosphate pathway (PPP). This 
activation of purine metabolism is essential for tumor growth and metastasis in breast 
cancer models, since ablation of SRC-3 or PFKFB4 leads to a decrease in cell growth 
and the metastatic progression of the disease.431 Another enzyme of the same family, 
PFKFB3, was shown to be involved in angiogenesis.93 Hence, we would like to remark 
the importance of metabolism in the development of diseases such as cancer and 
angiogenic-dependent pathologies through different mechanisms. 
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We have also become aware of the approval by FDA of enasidenib for the treatment 
of oncologic patients with tumor IDH2 gene mutations.432 
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Table 1. Metabolic modulators with proved anti-tumor activity. 

Target Drug Observations References 

Glycolysis    

GLUT1 Curcumin 
Fasentin 
Genistein 
Phloretin 
Silibinin 
WZB117 

 

Silibinin is in Phase II of 
clinical trials (prostate 

cancer).a 
Curcuminb and genisteinc 

are in clinical trials 
(multiple kinds of 

cancer). 
 

346-351 

Hexokinases 2-DG 
3-bromopyruvate 

Lonidamine 
Methyl jasmonate 

Lonidamine is in Phase 
III of clinical trials 
(prostate cancer).d 

2-DG is in clinical trials 
(multiple kinds of 

cancer).e 
 

352-355 

PFKFB3 3PO 
PFK15 

 321,356 

G3PDH Iodoacetate  357 

PKM2 Shikonin  358 

LDH-A FX11 
Galloflavin 
GNE-140 
Gossypol 

NHI 
Oxamate 

Panepoxydone 

Gossypol is in clinical 
trials (multiple kinds of 

cancer).f 

20,359–364 

Lactate secretion    

MCT4 Diclofenac 
Lonidamine 

Diclofenac is FDA 
approved (anti-

inflammatory drug). 
Lonidamine is in Phase 

III of clinical trials 
(prostate cancer).d 

365,366 

Lactate uptake    

MCT1 AR-C155858 
AZD3965 

CHC 

AR-C155858 is in 
preclinical studies. 

AZD3965 is in Phase I of 

366–369 
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Lonidamine clinical trials (gastric 
cancer, prostate cancer 

and lymphoma).g 
Lonidamine is in Phase 

III of clinical trials 
(prostate cancer).d 

TCA cycle    

PDH CPI-613 Clinical trials (multiple 
kinds of cancer).h 

370 

 PDK1 DCA Approved for the 
treatment of lactic 

acidosis. 

371,372 

 KGDH CPI-613 Clinical trials (multiple 
kinds of cancer).h 

373 

 IDH AG-120 (ivosidenib) 
AG-221 (enasidenib) 

AGI-5198 
AGI-6780 

Ivosidenibi and 
enasidenibj are in Phase 

III of clinical trials 
(leukemia).* 

304,305,374,375 

MPC Lonidamine 
UK-5099 

Lonidamine is in Phase 
III of clinical trials 
(prostate cancer).d 

366,376 

OXPHOS    

Mitochondrial 

potential 

membrane 

MKT-077  377 

Mitochondrial 

complex I 

Metformin 
Phenformin 
Rotenone 

Metformin is approved 
for the treatment of type 

2 diabetes. 
Phenformin is in Phase I 

of clinical trials 
(melanoma).k 

378–381 

Mitochondrial 

complex III 

Arsenic trioxide FDA approved for the 
treatment of acute 

promyelocytic leukemia. 

382 

Glutamine 

metabolism 

   

Glutamine 

antimetabolite 

Acivicin 
Azaserine 

DON 

Not approved for clinical 
due to toxicity. 

12 

GLS1 968 
BPTES 
CB-839 

CB-839 is in clinical 
trials (multiple kinds of 

cancer).l 

293–296,383,384 
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SLC1A5 Benzylserine 
γ-FBP 
GPNA 

 385 

GLUD EGCG 
R162 

EGCG is in clinical trials 
(multiple kinds of 

cancer).m 

386 

Aminotransferases AOA Approved for the 
treatment of tinnitus. 

387,388 

Fatty acid β-

oxidation 

   

CPT1 Aminocarnitine 
Etomoxir 

Perhexiline 
Ranolazine 

Perhexiline and 
ranolazine are approved 

for use as an 
anti-angina therapy. 

389–391 

Lipid synthesis    

 FAS C75 
Cerulenin 
Orlistat 

TVB-2640 

Orlistat is approved for 
the treatment of obesity. 
TVB-2640 is in Phase II 
of clinical trials (multiple 

kinds of cancer).n 

392–394 

ACL Hydroxycitrate 
SB-204990 

 395,396 

ACC TOFA  397 

Choline kinase CK37 
MN58b 

RSM932A 
TCD-717 

TCD-717 is in Phase I of 
clinical trials (advanced 

solid tumors).o 

398–401 

ACS Triacsin C  402 

Mevalonate 

pathway 

   

HMGCR Statins Approved for 
the treatment of 

hypercholesterolaemia 

403,404 

Pentose 

phosphate 

pathway 

   

G6PDH 6-
aminonicotinamide 

DHEA 
DMF 

EGCG 

EGCG is in clinical trials 
(multiple kinds of 

cancer).m 
Dimethylfumarate is 

FDA approved (multiple 

405–408 
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sclerosis). 

PGAM1 PGMI-004A  409 

Amino acid 

metabolism 

   

Asparagine 

availability 

L-asparaginase FDA approved for the 
treatment of acute 

lymphoblastic leukemia, 
acute myeloid leukemia, 

and non-Hodgkin's 
lymphoma. 

58,63 

Arginine 

availability 

Pegylated arginine 
deiminase 

(ADI�PEG20) 
rhArg1-PEG (BCT-

100) 

BCT-100 is in Phase II of 
clinical trials (multiple 

kinds of cancer).p 
ADI-PEG20 is in clinical 
trials (multiple kinds of 

cancer).q 

410–412 

Arginase Tadalafil (Cialis) FDA approved for the 
treatment of benign 

prostatic hypertrophy. 

14,413 

IDO 1-methyl-trytophan 
(Indoximod) 

 DMF 
Epacadostat 

Erianin 

Indoximodr and 
epacadostats are in 

clinical trials (multiple 
kinds of cancer). 

Dimethylfumarate is 
FDA approved (multiple 

sclerosis). 

333,334,414–416 

Polyamine 

metabolism 

   

ODC DFMO Phase II of clinical trials 
(neuroblastoma).t 

84 

AMD1 MGBG 
SAM486A 

MGBG is toxic for 
clinical development. 

85,417,418 

Polyamine 

transport 

AMXT-1501 . 419 

Aminopropyltrans-

ferases 

AdoDATAD 
AdoDATO 

 420,421 

Polyamine analogs BENSpm 
CPENSpm 
PG-11047 
PG-11093 

PG-11047 is in Phase I of 
clinical trials (advanced 
refractory solid tumors 

and lymphoma).u 

297 

Nucleid acid 

synthesis 
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DHFR Methotrexate 
Pemetrexed 
Pralatrexate 
Trimitrexate 
(antifolates) 

Methotrexate is FDA 
approved for treatment of 

cancer, autoimmune 
diseases, ectopic 

pregnancy, and for 
medical abortions. 
Pemetrexed is FDA 

approved for the 
treatment of pleural 

mesothelioma and non-
small cell lung cancer. 

Pralatrexate is FDA 
approved relapsed or 

refractory peripheral T-
cell lymphoma. 

422 

Thymidylate 

synthase 

5-fluorouracil 
Raltitrexed 

5-fluorouracil is FDA 
approved for the 

treatment of several 
kinds of cancer. 

Raltitrexed is in Phase IV 
of clinical trials (multiple 

kinds of cancer).v 

423 

Adenine/adenosine 

deaminase 

Cladribine FDA approved for the 
treatment of hairy cell 
leukemia and B-cell 
chronic lymphocytic 

leukemia. 

424 

DNA polymerase/ 

ribonucleotide 

reductase 

Cytarabine 
Fludarabine 
Gemcitabine 
Hydroxyurea 

Cytarabine is FDA 
approved for the 

treatment of acute 
myeloid leukemia, acute 
lymphocytic leukemia, 
chronic myelogenous 
leukemia, and non-

Hodgkin's lymphoma. 
Fludarabine is FDA 

approved for the 
treatment of leukemia 

and lymphoma. 
Gemcitabine is FDA 

approved for the 
treatment of several 

kinds of cancer. 

425–427 
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Hydroxyurea is FDS 
approved for the 

treatment of sickle-cell 
disease, chronic 

myelogenous leukemia, 
cervical cancer, and 
polycythemia vera. 

Nitric oxide 

metabolism 

   

NOS L-NAME  190 

Metabolic 

signaling 

pathways 

   

HIF-1 Digoxin 
Irinotecan 

PX478 
Topotecan 

PX478 is in Phase I of 
clinical trials (advanced 

solid tumors and 
lymphoma).w 

Digoxin is FDA 
approved for the 

treatment of several heart 
diseases. 

Irinotecan is FDA 
approved for the 

treatment of colon and 
small cell lung cancer. 

Topotecan is FDA 
approved for the 

treatment of several 
kinds of cancer. 

428 

mTOR Everolimus 
PP242 

Temsirolimus 

Everolimus and 
temsirolimus are also 

approved 
immunosuppressants. 

Everolimus is approved 
for the treatment of 

advanced kidney cancer. 
 

293,429,430 

2-DG, 2-deoxyglucose; ACC, acetyl-CoA carboxylase; ACL, ATP citrate lyase; ACS, 
acyl-CoA synthetase; AdoDATAD, S-adenosyl-1,12-diamino-3-thio-9-azadodecane; 
AdoDATO, S-adenosyl-3-thio-1,8-diaminooctane; AMD1, adenosylmethionine 
decarboxylase; AOA, aminooxyacetate; BPTES, bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide; CHC, α-cyano-4-hydroxycinnamic acid; CPT1, carnitine 
palmitoyltransferase 1; DCA, dichloroacetate; DFMO, difluoromethylornithine; DHEA, 
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dehydroepiandrosterone; DHFR, dihydrofolate reductase; DMF, dimethylfumarate; 
DON, 6-diazo-5-oxo-L-norleucine; EGCG, epigallocatechin gallate; FAS, fatty acid 
synthase; γ-FBP, γ�folate binding protein; G3PDH, glyceraldehyde-3-phosphate 
dehydrogenase; GLS1, glutaminase; G6PDH, glucose-6-phosphate dehydrogenase; 
GPNA, L-γ-glutamyl-p-nitroanilide; GLUD, glutamate dehydrogenase; HIF-1, hypoxia-
inducible factor 1; HMGCR, HMG-CoA reductase; IDH, isocitrate dehydrogenases; 
IDO, indoleamine-2,3-dioxygenase; KGDH, α-ketoglutarate dehydrogenase; LDH-A, 
lactate dehydrogenase A; L-NAME, L-NG-nitroarginine methyl ester; MGBG, 
methylglyoxal(bis)guanylhydrazone; MPC, mitochondrial pyruvate carrier; mTOR, 
mammalian target of rapamycin; NHI, N-hydroxy-2-carboxy-substituted indoles; NOS, 
nitric oxide synthase; ODC, ornithine decarboxylase; OXPHOS, oxidative 
phosphorylation; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 
1; PFKFB3, phosphofructokinase-2/fructose-2,6-bisphosphatase 3; PGAM1, 
phosphoglycerate mutase; PKM2, pyruvate kinase M2; TCA, tricarboxylic acid cycle. 
aClinicalTrials.gov Identifier: NCT00487721; bpancreatic cancer, phase II, 
ClinicalTrials.gov Identifier: NCT00192842; breast cancer, phase II, ClinicalTrials.gov 
Identifier: NCT01042938; endometrial carcinoma, phase II, ClinicalTrials.gov 
Identifier: NCT02017353; head and neck cancer, early phase I, ClinicalTrials.gov 
Identifier: NCT01160302; pancreatic cancer, phase II, ClinicalTrials.gov Identifier: 
NCT00094445; colorectal cancer, phase I, ClinicalTrials.gov Identifier: NCT00027495; 
multiple myeloma, ClinicalTrials.gov Identifier: NCT00113841; prostate cancer, phase 
III, ClinicalTrials.gov Identifier: NCT02064673; osteosarcoma, phase II, 
ClinicalTrials.gov Identifier: NCT00689195; cprostate cancer, phase III, 
ClinicalTrials.gov Identifier: NCT00584532; kidney cancer and melanoma, early phase 
I, ClinicalTrials.gov Identifier: NCT00276835; breast cancer, phase II, 
ClinicalTrials.gov Identifier: NCT00244933; bladder cancer, phase II, 
ClinicalTrials.gov Identifier: NCT00118040; non small cell lung cancer, phase II, 
ClinicalTrials.gov Identifier: NCT01628471; pancreatic cancer, phase II, 
ClinicalTrials.gov Identifier: NCT00376948; colorectal cancer, phase II, 
ClinicalTrials.gov Identifier: NCT01985763; dClinicalTrials.gov Identifier: 
NCT00435448; eprostate cancer, phase II, ClinicalTrials.gov Identifier: NCT00633087; 
lung cancer, breast cancer, pancreatic cancer, gastric cancer and head and neck cancer, 
phase I, ClinicalTrials.gov Identifier: NCT00096707; fadult glioblastoma, phase II, 
ClinicalTrials.gov Identifier: NCT00540722; lymphoma, phase II, ClinicalTrials.gov 
Identifier: NCT00275431; adrenocortical carcinoma, phase II, ClinicalTrials.gov 
Identifier: NCT00848016; leukemia, phase II, ClinicalTrials.gov Identifier: 
NCT00286780; laryngeal cancer, phase II, ClinicalTrials.gov Identifier: NCT01633541; 
small cell lung cancer, phase II, ClinicalTrials.gov Identifier: NCT00773955; prostate 
cancer, phase II, ClinicalTrials.gov Identifier: NCT00666666; gClinicalTrials.gov 
Identifier: NCT01791595; hsmall cell lung cancer, phase I, ClinicalTrials.gov Identifier: 
NCT01931787; pancreatic cancer, phase I, ClinicalTrials.gov Identifier: NCT01839981; 
colorectal cancer, phase I, ClinicalTrials.gov Identifier: NCT02232152; adult acute 
myeloid leukemia, phase I, ClinicalTrials.gov Identifier: NCT01768897; lymphoma, 
phase I, ClinicalTrials.gov Identifier: NCT02168140; iClinicalTrials.gov Identifier: 
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NCT03173248; jClinicalTrials.gov Identifier: NCT02577406; kClinicalTrials.gov 
Identifier: NCT03026517; lcolorectal cancer, phase II, ClinicalTrials.gov Identifier: 
NCT02861300; lymphoma, phase I, ClinicalTrials.gov Identifier: NCT02071888; 
leukemia, phase I, ClinicalTrials.gov Identifier: NCT02071927; breast cancer, phase II, 
ClinicalTrials.gov Identifier: NCT03057600; renal cell carcinoma, phase II, 
ClinicalTrials.gov Identifier: NCT03428217; mcolon cancer, early phase I, 
ClinicalTrials.gov Identifier: NCT02891538; bladder cancer, phase II, 
ClinicalTrials.gov Identifier: NCT00666562; breast cancer, phase II, ClinicalTrials.gov 
Identifier: NCT00917735; prostate cancer, phase II, ClinicalTrials.gov Identifier: 
NCT00676780; nbreast cancer, phase II,  ClinicalTrials.gov Identifier: NCT03179904; 
colon cancer, phase I, ClinicalTrials.gov Identifier: NCT02980029; astrocytoma, phase 
II, ClinicalTrials.gov Identifier: NCT03032484; oClinicalTrials.gov Identifier: 
NCT01215864; phepatocellular carcinoma, phase II, ClinicalTrials.gov Identifier: 
NCT01092091; leukemia, phase II, ClinicalTrials.gov Identifier: NCT02899286; renal 
cell carcinoma, melanoma and prostate adenocarcinoma, phase I, ClinicalTrials.gov 
Identifier: NCT02285101; qmelanoma, phase II, ClinicalTrials.gov Identifier: 
NCT00520299; prostate cancer, phase I, ClinicalTrials.gov Identifier: NCT01497925; 
breast cancer, phase I, ClinicalTrials.gov Identifier: NCT01948843; acute myeloid 
leukemia, phase I, ClinicalTrials.gov Identifier: NCT02875093; hepatocellular 
carcinoma, phase III, ClinicalTrials.gov Identifier: NCT01287585; rglioblastoma, phase 
II, ClinicalTrials.gov Identifier: NCT02052648; pancreatic cancer, phase II, 
ClinicalTrials.gov Identifier: NCT02077881; prostate cancer, phase II, 
ClinicalTrials.gov Identifier: NCT01560923; melanoma, phase III, ClinicalTrials.gov 
Identifier: NCT03301636; acute myeloid leukemia, phase II, ClinicalTrials.gov 
Identifier: NCT02835729; ssarcoma, phase II, ClinicalTrials.gov Identifier: 
NCT03414229; lymphoma and solid tumors, phase II, ClinicalTrials.gov Identifier: 
NCT03322384; renal cell carcinoma, phase III, ClinicalTrials.gov Identifier: 
NCT03260894; urothelial cancer, phase III, ClinicalTrials.gov Identifier: 
NCT03374488; head and neck cancer, phase III, ClinicalTrials.gov Identifier: 
NCT03342352; lung cancer, phase III, ClinicalTrials.gov Identifier: NCT03322566; 
pancreatic cancer, phase II, ClinicalTrials.gov Identifier: NCT03006302; prostate 
cancer, phase II, ClinicalTrials.gov Identifier: NCT03493945; ovarian cancer, phase I, 
ClinicalTrials.gov Identifier: NCT02118285; tClinicalTrials.gov Identifier: 
NCT02679144; uadvanced refractory solid tumors, phase I, ClinicalTrials.gov Identifier: 
NCT00705653; lymphoma, phase I, ClinicalTrials.gov Identifier: NCT00293488; vhead 
and neck cancer, phase IV, ClinicalTrials.gov Identifier: NCT03196843; 
nasopharyngeal carcinoma, phase II, ClinicalTrials.gov Identifier: NCT02562599; 
childhood leukemia, phase I, ClinicalTrials.gov Identifier: NCT00003528; gastric 
cancer, phase II, ClinicalTrials.gov Identifier: NCT03392103; colorectal cancer, phase 
IV, ClinicalTrials.gov Identifier: NCT01959061; wClinicalTrials.gov Identifier: 
NCT00522652; *enasidenib has already been approved by FDA (see Notes added in 
proof). 
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FIGURE CAPTIONS 

Figure 1. Important aspects regarding metabolism of tumor cells and several cells of the 
tumor microenvironment. 

Figure 2. Role of different cells of the tumor microenvironment in immunosuppression. 
Different cells of the tumor microenvironment are able to affect the immune activity. 
Proliferation of Treg cells is modulated by TGF-β from cancer-associated fibroblasts 
(CAFs) and tumor cells and by IL-10 secreted by tumor-associated macrophages 
(TAMs). Tumor cells consume high amounts of tryptophan and arginine, thus depleting 
them from the media. TAMs also consume tryptophan, and HIF-1α induces the 
expression of arginase 1 (Arg1), hence diminishing arginine concentration in the 
extracellular media. Part of the arginine consumed by tumor cells can be leaded to nitric 
oxide (NO) synthesis, which inhibits effector T cells activity. Additionally, the high 
uptake of glutamine by tumor cells decreases glutamine availability in the media, 
inhibiting glutaminolysis in effector T cells, which, in turn, impairs polyamine and 
nucleotide synthesis in these cells. Tumor cells also express CD73 marker, responsible 
for increasing AMP concentration in the media, which will be converted to adenosine, 
capable of inhibiting immune response by effector T cells. Regarding glucose 
metabolism, TAMs and tumor cells express PD-L1, the ligand for PD-1, and their 
interaction inhibits glycolysis in effector T cells. PD-L1 favors the high glycolytic rate 
in tumor cells, thus depleting glucose from the media, and then the transcription of IFN-
γ and IL-2 is inhibited. All these facts lead to immunosuppression. Solid arrows show 
production or secretion; dashed arrows represent induction or inhibition; dotdashed 
arrows indicate a substrate or process integrated to another process; thicker arrows 
depict a higher rate of incorporation of the indicated substrate. 

Figure 3. Metabolite exchange between tumor cells and different cells of the tumor 
microenvironment and its relation with tumor progression. There are multiple metabolic 
interactions between the different cells of the tumor microenvironment. For example, 
endothelial cells (ECs) consume lactate produced by tumor cells, thus enhancing the 
angiogenic process, and ECs extrude mitochondria to tumor cells, conferring them 
chemoresistance. Lactate from tumor cells are also consumed by tumor-associated 
macrophages (TAMs) and cancer-associated fibroblasts (CAFs). On the one hand, in 
TAMs, lactate stabilizes HIF-1α, thus promoting angiogenesis and immunosuppression.  
On the other hand, in CAFs lactate induces hyaluronic acid production, which 
contributes to tumor invasiveness along with kynurenine, a tryptophan metabolite 
produced by tumor cells and TAMs. Lactate production by CAFs is also promoted by 
ROS liberation from tumor cells. Additionally, cancer-associated adipocytes (CAAs), 
TAMs and CAFs synthetize glutamine, which is uptaken by tumor cells. CAAs and 
CAFs also provide fatty acids (FAs) to tumor cells. Moreover, CAAs supply tumor cells 
with citrulline and arginine, hence contributing to polyamine and nitric oxide (NO) 
synthesis in these cells. Solid arrows show production or secretion; dashed arrows 
represent induction or inhibition; dotdashed arrows indicate a substrate or process 
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integrated to another process. 

Figure 4. Role of different cells of the tumor microenvironment in promoting 
angiogenesis. Tumor cells contribute to activation of angiogenesis through lactate 
secretion to the media, which is consumed by endothelial cells (ECs). ECs are also able 
to produce lactate via glycolysis, and this lactate promotes the phosphorylation of Akt, 
which, in turn, promotes the glycolytic process in a positive feed-back. Indirectly, 
lactate inhibits prolyl hydroxylases (PHD). PHD inhibition enables stabilization of HIF-
1α and the liberation of the active form of NF-κB, thus allowing the transcription of 
pro-angiogenic factors such as basic fibroblast growth factor (bFGF), vascular 
endothelial growth factor receptor 2 (VEGFR2), vascular endothelial growth factor 
(VEGF) and interleukin 8 (IL-8). VEGF, as well, promotes fatty acid (FA) uptake in 
ECs. Oxidation of these fatty acids leads to nucleotide synthesis, increasing EC 
proliferation.  Moreover, expression of β2-adrenergic receptor (ADRβ2) favors the 
glycolytic phenotype through inhibition of OXPHOS. Additionally, other cells of the 
tumor microenvironment are also able to modulate angiogenesis. For example, 
stabilization of HIF-1α by ROS liberation from tumors increases the glycolytic rate in 
cancer-associated fibroblasts (CAFs), and the resulting lactate promotes the liberation of 
metalloproteinase-9 (MMP9) to the media. Furthermore, TGF-β expressed in these cells 
activates urokinase-type plasminogen activator (uPA). Both molecules are involved in 
extracellular matrix degradation. On the other hand, tumor-associated macrofages 
(TAMs) produce TNF-α, which allows the expression of MMP9 and uPA as well, and 
of IL-1, which upregulates HIF-1α, hence increasing transcription of VEGF and other 
pro-angiogenic factors. It has to be taken into account that many other factors produced 
by the different cells of the microenvironment regulate the angiogenic process, but they 
are not represented here for the sake of clarity. Solid arrows show production or 
secretion; dashed arrows represent induction or inhibition; dotdashed arrows indicate a 
substrate or process integrated to another process. 

Figure 5. Interactions between tumor and host metabolism. Tumor growth is promoted 
by means of different metabolic interactions of tumor with host tissues. Tumors secrete 
IL-6, which has two effects on the liver: i) inhibiting ketogenesis, which stimulates the 
secretion of adrenocortical hormones (ACH), therefore promoting protein catabolism in 
muscles, which results in free amino acids for their use by the tumor, and ii) promoting 
insulin liberation, which induces gluconeogenesis in the liver, thus supplying the tumor 
with glucose. In addition, gluconeogenesis in the liver also uses alanine from muscles 
and lactate from muscles and the tumor (all this corresponding to the so-called Cori 
cycle), and gluconeogenesis is also carried out in the kidneys. Moreover, tumors act as 
“nitrogen traps”, consuming high amounts of glutamine from the blood. Liver and 
kidneys have a high glutamine synthetase (GS) and a low glutaminase (GLS) 
expression, and muscles present high GS expression, thus providing tumors with 
glutamine. This high uptake of glutamine by the tumor decreases glutamine available 
for natural-killer (NK) cells, thus diminishing glutathione (GSH) concentration and 
affecting NK cells activity. Tumors also consume arginine, depleting the arginine 
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available for other tissues. In addition, tumors take up uridine from lympohid organs, 
leading to a decrease in RNA synthesis in these organs. All this contributes to 
immunosuppression. The arginine consumed can be used for nitric oxide (NO) and 
polyamine synthesis, helped by a high uptake of ornithine and methionine from the 
tissues, as well as a high ornithine decarboxylase (ODC) activity. Besides, lipid 
catabolism is promoted in the adipose tissue, thus liberating free fatty acids (FAs) to the 
blood that are uptaken by the tumor. Solid arrows show production or secretion; dashed 
arrows represent induction or inhibition; dotdashed arrows indicate a substrate or 
process integrated to another process; thicker arrows depict a higher rate of 
incorporation of the indicated substrate. 
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